一元一次方程复习

合集下载

第八讲 一元一次方程复习

第八讲  一元一次方程复习

所以他说此方程无解。你觉得他做得对 吗?为什么? 那“因为ac=bc,所以a=b‖推理对吗?
6.若
(m 2) x
m 1
5 是一元一次方程,则m
的值是多少?
7、解下列方程
(1)3( x 5) 2( x 2) 5( x 7) 3 2 x (3) [ ( 1) 2] x 2 2 3 4 2 x 1 2(2 x 1) 5(2 x 1) (5) 40 2 3 6 x 1 x2 (2) 2 2 5 x 3 2 x 0.1 (4) 1 0.3 0.2
去分母时,方程右边的-1没有乘3,因 而得方程的解为x=2,试求a 的值,并 正确的解方程.
3 3 已知5( x ) 3 2, 求代数式7 2007( x ) 2006 2006 的值.
解:
3 5( x 2006) 2 3 3 5( x )5 2006 3 x 1 2006
(
a0
)
知识点练习一 1.下列说法中正确的是 ( A ) A.方程是等式 B.等式是方程 C.含有字母的等式是方程 D.不含有字母的方程是等式 2.若关于x的方程2x2m-3+m=0是一元一次方程, 则m=_____,方程的解是__。 方程的解是指能使方程左右两 边相等的未知数的值。 1.什么是方程的解, 知识点复习二 什么是解方程? 解方程是指求出方程 的解的 过程。
2、已知 x = y,下列 变形中不一定正确的是 需注意的是“两边都乘, ( D) 不要漏乘”;“同除一 A.x-5=y-5 B.-3x=-3y 个非0的数” x y C.mx=my D. 2 2 c c
知识点复习四、 5.解一元一次方程的一般步骤有哪些? 它的根据是什么? 1、去分母:不要漏乘分母为1的项。 2、去括号:注意符号 3、移项:①将含有未知数的项移到等式的 一边; 将常数项 移到另一边;②注意“变号”

一元一次方程复习提优

一元一次方程复习提优

一元一次方程复习一.选择题(共14小题)1.下列判断正确的是()A.方程是等式,等式就是方程B.方程是含有未知数的等式C.方程的解就是方程的根D.方程2x=3x没解2.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B. C.x+2y=1 D.xy﹣3=53.已知下列方程:(1)2x+3=;(2)7x=9;(3)4x﹣2=3x+1;(4)x2+6x+9=0;(5)x=3;(6)x+y=8.其中是一元一次方程的个数是()A.2 B.3 C.4 D.54.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340 B.2x﹣4×72=4×340C.2x+4×72=4×340 D.2x﹣4×20=4×3405.一架在无风情况下每小时航速为1200千米的飞机,逆风飞行一条x千米的航线用了3小时,顺风飞行这条航线用了2小时.依题意列方程:1200﹣=﹣1200,这个方程表示的意义是()A.飞机往返一次的总时间不变B.顺风与逆风的风速相等C.顺风与逆风时,飞机自身的航速不变D.顺风与逆风时,所飞的航线长不变6.方程ax=b+3的解是()A.有一个解x=+3 B.有无数个解C.没有解D.当a≠0时,x=+7.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.5 B.4 C.3 D.28.若方程2x=8和方程ax+2x=4的解相同,则a的值为()A.1 B.﹣1 C.±1 D.09.若方程6x﹣3=2﹣3x的解与关于x的方程6﹣2k=2x+6的解相同,则k的值为()A. B.﹣C. D.﹣10.用A、B两种规格的长方形纸板(如图1)无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,已知A种长方形的宽为1cm,则B种长方形的面积是()A.10cm2B.12cm2C.14cm2D.16cm211.某商场出售甲、乙、丙三种型号的电动车,已知甲型车在第一季度的销售额占这三种车总销售额的56%,第二季度乙、丙两种型号的车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%.则a的值为()A.8 B.6 C.3 D.212.一杯可乐售价1.8元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于()A.0.6元B.0.5元C.0.45元D.0.3元13.甲、乙两位同学在环形跑道上从同一点G出发,按相反方向沿跑道而行.已知甲每分钟跑240米,乙每分钟跑1 80米,如果他们同时出发,并且当他们在出发点G第一次相遇时结束跑步,则他们从出发到结束之间中途相遇的次数是()A.6 B.7 C.8 D.不能确定14.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元 B.赔16元 C.不赚不赔D.无法确定二.填空题(共9小题)15.在①2x﹣1;②2x+1=3x;③|π﹣3|=π﹣3;④t+1=3中,等式有,方程有.(填入式子的序号)16.如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是.17.已知(|k|﹣1)x2+(k﹣1)x+3=0是关于x的一元一次方程,则k的值为.18.已知关于x的方程ax+b=c的解是x=1,则|c﹣a﹣b﹣1|=.19.已知x=﹣3是方程ax﹣6=a+10的解,则a=.20.x=3是方程4x﹣3(a﹣x)=6x﹣7(a﹣x)的解,那么a=.21.若|x﹣1|=3,则x=.22.若方程2x+1=3和的解相同,则a的值是.23.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为元.三.解答题(共16小题)24.阅读下面的解题过程:解方程:|5x|=2.解:(1)当5x≥0时,原方程可化为一元一次方程5x=2,解得x=;(2)当5x<0时,原方程可化为一元一次方程﹣5x=2,解得x=﹣.请同学们仿照上面例题的解法,解方程3|x﹣1|﹣2=10.25.已知关于x的方程3x+a=1与方程2x+1=﹣7的解相同,求a的值.26.列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?27.列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?29.如图,沿着边长为90cm的正方形,按照A﹣B﹣C﹣D﹣A…的方向,电子蚂蚁甲从A以65cm/min的速度前进,电子蚂蚁乙同时从A以72cm/min的速度前进.(1)当乙第一次追上甲时,它们在正方形的哪条边上?(2)当甲、乙第二次在正方形的同一条边上时,至少走了多少分钟?(3)试一试乙从B出发时,(1)(2)是怎样的答案?30.甲、乙两车分别从A,B两地同时出发相向而行,甲车每小时行40千米,乙车每小时行50千米.两车分别到达B地和A地后,立即返回,返回时,甲车的速度增加二分之一,乙车的速度增加五分之一.已知两车两次相遇处的距离是50千米,则A,B两地的距离为多少千米?31.新石商店新进一批衬衣和成对的暖瓶,暖瓶的对数正好是衬衣件数的一半.每件衬衣进价是40元,每对暖瓶的进价也是40元,商店将这批物品以高出进价10%的价钱卖了出去,因商店职员需要,留下了7件物品.这时,商店发现所卖这批物品的钱数恰好等于买进这批物品所花的钱数.这批物品的利润可用留下的7件物品的零售价之和所代表.这7件物品都是什么?它们值多少钱?32.环行跑道周长为400米,甲乙两人在同时同地顺时针沿环行跑道跑,甲每分钟跑52米,乙每分钟跑46米,甲乙两人每跑100米休息1分钟,问甲何时追上乙?33.有160名学生到离校60千米处旅游,用一辆能载40人的客车运送,设计了步行与乘车相结合的办法,使他们用最短时间到达旅游点,车速每小时50千米,步行每小时5千米,那么这个最短时间是多少小时?(列方程解)34.某项工程,甲单独做需20天完成,乙单独做需12天完成,甲、乙二人合做6天以后,再由乙继续完成,乙再做几天可以完成全部工程?35.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.36.甲、乙两种商品单价之和为100元,因季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原单价之和提高了2%,求甲、乙两种商品的单价.37.有23人在甲方处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人?38.仔细观察下面的日历,回答下列问题:(1)在日历中,用正方形框圈出四个日期(如图).求出图中这四个数的和;(2)任意用正方形框圈出四个日期,如果正方形框中的第一个数为x,用代数式表示正方形框中的四个数的和;(3)若将正方形框上下左右移动,可框住另外的四个数,这四个数的和能等于40吗?如果能,依次写出这四个数;如果不能,请说明理由.39.一个两位数,个位上的数是十位数的2倍,如果把十位与个位上的数对调,那么所得的数比原两位数大36,求原两位数.参考答案一.选择题(共14小题)1.B;2.B;3.B;4.A;5.B;6.D;7.B;8.B;9.B;10.B;11.D;12.C;13.A;14.B;二.填空题(共9小题)15.②③④;②④;16.﹣1;17.﹣1;18.1;19.﹣4;20.;21.4或﹣2;22.7;23.1600;三.解答题(共16小题)24.;25.;26.;27.180;28.;29.;30.;31.;32.;33.;34.;35.2或8;36.;37.;38.;39.;。

一元一次方程专题复习

一元一次方程专题复习

第三章一元一次方程综合复习题一.选择题1.电影院第一排有m个座位,后面每排比前一排多2个座位,则第n 排的座位数为()A.m+2n B.m+2(n﹣1)C.mn+2 D.m+n+22.无论x取什么值,下列代数式中,值一定是正数的是()A.2x2﹣1 B.(2x+1)2C.|2x+1| D.2x2+13.若x2﹣3x﹣6=0,则2x2﹣6x﹣6的值为()A.﹣8 B.14 C.6 D.﹣24.已知代数式x+2y+1的值是3,则代数式2x+4y+1的值是()A.4 B.5 C.6 D.75.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5 B.若a=b,则ac=bcC.若x=y,则=D.若=,则a=b6.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)二.填空题7.如果x表示一个两位数,y也表示一个两位数,现在想用x,y来组成一个四位数且把x放在y的右边,则这个四位数是.8.已知x+2y=3,则2x+4y+1= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.已知当x=1时,3ax2+bx的值为2,则当x=3时,ax2+bx的值.11.如果a﹣3b=﹣6,那么5﹣2a+6b的值等于.12.若式子2x+y的值是﹣4,则4x+2y+8的值是.13.已知a﹣3b=3,则代数式﹣3a+9b﹣5= .14.已知2a﹣3b=﹣3,则5﹣4a+6b= .15.如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m 的取值是.16.已知方程(m﹣3)x|m﹣2|+4=2m是关于x的一元一次方程,则m= .17.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).18.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.19.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)20.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.21.已知4a+3b=1,则整式8a+6b﹣3的值为.22.已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为.23.已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于.24.已知a2+a=1,则代数式3﹣a﹣a2的值为.25.若a﹣b=2,则代数式5+2a﹣2b的值是.26.若=,则= .27.已知关于x的方程2x+a+5=0的解是x=1,则a的值为.28.当x=a或x=b(a≠b)时,代数式x2﹣4x+2的值相等,则当x=a+b 时,代数式x2﹣4x+2的值为.29.某商品原来价格为m元,降价20%后价格为元.30.如图,小明想把一长为a,宽为b的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个边长为x的小正方形,用代数式表示纸片剩余部分的周长.31.购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为元.32.一台洗衣机的进价是2000元,如果商店要盈利10%,则购买m台这样的洗衣机需要元.三.解答题(共8小题)33.李师傅下岗后,做起来小生意,第一次进货,他以每件a元的价格购进了30件甲种小商品,以每件b元的价格购进了40件乙种小商品,且a<b.(1)若李师傅将甲种商品提价40%,乙种商品提价30%全部出售,他获利多少元?(用含有a,b的式子表示结果)(2)若李师傅将两种商品都以元的价格全部出售,他这次买卖是赚钱还是亏本,请说明理由?34.已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求的值.35.已知关于x的方程(m+5)x|m|﹣4+18=0是一元一次方程.试求:(1)m的值;(2)3(4m﹣1)﹣2(3m+2)的值.36.已知:a是﹣2的相反数,b是﹣2的倒数,则(1)a= ,b= ;(2)求代数式a2b+ab的值.37.大客车上原有(3a﹣b)人,中途下车一半人,又上车若干人,使车上共有乘客(8a﹣5b)人.问中途上车乘客是多少人?当a=10,b=8时,上车乘客是多少人?38.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款元.(用含x的代数式表示)若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.39.某学校准备组织部分教师到杭州旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为400元/人,同时两旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客七五折优惠;而乙旅行社是免去一位带队老师的费用,其余游客八折优惠.(1)如果设参加旅游的老师共有x(x>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含x的代数式表示)(2)假如某校组织17名教师到杭州旅游,该校选择哪一家旅行社比较优惠?请说明理由.40.某超市在春节期间对顾客实行优惠,规定如下:(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示:两次购物王老师实际付款多少元?一.解答题(共40小题)1.解方程:(1)2(2x﹣3)﹣3=2﹣3(x﹣1)(2)﹣1=.2.解方程:4x﹣3=2(x﹣1)3. 2(x+8)=3(x﹣1)4.解方程:15x﹣3=3(x ﹣4)5.解方程:3(2x+3)=11x﹣6.6.解方程:x﹣1=2(x+1)7.解方程:4(x﹣2)﹣1=3(x﹣1)8.解方程:x﹣2(x+1)=﹣2.9.解方程:+1=x﹣.10.解方程:4x﹣5=.11.解方程:=.12.解方程:5x+1=3(x﹣1)+4.13.解方程:6x+1=3(x+1)+4.14.解方程:.15.解方程:=﹣1.16.解下列方程:(1)5(x+8)=6(2x﹣7)+5;(2).17.解方程:﹣=1.18.解方程:.19.m为何值时,代数式的值与代数式的值的和等于5?20.若新规定这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3.(1)试求(﹣2)※3的值;(2)若(﹣5)※x=﹣2﹣x,求x的值.21.解下列方程(1)4﹣4(x﹣3)=2(9﹣x);(2).22.解方程:(1)(2)﹣=3.23.解方程.(1)5x﹣2(3﹣2x)=﹣3 (2)24.解方程:(1)3﹣(5﹣2x)=x+2.(2).25.解方程:(1)2x﹣(x+10)=6x;(2)=3+26.解方程:x﹣=2﹣. 27..28.解方程:=,29.解方程:(x+15)=﹣(x﹣7)30.解方程=﹣131.解方程:①2(2x﹣2)+1=2x﹣(x﹣3)②﹣=1.32.解方程:(1)=1﹣(2)=.33.解方程:.34.解方程:(1)(2).35.解下列方程:(1)2(x+1)﹣6=3(x﹣2)﹣4(x﹣5);(2).36.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发相向而行,并以各自的速度匀速行驶.1.5小时后两车相距70km;2小时后两车相遇.相遇时快车比慢车多行驶40km.(1)甲乙两地之间相距km;(2)求快车和慢车行驶的速度;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,快车出发多长时间,两车相距35km?.37.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C 到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x(x大于0)秒.(1)点C表示的数是;(2)当x= 秒时,点P到达点A处?(3)运动过程中点P表示的数是(用含字母x的式子表示);(4)当P,C之间的距离为2个单位长度时,求x的值.38.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.39.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?40.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?1.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.2.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.3.某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?4.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?5.某校七年级社会实践小组去某商场调查商品的销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.(1)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?(2)在(1)的条件下,某公司给员工发福利,在该商场促销钱购买了20件该品牌的衬衫发给员工,后因为有新员工加入,又要购买5件该衬衫,购买这5件衬衫时恰好赶上该商场进行促销活动,求该公司购买这25件衬衫的平均价格.6.一列火车匀速行驶,经过一条长300米的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度.7.已知一个长方形的周长为60cm.(1)若它的长比宽多6cm,这个长方形的宽是多少cm?(2)若它的长与宽的比是2:1,这个长方形的长是多少cm?8.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?9.小赵和小王交流暑假中的活动,小赵说:“我们一家外出旅行了一个星期,这7天的日期数之和是84天,你知道我们几号出去的么?”小王说“我暑假去舅舅家住了7天,日历数再加月份数也是84,你能猜出我是几月几号回的家?试试看列出方程,解决小赵、小王的问题.(提示:7月1日﹣9月1日暑假)10.我区期末考试一次数学阅卷中,阅B卷第28题(简称B28)的教师人数是阅A卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28和阅A18原有教师人数各多少人?11.A、B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t.探究若客车、出租车距B城的距离分别为y1、y2,写出y1、y2关于t 的函数关系式,并计算当y1=200千米时y2的値.发现设点C是A城与B城的中点,(1)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?(2)若两车扣相距100千米时,求时间t.决策己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);方案二:乘坐客车返回城.试通过计算,分析小王选择哪种方式能更快到达B城?12.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h 经过B地,A、B两地间的路程是多少?13.春节期间,甲、乙两商场有某品牌服装共450件,由于甲商场销量上升,需从乙商场调运该服装50件,调运后甲商场该服装的数量是乙商场的2倍,求甲、乙两商场原来各自有该品牌服装的数量.14.某校九年级社会实践小组去商店调查商品销售情况,了解到该商店以每条80元的价格购进了某品牌牛仔裤50条,并以每条120元的价格销售了40条.商店准备采取促销措施,将剩下的牛仔裤降价销售.请你帮商店计算一下,每条牛仔裤降价多少元时,销售完这批牛仔裤正好达到盈利45%的预期目标?15.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?16.现有180件机器零件需加工,任务由甲、乙两个小组合作完成.甲组每天加工12件,乙组每天加工8件,结果共用20天完成任务.求甲、乙两组分别加工机器零件多少个.17.(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?18.一队学生从学校出发去骑行,整个队伍以30千米/时的速度前进.(1)骑行了半小时,突然发现有东西遗忘在学校,一名队员马上以50千米/时的速度返回学校,取到东西后仍以50千米/时的速度追赶队伍,求这名队员从掉头返校到追上队伍,经过了多长时间?(取东西的时间忽略不计)(2)突然前方有事需要接应,派出一名队员前往,如果这名队员以40千米/时的速度独自行进7千米,接应后掉转车头,仍以40千米/时的速度往回骑,直到与其他队员会合.问这名队员从离队开始到与队员重新会合,经过了多长时间?(接应时间忽略不计).解:设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意,可得方程.(本小题只需要列出方程,不用解)19.小明想从“天猫”某网店购买计算器,经查询,某品牌A型号计算器的单价比B型号计算器的单价多12元,5台A型号的计算器与7台B 型号的计算器的价钱相同,问A,B两种型号计算器的单价分别是多少元?20.请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.21.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?22.小明在商店里看中了一件夹克衫,店家说:“我这儿所有商品都是在进价上加50%的利润再标价的,这件夹克衫我给你按标价打8折,你就付168元,我可只赚了你8元钱啊!”聪明的小明经过思考后觉得店家的说法不可信,请你通过计算,说明店家是否诚信?23.公园门票价格规定如下表:某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?24.把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?25.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)26.列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?27.据电力部门统计,每天8:00至21:00是用电的高峰期,简称“峰时”,21:00至次日8:00是用电的低谷时期,简称“谷时”,为了缓解供电需求紧张矛盾,某市电力部门于本月初统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:(1)小张家上月“峰时”用电50度,“谷时”用电20度,若上月初换表,则相对于换表前小张家的电费是增多了还是减少了?增多或减少了多少元?请说明理由.(2)小张家这个月用电95度,经测算比换表前使用95度电节省了5.9元,问小张家这个月使用“峰时电”和“谷时电”分别是多少度?28.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.29.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.30.为了鼓励居民节约用水,某市自来水公司按如下方式对每户月用水量进行计费:当用水量不超过10吨时,每吨的收费标准相同;当用水量超过10吨时,超出10吨的部分每吨收费标准也相同.下表是小明家1﹣4月份用水量和交费情况:请根据表格中提供的信息,回答以下问题:(1)若小明家5月份用水量为20吨,则应缴水费多少元?(2)若小明家6月份交纳水费29元,则小明家6月份用水多少吨?31.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?32.某公司要把240吨白砂糖运往某市的A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A地,其中调往A地的大车有a辆,其余货车前往B地,若设总运费为W,求W与a的关系式(用含有a的代数式表示W).33.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t 秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?34.马年新年即将来临,七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个,那么比计划多了7个;如果每人做5个,那么比计划少了13个.该小组计划做多少个“中国结”?35.列方程解应用题:某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制.某班与其他7个队各赛1场后,以不败战绩积17分,那么该班共胜了几场比赛?36.某校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加10%,总支出节约20%,因而总收入比总支出多100万元.求去年的总收入和总支出.37.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?38.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?39.列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?40.某牛奶厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;若制成酸奶销售,每吨可获取利润1200元;若制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是,如果制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行;受气温限制这批牛奶必须4天内全部销售或加工完毕.为此该厂设计了三种方案:方案一:将鲜奶全部制成酸奶销售;方案二:尽可能地制成奶片,其余的直接销售鲜奶;方案三:将一部分制成奶片,其余的制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?。

人教版一元一次方程复习题

人教版一元一次方程复习题

2.解方程: 278(x-4)-463(8-2x)-888(7x-28)=0。 解:原方程可化为 278(x-4)+463×2(x-4)-888×7(x-4)=0, (x-4)(278+463×2-888×7)=0, x-4=0,x=4.
大家有疑问的,可以询问和交流
可 以 互 相 讨 论下, 但要小 声点
根据题意,得:(x-10)+(x+10)+(x÷2)+(x×2)=270,解 得 x=60.
故甲实际做的零件个数为 x-10=50 个,乙实际做的零件 个数为 x+10=70 个,丙实际做的零件个数为 x÷2=30 个,丁 实际做的零件个数为 x×2=120 个.
答:略.
谢谢
8
专题二 数形结合思想的应用
例2:A、B两站间的距离为448km,一列慢车从A站出发, 每小时行驶60km,一列快车从B站出发,每小时行驶80km。
问:(1)两车同时出发,相向而行,出发后多少小时相遇? (2)两车相向而行,慢车先开28min,快车开出多少小时后 两车相遇?
(3)如果两车都从A站开向B站,要使两车同时到达,慢车 应先出发多少小时?
【规律总结】在分析应用题时,借助画示意图,或列表格 的方法能清晰地分析出题中各量之间的关系,及题中所隐含的 等量关系式。
拓展训练
3.A、B 两地间的距离为 360 km,甲车从 A 地出发开往 B 地,每小时行驶 72 km,乙车比甲车晚出发152小时,每小时行驶 48 km,两车相向而行,相遇后,各自仍按原速度、原方向继续 行驶,那么相遇以后两车相距 100 km 时,甲车从出发开始行驶 了多少小时?
解:设第一个矩形的长为 5x cm,它的宽为 4x cm,则第二 个矩形的长为 3x cm,宽为 2x cm,所以

一元一次方程复习题

一元一次方程复习题

《一元一次方程》复习题一、选择题。

1. 下列方程中是一元一次方程的是( )A .23x y =B .()7561x x +=-C .()21112x x +-=D .12x x-= 2.若方程315ax x -=的解为x =5,则a 等于( )A. 80B. 4C. 6D. 2 3.根据“x 与5的和的3倍比x 的13少2”列出方程是( ).A .3x+5=3x-2 B .3x+5=3x +2 C .3(x+5)=3x-2 D .3(x+5)=3x +24.若23(2)6m m x --=是一元一次方程,则m 等于( ).A 、1B 、2C 、1或2D 、任何数5. 甲队有32人,乙队有28人。

现在从乙队抽X 人到甲队,使甲队人数是乙队人数的2倍,根据题意,得出的方程是( )A 、32+X=56;B 、32=2(28-X );C 、32+X=2(28-X );D 、2(32+X )=28-X6.把方程103.02.017.07.0=--x x中的分母化为整数,正确的是( )A 、132177=--x xB 、13217710=--x x C 、1032017710=--x x D 132017710=--x x 7. 下列运用等式的性质对等式进行的变形中,正确的是( )。

A 、若x=y ,则x —5=y+5B 、若a=b ,则ac=bcC 、若c bc a=,则b a 32= D 、若x=y ,则a ya x=8.下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB. 由231312-+=-x x 去分母得)3(31)12(2-+=-x xC. 由1)3(3)12(2=---x x 去括号得19324=---x xD. 由7)1(2+=+x x 移项、合并同类项得x =59. 一张试卷上有25道选择题:对一道题得4分,错一道得-1分,不做得-1分,某同学做完全部25题得70分,那么它做对题数为-A .17B .18C .19D .2010. 某商人一次卖出两件商品。

七上数学课件第三章一元一次方程(复习课件)

七上数学课件第三章一元一次方程(复习课件)

x
2
4x 3
3
1
,去分母,得
3(
x
2)
(4x
3)
3
,故本选项错误,不合题意;
B,1 x 4 ,移项,得 x 4 1,故本选项正确,符合题意;
C, 2x (1 3x) 5 ,去括号,得 2x 13x 5 ,故本选项错误,不合题意;
D,
2x
3,两边都除以
2,得
x
3 2
,故本选项错误,不合题意;

故选:A.
C.
x
7 5
D.
x
2 3
【变式训练】
B 下列方程变形中,正确的是( )
A.
x
2
4x 3
3
1
,去分母,得
3(x
2)
(4
x
3)
1
B.1 x 4 ,移项,得 x 4 1
C. 2x (1 3x) 5 ,去括号,得 2x 13x 5
D.
2x
3,两边都除以
2,得
x
2 3
【解析】解:A,
知识点一 方程的相关概念
等式的性质1:等式两边加(或减)同一个数(或式子), 等式的性质 结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为 0的数,结果仍相等
注意事项
根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全 相同的变形;
等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么 变形后的等式不一定成。
A.若 x2 3x ,则 x 3
2x4
C.若 3 ,则 x 6
B.若 ax ay ,则 x y
D.若
x a
y a

第5章一元一次方程章末复习教案

第5章一元一次方程章末复习教案
-举例:引导学生通过画图、列表等方式,将现实问题中的数量关系转化为方程,帮助学生突破难点。
-解方程的策略选择:面对不同类型的一元一次方程,学生需要学会选择合适的解法,这是教学的难点。
-举例:比较不同解法(如加减消元法、代入法等)的适用情况,训练学生根据方程特点选择最合适的解法。
四、教学流程
(一)导入新课(用时5分钟)
-举例:讲解如何通过代入原方程的方法检验解是否正确。
-实际应用:一元一次方程在实际问题中的应用是教学的重点,要让学生学会从实际问题中抽象出方程模型。
-举例:通过购物、速度与时间等实际问题的引入,让学生学会如何构建一元一次方程模型。
2.教学难点
-移项与合并同类项:学生在解一元一次方程时,常常在移项和合并同类项时出错,这是教学难点。
其次,在新课讲授环节,我注重讲解一元一次方程的基本概念和解法,同时通过案例分析和重点难点解析,帮助学生掌握知识点。然而,我在讲解过程中发现,部分学生对移项和合并同类项这一部分仍然存在困难。因此,我考虑在下一节课中增加一些针对性的练习,让学生在实际操作中加深理解。
实践活动环节,分组讨论和实验操作使得学生能够将理论知识与实际应用相结合。但从成果展示来看,部分小组在讨论过程中可能存在依赖心理,导致成果不够理想。针对这一问题,我打算在今后的教学中加强对学生的引导,鼓励他们独立思考,提高小组合作的效果。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

一元一次方程和分式方程复习教案人教版

一元一次方程和分式方程复习教案人教版
6.课后访谈:课后,与部分学生进行访谈,了解他们对本节课的学习感受和意见,及时调整教学方法和策略,以提高教学效果。
九、作业评价
1.作业布置:根据本节课的学习内容,布置适量的课后作业,巩固学生对一元一次方程和分式方程的理解和掌握。
2.作业批改:对学生的作业进行认真批改,及时发现并纠正错误,确保学生能够及时改正。
5. 分式方程的解法:解分式方程的主要步骤有去分母、去括号、移项、合并同类项、化系数为1等。
6. 分式方程的应用:分式方程在实际生活中也有广泛的应用,如比例问题、利润问题等。
7. 方程的解与解方程的概念:方程的解是指使得方程成立的未知数的值,解方程是指求解方程的过程。
8. 方程的移项、合并同类项、化简等基本操作:移项是将方程中的未知数项移到等号的一边,常数项移到等号的另一边;合并同类项是将方程中的同类项合并;化简是通过运算将方程化简为更简单的形式。
课堂
1.提问评价:通过提问,了解学生对一元一次方程和分式方程的概念、性质、解法及其应用的掌握情况。针对学生的回答,及时纠正错误,强化正确理解。
2.观察评价:在课堂上,观察学生的参与度、思考过程和合作交流情况。对积极参与、思维活跃的学生给予肯定和鼓励,对参与度不高、思维不够活跃的学生给予适当引导和激励。
2. 拓展要求:
a. 学生利用课后时间进行自主学习和拓展,结合阅读材料和视频资源,加深对一元一次方程和分式方程的理解。
b. 学生在阅读材料和视频资源的基础上,尝试解决一些实际问题,将所学知识运用到实际生活中。
c. 学生在在线讨论区积极发帖和回帖,分享自己的学习心得和解题经验,互相学习和帮助。
d. 教师提供必要的指导和帮助,如推荐阅读材料、解答疑问等,确保学生能够顺利完成拓展任务。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元一次方程》复习专题
【知识结构】请同学们自己列出本章知识结构图:


【旧知识复习】
1、已知n为整数,用含字母n的代数式表示:(1)偶数 (2)奇数 (3)被3整除
商为N的数 (4)被3整除商为N余数为1的数。

2、当n=5时,求(1)2n,(2)2n+1,(3)3n, (4)3n+1 的值。

3、列代数式
(1) X的3倍与Y的倒数的差。
(2) X、Y的和除以X、Y的差的商。
(3) 已知A千克苹果售价是30元,那么每千克苹果售价是多少元?X千克苹果售
价是多少元?

4、在公式S=1/2(A+B)H中,已知S=120,B=10,H=3,求A的值。

【专题训练一】一元一次方程概念及其解法
1、方程必须满足两个条件(1)_________ (2)___________,一元一次方程
也有两个条件(1)___________ (2)___________,式子(1)-2-5=-7 (2)
(3)9x-8 (4)x+3y=-4 (5)x2≥0 (6)3x2-6x-1 (7)x=1 (8)y+3=0 (9)z=-1,其中方
程有______________,一元一次方程有____________。
2、填下表,一元一次方程的解法
步骤(变形名称) 变形依据 注意事项

1、去分母 等式性质( ) 1、不要漏乘不含分母的项 2、分子是有几项的代数式,
去分母后,要加括号

2、去( )
1、乘法分配律 2、去括号法则 1、括号前的数不要漏乘括号里面的项
2、不要弄错符号(变则都变,
不变则都不变)

3、移项(从括号一边移动到另一边) 移项法则(等式性
质)

1、凡移项要变号

2、含未知数的项一般在方程
左边,常数移在方程右边

4、合并( ) 合并同类项法则
1、标记
2、系数相加时,符号别忘了

3、字母及其指数要照写
5、化系数为( ) 等式性质( ) 1、系数是整数,两边同除以这个数 2、系数是分数,两边同乘以
分数的倒数
3、符号要分清
3、若-2x2a-1+5=0是一元一次方程,求a和方程的解

4、解下列方程
(1)7(2x-1)-3(4x-1)=4(3x+2)-1; (2) (5y+1)+ (1-y)= (9y+1)+ (1-3y);

(3)2(x-2)+2=x+1 (4)2(x-2)-3(4x-1)=9(1-x)
(5)11x+64-2x=100-9x (6)15-(8-5x)=7x+(4-3x)

(7)8+5(x-1)=2x (8)80.3(5x-7)+0.7(3-5x)=-0.5(3-7x)
(9)3(x-7)-2[9-4(2-x)]=2 (10)

2
1
1x

)3(233)12(2xx
x
【专题训练二】列方程解应用题:
用方程解应用题的关键是提出题中的___________,其次是设出适当的未知数,问
什么就设什么,这叫设___________未知数,问什么而设其它未知量作未知数叫设
___________未知数。
检测A
1、甲、乙两站的路程为360千米,一列快车从乙站开出,每小时行驶72千米;一列慢
车从甲站开出,每小时行驶48千米.
(1)两列火车同时开出,相向而行,经过多少小时相遇?

(2)快车先开25分钟,两车相向而行,慢车行驶了多少小时两车相遇?

(3)若两车同时开出,同向而行,快车在慢车的后面,几小时后快车追上慢车?
(4)若两车同时开出,同向而行,慢车在快车的后面,几小时后快车与慢车相距720千
米?

2.某种商品的零售价为每件900元,为了适合市场竟争,商店按零售价的九折降价并让
利40元销售,仍可获利10%。则进价为每件多少元?

3、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,
一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,
多少工人生产螺母?

4、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的
人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?

5、要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工4小时,完成了
任务.已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.

6、一个两位数,十位上的数与个位上的数字之和为11,如果十位上的数字与个位上的
数字对调,则所得的新数比原来大63,求原来两位数。

【教学反思】:

相关文档
最新文档