运筹学论文
运筹学论文

一、学习运筹学的心得体会《史记·高祖本纪》有云:“夫运筹帷幄之中,决胜千里之外”。
运筹学的英文名原名为Operations Research,由此可见运筹学主要在于“研究〔Research〕”,研究在经营管理等活动中该如何行动,如何以尽可能小的代价,获取尽可能好的结果,即所谓“最优化”的问题。
中国学者把这门学科意译为“运筹学”,便是取自古语“运筹帷幄,决胜千里”之意,运算筹划,出谋献策,从而以最正确策略取胜。
这就极其恰当地概括了这门学科的精髓。
运筹学是近几十年来发展起来的一门新兴学科。
它的目的是为行政人员在做决定时提供科学的依据,是实现管理现代化的有力工具,在生产管理、工程技术、军事作战、科学试验、财政经济以及社会科学中都得到了极为广泛的应用。
它主要研究上述活动中能用数量来表达的有关策划、管理方面的问题。
它是一门具有多科学交叉特点的边缘科学,至今没有一个统一的定义。
综合种种定义,从最直观、明了的角度将运筹学定义为:“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化依据的系统知识体系。
”在现代商业社会中,人们更加讲求运筹学的应用。
作为一名数学院的学生,为了使自己未来的人生中更有胜算,让自己步入社会后更具备优势竞争力,就更应该尽可能地去熟练地掌握、运用运筹学的精髓,用运筹学的思维去思考问题。
那么,我就必须抓住运筹学的特点:利用数学、管理科学、电脑科学技术等研究事物的数量化规律,应用分析、试验、量化的方法,对实际生活中人、财、物、时、空、信息等有限资源进行统筹安排和充分合理的运用。
运筹学的具体内容包括:规划论〔包括线性规划、非线性规划、整数规划和动态规划〕、库存论、图论、决策论、对策论、排队论、、博弈论、可靠性理论等。
在其实际运用时,还包括管理运筹的思想与建模方法,线性规划及扩展问题模型、图与网络分析模型、项目管理技术、决策分析技术、库存模型和排队模型等运筹学的重要分支。
大学生运筹学论文

大学生运筹学论文第一篇:大学生运筹学论文论数学与生活内容提要:步入大学,我们的学习已经不再停留于刻板的书本,我们学习的目的也不仅仅是去掌握那些常规的知识,大学学习,我们更多的是去学习一种思想,学习一种态度,然后用我们所学去实践生活。
当我们用心思考,我们也会发现,陪伴我们十几年的恼人的数学也蕴含了丰富的人生哲理。
关键字:生活,思考,哲理一、数学里的奇妙现象有时候我们会思考:无穷的边缘是什么?就像我们弄不懂广袤宇宙的边境是什么,无论多么科学的解释我们也始终想不明白怎么可以存在这样的一个空间去包括宇宙以及宇宙之外的东西。
而代表着这个含义的π=3.1415……..,无穷尽的不规则小数,没有尽头,但是它却确确实实是我们每天都会用到的具有现实意义的数值;二、最美丽的数字——0.618(1)人体上的黄金分割《达芬奇密码》一书中说讲,肩膀到指尖的距离除以肘关节到指尖的距离;臀部到地面的距离除以膝盖到地面的距离。
再看看手指关节、脚趾、脊柱的分节,都会得到PHI(黄金分割比)。
真的会这样吗?我半信半疑地进行了一点近似的计算。
按照一个正常体型的人为例:肩膀到指尖的距离:70㎝肘关节到指尖的距离:43㎝43÷70≈0.614 臀部到地面的距离:80㎝膝盖到地面的距离:49㎝49÷80≈0.613 这些数据的结果都接近于0.618。
(2)生理上的黄金分割再如网上说,人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。
37℃×0.618=22.866℃所以当所有的这些都和黄金分割比联系上时,我们不得不感叹数学的奥秘,真的很不可思议,如果说是巧合,但是当种种现象都联系在一起的时候,就不仅仅是巧合可以解释的了,我们不得不承认这就是数学中蕴含的奥妙。
运筹学结课论文

运筹学与博弈论思想的应用概要:本文从“运筹帷幄”引入运筹学和博弈论,从历史、经济、民生等领域所举例子详细解说了运筹学与博弈论思想在现实中的应用。
关键字:运筹学、博弈论、企业管理、运输问题、影子价格、运筹工作者一、运筹学的的起源与发展普遍认为,运筹学起源于第二次世界大战初期,当时, 英国(随即是美国) 军事部门迫切需要研究如何将非常有限的物资以及人力和物力, 分配与使用到各种军事活动的运行中, 以达到最好的作果。
在第二次世界大战期间, 德国已拥有一支强大的空军, 飞机从德国起飞17 分钟即到达英国本土。
在如此短的时间内, 如何预警和拦截成为一大难题。
1935 年, 为了对付德国空中力量的严重威胁, 英国在东海岸的鲍德西(Birdseye) 成立了关于作战控制技术的研究机构。
1938 年, 鲍德西科学小组负责人( Rowe , A1 P) 把他们从事的工作称为运筹学(Operational research[ 英] ,Operations research[美] ,直译为“作战研究”) 。
因此, 人们把鲍德西作为运筹学的诞生地, 将1935 —1938 年这一时间段作为运筹学产生的酝酿时期。
其实早在古代中国就有“运筹于帷幄之中,决胜于千里之外”之说,后来人们用“运筹帷幄”表示善于策划用兵、指挥战争。
然而“运筹”发展到现代已成为一门重要的学科“运筹学”。
由上述运筹学发展历史可知,运筹学是由军事、经济、生产等各个领域所提出的决策问题的推动而发展起来的一门新兴的学科分支。
所谓运筹学,可以说是一系列用以提高所研究系统的有效性的分析工具。
博弈论属于运筹学的一个分支,是研究博弈行为中竞争各方是否存在着最合理的行动方案,以及如何找到这一合理方案的数学理论和方法。
运筹学包括以下内容:线性规划、非线性规划、动态规划、多目标规划、网络分析、网络规划、排队论、存储论、博弈论、决策论、模型论等。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。
运筹学论文

运筹学论文摘要本论文主要探讨了运筹学在管理决策中的应用。
首先介绍了运筹学的基本概念和相关理论,然后分析了运筹学在企业管理中的实际应用案例,最后总结了运筹学的优势和局限性,并对未来运筹学研究方向进行了展望。
1. 引言随着企业管理的复杂性和竞争的加剧,越来越多的企业开始重视运筹学在管理决策中的应用。
运筹学作为一门应用数学学科,通过运筹学方法和技术来解决企业面临的各种问题,帮助企业高效运营和优化决策。
本文将从运筹学的基本概念、实际应用案例和研究展望三个方面展开论述。
2. 运筹学基本概念2.1 定义运筹学是一门研究如何对复杂系统进行优化决策的学科。
它以数学为基础,涉及多个学科领域,如线性规划、整数规划、图论、排队论等。
2.2 运筹学方法运筹学通过建立数学模型来描述和分析问题,然后采用优化算法和技术对模型进行求解,得到最优解或近似最优解。
常用的运筹学方法包括线性规划、整数规划、动态规划、启发式算法等。
3. 运筹学在企业管理中的应用案例3.1 生产调度优化运筹学可以帮助企业优化生产调度,提高生产效率和资源利用率。
通过建立生产调度模型,运用线性规划、整数规划等方法,可以实现最优生产调度方案的确定,使得生产过程更加高效。
3.2 配送路径优化对于物流企业来说,配送路径的优化是提高物流效率和降低成本的关键。
运筹学可以通过图论、整数规划等方法,确定最优的配送路径,减少行驶里程和时间,达到节约成本的目的。
3.3 库存管理优化运筹学可以帮助企业优化库存管理,减少库存成本和缺货风险。
通过建立库存模型,根据需求、供应、存储成本等因素,利用线性规划、动态规划等方法,确定最优的库存策略,实现库存成本的最小化和保证供应的可靠性。
4. 运筹学的优势与局限性4.1 优势 - 运筹学可以提供量化的决策支持,帮助企业从数据驱动的角度优化决策; - 运筹学方法和技术可以快速求解大规模、复杂的优化问题; - 运筹学可以提供全局最优解或近似最优解,并具有较高的准确性和可信度。
运筹学论文

中国矿业大学运筹学结课论文姓名:魏恒征学院:矿业工程学院班级:采矿工程09-7班学号:01090235教师:付乳燕运筹学的初步学习及认识背景:本学期在付老师的指导下学习了运筹学,初步了解运筹学的发展历史及运筹学在生活实例中的应用。
运筹学是一门和社会生活紧密联系的一门科学,学习运筹学不仅是仅仅的学习知识,运筹学的诸多思想在实际决策中很有指导意义。
关键词:运筹学历史特点学习收获前景一、运筹学简介英语全称为:Operational Research(英国)或者是Operations Resear ch(美国)在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。
田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。
可见,筹划安排是十分重要的。
现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。
前者提供模型,后者提供理论和方法。
运筹学的思想在古代就已经产生了。
敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。
也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。
运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。
当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。
运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。
虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。
运筹学期末论文

运筹学期末论文运筹学基础及应用论文学校: XXX班级:XXX 姓名:XXX 学号:XXX运筹学在实际生活中的应用——运输问题的表上作业法【摘要】运筹学,是应用数学和形式科学的跨领域研究,利用像是统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。
运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
运输问题可以用求解线性规划的方法来解决。
但是一般来说,运输问题用普通的线性方法求解更麻烦得多,而表上作业法则是一种简单方便的方法。
【关键词】运筹学、最佳解答、改善优化、表上作业法一、理论依据运输问题的表上作业法步骤1、制作初始平衡表用“西北最大运量,然后,每增加角方法”:即在左上角先给予最大运量,然后,每增加一个运量都使一个发量或手里饱。
如果所有运量的数字少于?m?n?1?,则补0使之正好?m?n?1?个。
注:补零时不能使这些书构成圈。
2、判断初始方案是否最优(1)求位势表:对运价表加一行一列,圈出运价表中相应于有运量的项,在增加的行列上分别添上数,使这些元素之和等于圈内的元素。
这些元素称为位势数。
(2)求检验数:?ij?Ai?Bj?Cij?Ai,Bj分别表示行、列位势? 从而得到检验数表。
结论:若对任意的i,j,?ij?0,则方案最优,否则转3进行调整。
3、调整(1)找回路:在?ij?0(若有多个?ij?0选大者)对应的运量表上对应元素为起点,沿横向或纵向前进,如遇到有运量的点即转向,直至起点,可得到一个回路。
(2)找调整量:沿上述找到的回路,从起点开始,在该回路上奇数步数字的最小者作为调整量?0。
(3)调整方式:在该回路上奇数步-?0,偶数步+?0,得到新回路。
重复上述步骤,使所有?ij?0,即得最优方案。
二、背景1.1鉴于市场竞争日益激烈,消费者需求渐趋多样,工厂作为市场消费品的产出源头,唯有对这种趋势深刻理解、深入分析,同事具体的应用于实际中,才能使自身手艺,断发展壮大,不被新新行业所淘汰。
运筹学论文
运筹学论文1. "运筹学在制造业中的应用案例分析"这篇论文可以研究运筹学在制造业中的应用案例,探讨如何运用运筹学方法来优化制造流程、减少生产成本、提高生产效率等方面的实践经验。
2. "运筹学在物流管理中的应用及挑战"这篇论文可以研究运筹学在物流管理中的应用,分析运筹学方法在物流优化、路线规划、货物配送等方面的应用,并讨论实施这些方法面临的挑战和解决方案。
3. "基于运筹学的供应链管理优化研究"这篇论文可以研究基于运筹学的供应链管理优化方法,分析如何利用运筹学方法来改善供应链的效率和响应能力,以及解决供应链中的库存管理、订单分配等问题。
4. "运筹学在项目管理中的应用研究"这篇论文可以研究运筹学在项目管理中的应用,探讨如何利用运筹学方法来优化项目进度安排、资源分配、风险管理等方面的实践经验,并探讨这些方法在项目管理中的效果和局限性。
5. "基于运筹学的决策支持系统研究"这篇论文可以研究基于运筹学的决策支持系统的开发和应用,分析如何利用运筹学方法来辅助决策制定,提供精确的数据分析和模型建立,以及讨论这些系统在实际决策中的应用效果和局限性。
6. "运筹学在金融风险管理中的应用研究"这篇论文可以研究运筹学在金融风险管理中的应用,分析如何利用运筹学方法来评估和控制金融风险,包括市场风险、信用风险等方面,以及讨论这些方法的优点和局限性。
7. "运筹学在医疗资源优化中的应用研究"这篇论文可以研究运筹学在医疗资源优化中的应用,探讨如何利用运筹学方法来优化医疗资源的配置、排班安排、手术室管理等方面,以提高医疗服务的效率和质量。
8. "基于运筹学的环境保护决策研究"这篇论文可以研究基于运筹学的环境保护决策方法,分析如何利用运筹学方法来评估不同环境保护措施的效果,并对环境保护决策进行优化,以达到经济、社会和环境的可持续发展。
运筹学课程论文
运筹学课程论文运筹学在现代社会中的应用班级:运筹学2班年级:2014级学院:园艺园林教师:陈涛姓名:宋春雄学号:222014325052030摘要:运筹学发展至今,它的应用已经不仅仅局限于军事领域了,运筹学已被广泛应用于工商企业,民政企业等研究组织内的统筹协调问题,既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效。
运筹学在管理方面有着很突出的作用。
管理就是“运筹帷幄之中,决胜千里之外”的最佳解释。
关键字:企业管理,生活,筹划正文:运筹学是现代管理学的一门重要专业基础课。
它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。
该学科是一应用数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答.运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。
而在应用方面,多与仓储、物流、算法等领域相关。
因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业密切相关。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。
虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。
运筹学的思想在古代就已经产生了。
敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外"的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却相对较晚。
也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支.运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、库存论、图论、决策论、对策论、排队论、博弈论、可靠性理论等。
【精编完整版】运筹学毕业论文
(此文档为word格式,下载后您可任意编辑修改!)运筹学课程设计目录第一章自编题一、运输规划问题包头市某冰箱工厂有三个分厂,生产同一种冰箱,供应该厂在市内的四个门市部销售。
已知三个分厂的日生产能力分别是50、60、50台。
四个门市部的日销售量分别是40、40、60、20台。
从各个分厂运往各门市部的运费如表1-11所示。
试安排一个运费最低的运输计划。
表1-11解,(1)运用最小元素法求解,得初始基本可行解,如下表1-12表1-12(2)用位势法计算所有非基变量检验数,求得如下表1-13表1-13(3)利用闭回路法进一步求解:表1-14(4)得出新方案,如表1-15表1-15(5)经检验所有空格的检验数均大于等于零,故此方案为最优解。
最优解为:X13=30,X14=20,X22=30,X23=30,X31=40,X32=10最优方案运费Z=30×9+20×6+30×3+30×7+40×6+10×4=970元(6)运用软件进行检验:最优解如下********************************************起至销点发点 1 2 3 41 0 0 30 202 0 30 30 03 40 10 0 0此运输问题的成本或收益为: 970二、指派问题现有四项不同的任务,分别由四个人去完成。
因四个人的专长不同,所以每个人完成的任务所需的时间也不同(如表1-21),试问如何安排他们的工作才能使总的工作时间最少?表1-21 (单位:小时)解:(1)变换效率系数矩阵,使其每行没列都出现0元素10 9 7 8 (-7) 3 2 0 1C ij = 5 8 7 7 (-5) 0 3 2 25 46 5 (-4) 1 0 2 52 3 4 5(-2) 0 1 2 3(2)进行试指派3 2 0 10 3 2 21 02 50 1 2 3(3)作最少的直线覆盖所有的0元素,以确定该系数矩阵中能找到最多0元素3 2 0 10 3 2 21 02 50 1 2 3(4)对矩阵进行变换,以增加0元素3 2 0 14 2 0 00 3 2 2 0 2 1 01 02 5 2 0 2 00 1 2 3 0 0 1 1(5)重复第二步,找到最优解4 2 0 0 4 2 0 00 2 1 0 或 0 2 1 02 0 2 0 2 0 2 00 0 1 1 0 0 0 1最优方案1:乙→1,丁→2,甲→3,丙→4最少时间Z=7+5+5+3=20小时最优方案2:丁→1,丙→2,甲→3,乙→4最少时间Z=7+7+4+2=20小时因为软件原因,无法进行检验三、最小支撑树问题某网络公司为沿着友谊大街8个居民点架设网线,连接8个居民点的道路如图1-31所示,边表示可架设网络道路,边权为道路的长度,设计一网线网络连通这8个居民点,并使总的输电线长度最短。
运筹学论文(合集5篇)
运筹学论文(合集5篇)第一篇:运筹学论文摘要:运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。
运筹学可以用来很好的解决生活中的许多问题。
运筹学有着广泛的应用,对现代化建设有重要作用。
关键词:运筹学;应用;最优方案人们无论从事任何工作,不管采取什么行动,都希望所制订的工作或行动方案,是一切可行方案中的最优方案,以期获得满意的结果诸如此类的问题,通常称为最优化问题。
运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。
求解最优化问题的关键,一是建立粗细适宜的数学模型,把实际问题化为数学问题;二是选择正确而简便的解法,以通过计算确定最优解和最优值。
最优解与最优值相结合,便是最优方案。
人们按照最优方案行事,即可达到预期的目标。
运筹学是现代数学的一个重要分支,属于信息科学和数学的综合科学,是20世纪4O年代发展起来的一门具有较强实践性的综合学科,它使用许多数学工具(包括概率统计、数理分析、线性代数等)和逻辑判断方法,来研究系统中人、财、物等的组织管理、筹划调度问题,以发挥系统的最大效益。
它的特点是:1.运筹学已被广泛应用于工商企业、军事部门、民政事业等研究组织内的统筹协调问题,故其应用不受行业、部门之限制;2.运筹学既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效;3.它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。
对所研究的问题求出最优解,寻求最佳的行动方案,所以它也可看成是一门优化技术,提供的是解决各类问题的优化方法。
通常在遇到这些复杂繁琐的事的时候,人们不会考虑太多,仅是凭着第一直觉去处理,结果也因为处理方式的不同而不同。
有的人第一直觉好,就能把事情处理的很好,而有的人却只能接受糟糕的结果。
生活中,如果我们能理智的去分析问题,找到处理问题的最佳办法,那么我们将会避免很多损失和烦恼,取得更大的成功和收获。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学论文
——节约里程法
学校:江苏建筑职业技术学院
学院:经济管理学院
班级:物流10-1
姓名:何雨欢
学号:1070133113
节约里程法核心思想
节约里程法核心思想是依次将运输问题中的两个回路合并为一个回路,每次使合并后的总运输距离减小的幅度最大,直到达到一辆车的装载限制时,再进行下一辆车的优化。
优化过程分为并行方式和串行方式两种。
节约里程法(Saving Algorithm)
节约里程法的基本思路如下图,已知O点为配送中心,它分别向用户A 和B送货。
设O点到用户A和用户B的距离分别为a和b。
用户A和用户B之间的距离为c,现有两种送货方案,如图下(a)和(b)所示。
在上图(a)中配送距离为2(a+b);图上(b)中,配送距离为a+b+c。
对比这两个方案,哪个更合理呢?这就要看哪个配送距离最小,配送距离越小,则说明方案越合理。
由上图(a)中的配送距离,减去图1(b)中的配送距离可得出:
2(a+b)-(a+b+c)=(2a+2b)-a-b-c=a+b-c(1)
如果把上图(b)看成一个三角形,那么a、b、c则是这个三角形三条边的长度。
由三角形的几何性质可知,三角形中任意两条边的边长之和,大于第三边的边长。
因此,可以认定(1)式中结果是大于零的。
即:a+b-c>0(2)
由(2)式可知,(b)方案优于(a)方案,节约了(a+b-c)的里程,这种分析方案的优劣式的思想,就是节约里程法的基本思想。
节约里程法的应用
一、研究对象
本次的研究课题我选择了南京苏果超市的配送中心到分布在南京各地的分店的配送的最短路径问题,根据中国连锁经营协会数据显示,2007年国内零售业巨头苏果超市的苏果马群物流配送中心占地面
积17万平方米,单体仓库面积达
4.2万平方米,为华东地区第一,
年配送额可达60亿元,有效配送
半径为300公里。
这次选择苏果马
群物流配送中心为研究对象,基
于节约里程法对配送中心到周边
若干门店的配送路线进行设计。
二、用于分析的数据
本文选择南京马群周边的12个苏果超市(见表1)。
表1
表1中编号0代表的是苏果马群配送中心,之后的依次是12个门店。
距离,我是借助的是百度地图
的距离查询功能,依次查询之
后得到相互之间的距离:由于
马路的双向性,所以往返的里
程是不相同的。
虽然差距并不
会太大,但是我们还是把它们
区别对待。
最终,得出了里程
表(表2)。
表2 单位:km
根据这个里程表,我们就可以使用节约里程法进行线路的优化设
计。
三、利用节约里程法进行路线优化设计
节约里程法,又称C-W算法,是由Clarke和Wright于1964年首次提出的。
它的基本思想就是:对于配送中心以及两个门店,关系如图1所示。
如果车辆从P->A->P->B->P,所需要的距离为[P,A]+ [A,P]+ [P,B]+ [B,P],而如果我们把路线改为,P->A->B->P的话,则总距离为[P,A]+ [A,B]+ [P,B],节约的路程为[A,B]- [A,P]- [P,B],我们把这个路程记作“节约值”s[A,B]。
我们知道从A至B的距离一定存在一个先开到P点再开到B点的路程选择,距离为[A,P]+ [P,B],但这个未必是最优的,换言s[A,B]= [A,B]- [A,P]- [P,B]应该≥0。
据此,我们可以设计出具体的算法:
Step 1:读入两两之间的距离,填入数组中;
Step 2:求出所有门店之间的节约值s[A,B];
Step 3:然后按节约的值从大至小排序;
Step 4:从第一辆车开始设计,对于每辆车;
Step 4.1:初始路线为空;
Step 4.2:找到最节约的s[A,B],构造路线0->A->B->0(0为配送中心);
Step 4.3:在s中划去从A出发的以及到达B的元素,即划去s[A,X]与s[X,B],X为任意值;
Step 4.4:若当前的路线为0->X->……->Y->0,我们找到最节约的
s[A,B],使得B=X或A=Y,对于构造出路线0->B->X->……->Y->0或0->X->……->Y->A->0;
Step 4.5:在s中划去从A出发的以及到达B的元素,即划去s[A,X]与s[X,B],X为任意值;
Step 4.6:如果当前车承载的超市数已达上线转Step4重新设计下一辆车;
Step 4.7:转Step4.4;
Step 5:设计好每辆车的配送路线,算法结束。
六、程序求解
对于这个算法,我们编写对应的C#程序进行求解,运行程序,得到节约里程表按从大至小的排序后如表3所示:
表3
而我们知道,未优化的配送总距离215.2千米。
当每车需承担2个超市的时候,程序的计算过程为:车1:合并路线0->6->4->0,总里程33.8,节约里程25.6;车2:合并路线0->8->5->0,总里程37.0,节约里程16.5;车3:合并路线0->7->9->0,总里程17.24,节约里程16.36;车4:合并路线0->11->12->0,总里程17.9,节约里程11.3;车5:合并路线0->2->1->0,总里程8.53,节约里程7.37;车6:合并路线0->3->10->0,总里程22.5,节约里程1.1;总里程136.97,比优化前的215.2节约36.35%。
当每车需承担3个超市的时候,程序的计算过程为:车1:合并路线0->6->4->0,总里程33.8,节约里程25.6;合并路线0->6->4->5->0,总里程37.3,节约里程24.1;车2:合并路线0->8->9->0,总里程26.8,节约里程16.4;合并路线0->8->9->7->0,总里程27.47,节约里程15.63;车3:合并路线0->11->12->0,总里程17.9,节约里程11.3;合并路线0->10->11->12->0,总里程21.9,节约里程7.9;车4:合并路线0->2->1->0,总里程8.53,节约里程7.37;合并路线0->2->1->3->0,总里程14.43,节约里程5.8;总里程101.10,比优化前的215.2节约53.02%。
当每车需承担4个超市的时候,程序的计算过程为:车1:合并路线0->6->4->0,总里程33.8,节约里程25.6;合并路线0->6->4->5->0,总里程37.3,节约里程24.1;合并路线0->6->4->5->8->0,总里程49.2,节约里程14.0;车2:合并路线0->7->9->0,总里程17.24,节约里程16.36;合并路线0->1->7->9->0,总里程17.24,节约里程8.4;合并路
线0->1->7->9->2->0,总里程17.34,节约里程7.4;车3:合并路线0->11->12->0,总里程17.9,节约里程11.3;合并路线0->10->11->12->0,总里程21.9,节约里程7.9;合并路线0->3->10->11->12->0,总里程32.5,节约里程1.1;总里程99.04,比优化前的215.2节约53.98%
可以看出优化后对于里程的节约还是十分显著的,而当我们知道不同容量的车行驶单位里程的价格以及根据实际情况,可以通过节约里程法找到最优的结果。
结束语
节约里程法并不是计算的最优的路线,而是一个较优的路线,计算最优的路线是一个NP完全问题(Non-deterministic Polynomial complete problem),无法在多项式的时间内找到结果(NP完全问题未必没有多项式算法,只是目前均没有找到),即使摒弃搜索算法而改使用高效的动态规划算法,时间复杂度依旧是指数级别的,这对于现实问题中配送中心需要配送门店的数目大量时候求解时间漫长到几年、几十年甚至更长,而节约里程法可以在极快的时间内求出一个比较优秀的结果,比起耗费大量人力物力而不切实际的求解最优解,使用节约里程法就显得更为经济有效了。