5.2 分式的基本性质2
分式的基本性质

分式的概念和性质【要点梳理】要点一:分式的概念★一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式.其中A 叫做分子,B 叫做分母,0≠B ,例如:x a ,x S ,yx b a ++,…都是分式. 要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况. (3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如aπ是整式而不能当作分式. (4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果. 【例1】下列式子中,哪些是整式?哪些是分式?2a ,3x ,1m m +,23x +,5π,2a a ,23-.【变式1.1】指出下列各式中的整式与分式:x 12,y x +1,2b a +,πx ,132-x ,32-,223y +-,x x 2,42y . 【变式1.2】在-3x ,x y ,23x 2y ,-7xy 2,-32,,855x a b y -+中属于分式的是_______.【变式1.3】下列代数式属于分式的是( )A .2xB .)(31y x +C .12.4x yD π-要点二:求分式的值★将给定字母的值代入分式可求得分式的值,分支的值是由字母的取值确定的,分式的值分式中字母取值的变化二变化.要点三:分式有意义,无意义或等于零的条件★分式有意义的条件:分母不等于零. ★分式无意义的条件:分母等于零.★分式的值为零的条件:分子等于零且分母不等于零. 要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值. 【例2】下列各式中,m 取何值时,分式有意义?(1)2m m +;(2)1||2m -;(3)239mm --.【变式2.1】若分式11x x -+有意义,则x 的取值范围是 . 【变式2.2】当x 为何值时,下列各式的值为0.(1)2132x x +-;(2)221x x x +-;(3)224x x +-.【变式2.3】当x 取什么数时,下列分式有意义?当x 取什么数时,下列分式的值为零?(1)12+x x ;(2)25x x -;(3)5102--x x .要点四:分式的基本性质★分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M 是不等于零的整式). 要点诠释:(1)基本性质中的A 、B 、M 表示的是整式.其中B ≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了.【例3】写出下列等式中未知的分子或分母 (1)ba ab b a 2)(=+;(2)) (1)(=-y x x x .【变式3.1】不改变分式的值,将下列分式的分子、分母中的系数化为整数.(1)0.20.020.5x y x y+-; (2)11341123x yx y +-. 【变式3.2】如果把分式中的都扩大3倍,那么分式的值( )A 扩大3倍B 不变C 缩小3倍D 扩大2倍【变式3.3】填写下列等式中未知的分子或分母.(1)22?x y x y x y +-=-; (2)()()?()()()b a c b a c a b b c a c--=----. 要点五:分式的符号法则★分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变.改变其中任何一个或三个,分式的值为原分式值的相反数. ★式子表示B A B A B A B A --=--=--=或BAB A B A B A -=-=---=- 要点诠释:(1)分子、分母是多项式时,分子、分母的符号是整个多项式的符号,应注意加括号,特别注意,不要把多项式中第一项的符号当成整个分子或分母的符号. (2)根据分式的基本性质有b b a a -=-,b ba a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与ab-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.【例4】不改变分式的值,使下列分式的分子和分母不含“-”号.(1)2a b -;(2)45x y --;(3)3m n -;(4)23b c--.典型例题题型一:分式的定义【练习1.1】在π1、21、πxy 3、y x y x 3232+-、512+x 、abn m 7-中,分式的个数有( )A .2个B .3个C .4个D .5个【练习1.2】代数式x -,y x -4,yx +,π22+x ,y y 372,a b 55,x -89中是分式的有( ) A .1个B .2个C .3个D .4个yx x232-y x ,【练习1.3】式子31,x 1,y x +2,πxy 2,232+x 中,分式的个数为( )A .2B .3C .4D .5【练习1.4】在下列式子:x 5-,b a +1,222121ba -,mb a 10+,22+π中,分式有( ) A .1个B .2个C .3个D .4个【练习1.5】下列各式中,分式的个数有( )83+x ,32+a b ,132++πy x ,21--m ,22)()(y x y x +-x12- A .2个B .3个C .4个D .5个【练习1.6】在代数式22+π,51x +,21x x +-,22-x 中,分式有( ) A .1个B .2个C .3个D .4个【练习1.7】下列各代数式x 2,y x 221,422b a -,51+a ,5am +中,分式有( ) A .1个B .2个C .3个D .4个【练习1.8】在式子a 1,πxy 2,4332c b a ,x +55,87y x +,xx 2中,分式的个数是( ) A .2B .3C .4D .5【练习1.9】下列式子x 1,212+x ,πba +,y x 13+,m m 22中,是分式的有( )A .2个B .3个C .4个D .5个【练习1.10】下列式子:x 5-,b a +1,222121ba -,m 103,π2,其中分式有( ) A .1个B .2个C .3个D .4个【练习1.11】下列式子中:x 3,π23-a ,25320+b ,32y x ,m n-,分式的个数是( )A .1B .2C .3D .4【练习1.12】下列各式n m 2,y x xy +,32y x -,a b a -2,y x x xy ++2,,分式有( )A .1个B .2个C .3个D .4个【练习1.13】在y x 2,π52ab ,103xy ,m n m +,acb +-5中,分式有( )A .2个B .3个C .4个D .5个【练习1.14】在式子a 1,πxyz 2,5423c b a ,x +65,87y x +,xyyx 3中,分式的个数是( ) A .5 B .4C .3D .2【练习1.15】在58,n m 3,3y x +,x 1,ba +3中,分式的个数是( )A .1B .2C .3D .4题型二:分式有意义的条件 【练习2.1】要使分式21+x 有意义,则x 的取值应满足( ) A .2-=xB .2≠xC .2->xD .2-≠x【练习2.2】无论a 取何值时,下列分式一定有意义的是( )A .221a a +B .21aa +C .112+-a aD .112+-a a 【练习2.3】若代数式4+x x有意义,则实数x 的取值范围是( ) A .0=x B.4=xC .0≠xD .4-≠x【练习2.4】若分式21+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >﹣2 B .x <﹣2C .x =﹣2D .x ≠﹣2【练习2.5】若代数式31-x 在实数范围内有意义,则实数x 的取值范围是( ) A .x <3 B .x >3C .x ≠3D .x =3【练习2.6】分式)2)(1(3-+-x x x 有意义,则x 的取值范围是( )A .x ≠2B .x ≠2且x ≠3C .x ≠﹣1或x ≠2D .x ≠﹣1且x ≠2【练习2.7】若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4B .a >4C .a <4D .a ≠4【练习2.8】使分式23+x x有意义的x 的取值范围为( ) A .x ≠﹣2B .x ≠2C .x ≠0D .x ≠±2【练习2.9】分式)1)(2(42-+-x x x 有意义的条件是( )A .x ≠﹣2或x ≠1B .x ≠﹣2且x ≠1C .x ≠﹣2D .x ≠1【练习2.10】如果分式32+x x有意义,那么x 的取值范围是 . 【练习2.11】要使分式21+x 有意义,则x 的取值范围为 .【练习2.12】若分式121-x 有意义,则x 的取值范围是 .【练习2.13】使分式22-x 有意义的x 的取值范围是 .【练习2.14】若式子0)4(3-+-x x x 有意义,则实数x 的取值范围是 . 【练习2.15】若分式21-+x x 无意义,则x = . 【练习2.16】要使分式x-23有意义,则x 的取值范围是 .题型三:分式的值为0的条件【练习3.1】若分式112--x x 的值为零,则x 的值为( )A .0B .1C .﹣1D .±1【练习3.2】如果分式11+-x x 丨丨的值为0,那么x 的值为( ) A .﹣1B .1C .﹣1或1D .1或0【练习3.3】若分式112+-x x 的值为0,则x 的值为( )A .0B .1C .﹣1D .±1【练习3.4】若分式4242--x x 的值为零,则x 等于( )A .2B .﹣2C .±2D .0【练习3.5】分式33+-x x 丨丨的值为零,则x 的值为( )A .3B .﹣3C .±3D .任意实数【练习3.6】若分式3312+-x x 的值为0,则x 应满足的条件是( )A .x =﹣1B .x ≠﹣1C .x =±1D .x =1【练习3.7】如果分式xx x 222+-丨丨的值等于0,则x 的值是( )A .2B .﹣2C .﹣2或2D .2或0【练习3.8】已知分式3312+-x x 的值等于零,则x 的值为( )A .1B .±1C .﹣1D .12【练习3.9】分式24+-x x 的值为0,则( ) A .x =﹣2B .x =±2C .x =2D .x =0【练习3.10】能使分式122--x xx 的值为0的所有x 的值是( )A .x =0B .x =1C .x =0或x =1D .x =0或x =±1【练习3.11】若分式)1)(2(1+--x x x 丨丨的值为0,则x 等于( )A .﹣1B .﹣1或2C .﹣1或1D .1【练习3.12】要使分式9392+-x x 的值为0,你认为x 可取得数是( )A .9B .±3C .﹣3D .3【练习3.13】使分式112+-x x 的值为0,这时x 应为( )A .x =±1B .x =1C .x =1 且 x ≠﹣1D .x 的值不确定【练习3.14】若分式xx 42-的值为0,则x 的值是( )A .2或﹣2B .2C .﹣2D .0【练习3.18】若分式33+-x x 丨丨的值为零,则x 的值为 . 【练习3.25】若式子)2)(1(12+--x x x 的值为零,则x 的值为 .【练习3.26】当x = 时,分式325+-x x 的值为零. 【练习3.29】若a ,b 为实数,且0416)2(22=+-+-b b a 丨丨,求3a ﹣b 的值. 题型四:分式的值 【练习4.1】若分式211=-y x ,则分式yxy x y xy x ---+3454的值等于( ) A .−35B .35C .−45D .45【练习4.2】已知0432=--x x ,则代数式42--x x x的值是( ) A .3 B .2 C .13D .12【练习4.3】已知211=+y x ,则xyy x xy 32-+的值为( ) A .12B .2C .−12D .﹣2【练习4.4】若411=-y x ,则分式yxy x y xy x ---+2232的值是( ) A .112B .56C .32D .2【练习4.5】已知ab b a 622=+,,且ab ≠0,则abb a 2)(+的值为( )A .2B .4C .6D .8【练习4.6】若x 取整数,则使分式1236-+x x 的值为整数的x 值有( ) A .3个B .4个C .6个D .8个【练习4.7】横坐标和纵坐标都是整数的点叫作整点,函数1236-+=x x y 的图象上的整点的个数是( ) A .3个B .4个C .6个D .8个【练习4.8】若分式5122+-x x 的值为正数,则x 的取值范围是( ) A .x >12B .x <12C .x ≥12D .x 取任意实数【练习4.9】如果m 为整数,那么使分式12+m 的值为整数的m 的值有( ) A .2个B .3个C .4个D .5个【练习4.10】若x 是整数,则使分式1228-+x x 的值为整数的x 值有( )个. A .2B .3C .4D .5【练习4.11】若31=+x x,则=++1242x x x . 【练习4.12】若x 31=+x x ,则12++x x x的值是 . 【练习4.13】若211=+n m ,则分式nm mnn m ---+255的值为 .【练习4.14】若c b a 432==,且0≠abc ,则bc ba 2-+的值是 .【练习4.15】已知:0142=-+x x ,则1242++x x x 的值为 .【练习4.16】已知572z y x ==,则代数式zx zy x +-+32的值是 . 【练习4.17】若代数式112++x x 的值为整数,则满足条件的整数x 为 .【练习4.18】分式3322-++x x x 的值为负数,则x 的取值范围是 .【练习4.19】已知x 为整数,且分式1)1(22-+x x 的值为整数,则x 可取的所有值为 .【练习4.20】已知072=++z y x ,032=--z y x (0≠xyz ),则=+-++zy x zy x .【练习4.21】若分式326+-x 的值为负数,则x 的取值范围是 .【练习4.22】若分式2)5(4-+x x 的值为负数,则x 的取值范围是 . 【练习4.23】若分式1222--x x 的值为整数,则整数x = .【练习4.25】已知32=-yxx y ,则=---22222623x y y xy x . 【练习4.26】已知2=ba,则ab a b a --222的值 .【练习4.27】已知023=--z y x ,082=-+z y x ,则=+-+yzxy z y x 222 . 【练习4.28】阅读下面的解题过程:已知3112=+x x ,求142+x x 的值. 解:由3112=+x x ,知0≠x ,所以312=+x x ,即31=+x x 所以72312)1(11222224=-=•-+=+=+x x x x x x x x 所以142+x x 的值为71说明:该题的解法叫做“倒数法” 请你利用“倒数法”解下面题目:已知:4222=--x x x.求(1)xx 2-的值;(2)46242+-x x x 的值.【练习4.29】我们知道,假分数可以化为整数与真分数的和的形式,例如:21123+=. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像21-+x x ,22+x x ,…,这样的分式是假分式;像21-x ,12-x x,…,这样的分式是真分式,类似的,假分式也可以化为整式与真分式的和的形式. 例如:23123)2(21-+=-+-=-+x x x x x ;24224)2)(2(22++-=++-+=+x x x x x x x . 解决下列问题: (1)将分式32+-x x 化为整式与真分式的和的形式为: .(直接写出结果即可) (2)如果分式322++x xx 的值为整数,求x 的整数值.【练习4.30】已知:代数式14-m . (1)当m 为何值时,式子有意义? (2)当m 为何值时,该式的值大于零? (3)当m 为何整数时,该式的值为正整数? 题型五:分式的基本性质 【练习5.1】若分式yx yx 232-的x 和y 均扩大为原来各自的10倍,则分式的值( ) A .不变B .缩小到原分式值的101 C .缩小到原分式值的1001D .缩小到原分式值的10001【练习5.2】如果分式ba a +2中的a ,b 都同时扩大2倍,那么该分式的值( )A .不变B .缩小2倍C .扩大2倍D .扩大4倍【练习5.3】下列各式从左到右的变形正确的是( )A .322322323.02.0a a aa a a a a --=--B .yx x y x x --=-+-11C .263631211+-=+-a a a aD .b a ba ab -=+-22 【练习5.4】根据分式的基本性质,分式ba a--可变形为( ) A .ba a--B .ba a + C .ba a--D .ba a +-【练习5.5】分式x-22可变形为( ) A .x +22 B .x +-22 C .22-x D .22--x【练习5.6】如果把分式abba 623-中的a 、b 同时扩大为原来的2倍,那么得到的分式的值( )A .不变B .缩小到原来的21C .扩大为原来的2倍D .扩大为原来的4倍【练习5.7】如果把分式xyyx +中的x ,y 同时扩大为原来的4倍,那么该分式的值( ) A .不变 B .扩大为原来的4倍C .缩小为原来的21 D .缩小为原来的41 【练习5.8】如果把分式yx xy+中的x 和y 都扩大2倍,则分式的值( ) A .扩大4倍B .扩大2倍C .不变D .缩小2倍【练习5.9】下列变形从左到右一定正确的是( )A .22--=b a b aB .bcac b a =C .22ba b a =D .ba bx ax = 【练习5.10】如果把分式nm n-3中的m 和n 都扩大3倍,那么分式的值( ) A .不变B .扩大3倍C .缩小3倍D .扩大9倍【练习5.11】化简3422222++••-n nn ,得( )A .8121-+n B .12+-nC .87D .47 【练习5.12】若分式ba a+2中的a 、b 的值同时扩大到原来的10倍,则分式的值( ) A .是原来的20倍B .是原来的10倍C .是原来的101 D .不变【练习5.13】如果把分式yx x232-中的x ,y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .扩大2倍【练习5.15】下列各式中,正确的是( ) A .212+=+a b a b B .22++=a b a b C .cb ac b a +-=+- D .22)2(422--=-+a a a a 【练习5.16】把分式xyyx 33-中的x 、y 的值同时扩大为原来的2倍,则分式的值( ) A .不变B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的一半【练习5.17】若c b a 543==,则分式=+++-222c b a ac bc ab . 【练习5.18】已知432zy x ==,则=+--+z y x z y x 232 . 【练习5.19】如果分式22532y x x+的值为9,把式中的x ,y 同时扩大为原来的3倍,则分式的值是 .【练习5.22】我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:121121112111-+=-+--=-+-=-+x x x x x x x x . (1)请写出分式的基本性质 ; (2)下列分式中,属于真分式的是 ;A .12-x xB .11+-x xC .123--x D .1122-+x x (3)将假分式132++m m ,化成整式和真分式的形式.【练习5.23】(1)yxy x 3532=() (2)()x x x -=--121。
分式的基本性质ppt课件

【知识技能类作业】
选做题:
0.4x+2
5.不改变分式的值,把分式
中分子、分母各项的系数化成
4x+20
0.5x-1
整数为_5__x_-__1_0_.
课堂练习
x 2-8x y+16y2
6.分式
约分后的结果为( B )
x 2-16y 2
x +4y
x-4y
x +4y
A.
B.
C.
D.-8x y
x -4y
x+4y
4y
课堂练习
【综合实践类作业】
7.先化简,再求值:
(1)x
2
- 4xy 4 (x -2y)3
y2,其中x=
-2
,y
=
3
.
(2)a2 ab
-93bb22,其中a=
-4
,b=
2.
课堂练习
【综合实践类作业】
解:(1)x2
- 4xy 4y (x - 2y)3
2
(x - 2y)2 (x - 2y)3
1, x - 2y
(2) x
2
x2 -9 6x
9
解:(1)-1255aa2bb2cc3
- 5abc 5ac2 5abc 3b
- 5ac2 3b
(2) x
2
x2 -9 6x
9
(x 3)(x -3) (x 3)2
x -3 x 3
新知讲解
【总结归纳】 分式的约分的一般方法: (1)若分式的分子、分母都是单项式,就直接约去分子、分母的公 因式,即分子、分母系数的最大公约数和分子、分母中的相同字母的 最低次幂的乘积; (2)若分式的分子或分母含有多项式,应先分解因式,再确定公因 式并约去.
初二数学下册知识点总结分式的基本性质

初二数学下册知识点总结分式的基本性质在日复一日的学习中,看到知识点,都是先收藏再说吧!知识点就是学习的重点。
想要一份整理好的知识点吗?下面是店铺整理的初二数学下册知识点总结分式的基本性质,仅供参考,欢迎大家阅读。
尽快地掌握科学知识,迅速提高学习能力,由为您提供的八年级下册数学知识点分式的基本性质,希望给您带来启发!1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
单项式整式多项项分式AAMAM用式子表示为:B=BM=BM,其中M(M≠0)为整式。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的`整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的最大公约数,相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。
以上就是为大家整理的八年级下册数学知识点:分式的基本性质,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!【初二数学下册知识点总结分式的基本性质】。
分式与分式方程导学案(全章修改)

第五章 分式与分式方程5.1 从分数到分式一.明确目标,预习交流 【学习目标】1. 了解分式的概念,会判断一个代数式是否是分式;2. 能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义;3. 能分析出一个简单分式有、无意义的条件;4. 会根据已知条件求分式的值。
【重、难点】分式有、无意义的条件。
【预习作业】:1. 什么是整式? 。
2. 下列各式中,哪些是整式?哪些不是整式?两者有什么区别?a 21;2x+y ;2y x - ;a 1 ;x y x 2- ;3a ;5 .整式: 。
3. 自主探究:完成p 2的“思考”,通过探究发现,a s 、sV、v +20100、v -2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 。
4. 归纳:分式的意义: 。
上面所看到的a 1 、x y x 2-、a s 、sV 、v +20100、v -2060都是 。
5. 我们小学里学过的分数有意义的条件是 。
那么分式有意义的条件是 。
二.合作探究,生成总结1. 探究分式有意义的条件(1) 分式BA的分母中含有 ,由于 不能为0,所以分式的分母不能为 ,即当B 0时,分式B A才有意义。
(2) 当x 时,分式2+x x有意义。
(3) 当x 时,分式1-x x有意义。
(4) 当x 、y 满足关系 时,分式yx yx +-有意义。
归纳:分式有意义的条件为: 2. 探究分式值等于0的条件(1) 若分式2+x x的值为0,则x= 。
(2) 若分式BA的值为0,则 且 。
归纳:分式的值为0的条件是 3. 探究分式无意义的条件 (1) 当x 时,分式2+x x无意义。
(2) 使分式1-x x无意义,则x 的取值是 。
A.0 B.1 C.-1 D. 1±(3) 对于分式B A,当 时分式有意义,当 时分式BA 无意义。
三、合作探究,小组展示1. 下列各式①x 2 ② yx +5 ③ a -21 ④123-x ,是分式的有( ) A.①② B.③④ C . ①③ D.①②③④2. 当x 取什么值或范围时,下列分式有意义?①18-x ② 912-x ③12+x y 3. 当a 时,分式242+-a a 的值为0.4. 使分式1-x x无意义,x 的取值是 5. 在下列各式中,哪些是整式?哪些是分式?(1)5x-7 ;(2)3x 2-1 ;(3)123+-a b ;(4)7)(p n m +;(5)—5 ;(6)1222-+-x y xy x ;(7)72;(8)cb +54。
北师大版八年级下册认识分式——分式的基本性质课件

师生互动 应用新知
下列等式的右边是怎样从左边得到的?
(1) a ac c 0
2b 2bc
分子分母都 乘c
(2) x3 x2
xy y
分子分母都除以x
(3)
x 1x 1 xyx 1
x 1 xy
分子分母都除以(x-1)
例题讲授 应用深化
例1、 化简下列分式:
(1) 25a2bc3 15ab2c
情境引入 唤醒认知
老师将一块蛋糕平均分成6份,将其中的一 份给了甲同学;老师又将同样的一块蛋糕平均分 成12份,将其中的2份给了乙同学;
请问:老师偏心了吗?给哪位同学的蛋糕多?
类比推理 探索新知
类比分数的基本性质,你能得到分式的基本性质吗? 分式的分子与分母都乘(或除以)同一个不等
于零的整式,分式的值不变.
归纳总结 自我评价
❖ 1、本节课你学到了什么?
❖ 2、 在小组合作学习的过程中你 有什么感想?
布置作业
习题5.2 1题,2题
x2 9 x (2) 2 6x 9
分子和分母中没有公因式的分式称 为最简分式。
化简分式时,通常要使结果成为最 简分式或整式。
巩固训练 应用提升
化简下列分式:
(1)
7m2n 35mn 2
(2)
3a2 ab
9a2 b2
主体参与 视察发现
问题:当分式中有1个负号时,结果是怎样的?有2 个负号呢?有3个负号呢?
用脑思考, 用心揣摩, 用行动证实。
鲁班造锯
鲁班在这里就运用 “类比”的思想方 法,“类比”也是 数学学习中常用的
一种重要方法。
北师大版八年级数学下册
认识分式(2)
——分式的基本性质
5.2分式的基本性质(2)

5.2分式的基本性质(2)课型:新授课 主备人:郏凌琳 审核人:翁琪峰班级: 姓名:【学习目标】1.运用整体思想代入分式化简求值.2.根据分式的基本性质,利用约分进行多项式的除法.3.通过观察式子的特点,让学生体会整体思想的作用. 【学习重难点】重点:利用约分进行多项式的除法运算。
难点:运用整体思想代入分式化简求值。
【学习过程】 一、复习回顾: 1.分式的基本性质.2.如何不改变分式的值,把分式的分子和分母中各项的系数都化为整数?3. 如何不改变分式的值,把分式的分子和分母的最高次项的系数都化为正数?4.分式的约分. 二、新课学习1.运用整体思想代入分式化简求值例1 已知2x-5y=0,求分式 的值。
反思:你还有其他解法吗?例2 已知 ,求 的值。
【操作流程】: 课前先独学,完成知识准备。
课堂对学、群学完成学习过程。
【预设点拨】: 1、本节内容是对分式的基本性质的进一步运用,前提是熟练掌握分式的基本性质。
对于多项式除以多项式是把它转化为分式,然后通过约分化简得结果。
2、整体代入时,若分式的分子、分母中有乘方等运算,要把这个整体添上括号再进行计算。
222254564y x y xy x ++-21=-x x 221xx +2.利用约分进行多项式除法16÷4= ______; 2÷10= _____;_______; _____________.学法指导:多项式的除法:把两个多项式相除先表示成分式,然后通过分解因式、约分等把分式化简,用整式或最简分式表示所求的商。
例3 计算(1) )32()23(22b a b a ab -÷-(2))94()9124(223223b a ab b a b a -÷+-(3))44()168(224++÷+-a a a a反思:你能归纳总结多项式除法的步骤吗?_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________。
分式的基本性质
1认识分式(2)
教学目标:
1.理解分式的基本性质并能利用性质进行分式的约分;
2.了解什么是最简分式,能将分式化为最简分式.
3.通过对分式的基本性质的归纳,培养学生观察、类比、推理的能力.
教学过程:
一.情景导入,初步认知
1.分数的基本性质是什么?
2.3/6=1/2的依据是什么?
二.思考探究,获取新知
探究1:分式的基本性质.你认为分式3a/6a与1/2相等吗?m2/mn与n/m呢?
【归纳结论】
分式的分子和分母都同时乘以(或除以)同一个不等于零的整式,分式的值
不变.用字母表示为:
探究2:最简分式.化简下列分式:
子.分母的公因式,导致约分的错误和不彻底.所以教师要适当引导.
【归纳结论】
把一个分式的分子和分母的公因式约去,这种变形称为分式的约分,分子和分母已没有公因式,这样的分式称为最简分式.
三.运用新知,深化理解
1.下列各式正确的是()
答案:C
2.填空:
答案:6a2,a-2.
3.下列运算错误的是()
A.1个
B.2个
C.3个
D.4个
答案:B
5.若把分式中的x和y都扩大3倍,那么分式的值()
A.扩大3倍
B.不变
C.缩小3倍
D.缩小6倍
答案:C
四.师生互动,课堂小结
这节课你有哪些收获?
课后作业:
布置作业:教材“习题5.2”中第1、2题.
教学反思:。
5.2分式的基本性质2公开课教案教学设计课件案例试卷
七年级下册
5.2 分式的基本性质(2)
分式的基本性质:
分式的分子与分母都乘以或除以同一个不等于零 的整式,分式的值不变.
A AM , A AM B BM B BM
(M 是不等于0的整式)
运用1:符号法则
a a b b
a a a b b b
1.不改变分式的值,使分式的分子与分母都 不含“-”号.
例 计算 (1)(4x2-9)÷(3-2x)
(2)(9a2+6ab+b2)÷(9a2b-b3)
步骤: 1.把两个多项式相除表示成分式形式 2.把分子分母分别进行因式分解 3.约分,用最简分式或整式表示所求的商。
练一练
计算: (1)(3ab2-2a2b )÷(2a-3b).
(2)(4a3b-12a2b+9ab3)÷(4a2-9b2).
1a 1b
1.先化简,在求值:
6 1 a2
2 3b2
,
3
其中 a 1 ,b 1
3
3
运用4:求值
例2 已知x-3y=0,求分式 x2 3xy y2 的值. x2 y2
1 5 40 39
3.已知:4x-5y=0,求分式4xy y2 x2 2xy
的值.
32 5
6
运用5:多项式相除
(3)(a4-8a2+16)÷(a2+4a+4).
4. 如图,圆环与长方形的面积相等,求长方 形的宽.
本课学了哪些数学知识和思想?
1.分式的基本性质的应用: (1)求值 (2)多项式相除 2.等量替换和整体代换思想
要能对已知关系进行适当变形或因式分解.
Байду номын сангаас
能力提升
分式方程知识点归纳总结
分式方程知识点归纳总结1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
2) 分式有意义的条件:分母不为零,即坟墓中的代数式的值不能为零。
3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C )注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。
C B C A B A ⋅⋅=C B C A B A ÷÷=411=+b a bb a b ab a 7223-++-例:已知 ,则求2)参数法:当出现连比式或连等式时,常用参数法。
分式的基本性质
分式的形式
最简分式
分子和分母没有公共因子,且分子和分母的最高次数相同。
真分式
分子和分母都是多项式,且分子和分母的次数不同。
假分式
分子和分母的次数相同,或分子和分母有公共因子。
分式的基本性质
分式的值不等于零
分式的值是分子与分母相除的结果,当分母为零 时,分式的值不存在,即分式不等于零。
分式的除法
一个分式除以另一个分式,分子和分母分别除以 被除数的分子和分母,得到商的分式。
将分子和分母中相同的元素消去,简化分式。
分式的加减法
同分母分式相加减
将同分母的分式相加减,结果作为分子,分母不变。
异分母分式相加减
将异分母的分式先通分,然后按照同分母分式的加减法进行计算。
分式的乘除法
分子乘分子,分母乘分母
将两个分式的分子和分母分别相乘,得到新的分式。
分式的乘方
将分式的分子和分母分别进行乘方运算,得到新的分式。
在进行除法运算时,需要将结果化简,使分母和分子都 保持最简形式。
05
分式的应用
分式在物理中的应用
要点一
电力计算
分式在电力计算中有着广泛应用,如计算电力的消耗、 电量的分配等。
要点二
物理定律的表达
很多物理定律可以用分式来表达,如牛顿第二定律、欧 姆定律等。
分式在数学中的应用
代数方程的解
分式可以用于解代数方程,特别是那些难以求解的高次 方程。
注意事项
在进行加法运算时,需要将结果化简,使分母和分子都保持最简形式。
分式的乘法运算
运算法则
分式的乘法运算是在保持分母不变的情况下,将分子相乘。
注意事项
在进行乘法运算时,需要将结果化简,使分母和分子都保持最简形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时
一、复习:
1.分式的基本性质: 同乘 (或除以)一个 一个分式的分子与分母___________ 不等于0 的整式,分式的值不变. 化为乘(除) 用字母表示为: 法 —— 因式 A AC A AC (C≠0) B B C B B C 2.分式的符号法则:
2
因式分解
( x 3)(x 3) 5abc 5ac2 (1)原式= (2)原式= 2 ( x 3 ) 5abc 3b
约分的基本步骤: (1)找出分式的分子、分母的公因式 (2)约去公因式,化为最简分式
如果分式的分子或分母是多项式,先分解因式再约分
例1 约分:
6 x 12xy 6y (3) 3x 3y
3、判断下列变形是否正确.
a a (1) 2 ( ) b b b bc (2) (c≠0) ( a ac
b b 1 ( ) (3) a a 1 2x x ( ) (4) 2x 1 x 1
2
)
化简: 2 3 25a bc (1) 2 15ab c
解:
x 9 (2) 2 x 6x 9
m2 n2 (3) 2 2m 4 m n 2n 2
a 2 4ab 4b 2 (2) a 2 4b 2
约分
x 1 (1) 2 x 2x 1 2 m 3m ( 2) 2 9m
2
注意:
当分子分母是多项 式的时候,先进行 分解因式,再约分
(3)
49 x
x
2
7x
2
其中 x 3 y 0
a 9 (2) 2 其中 a 5 a 6a 9
1 1 2a 3ab 2b 3 已知,a b ,求分式 a ab b
的值。
( 1)
3a 3 a4
3 2
பைடு நூலகம்
12a y x ( 2) 27ax y
x 2 y xy 2 ( 3) 2 xy
(a 1( ) a 1) (a 1) (3) 分子分母都 ab(a 1) ab
2、填空:
x ( ) 3x 2 3xy x y (1) 2 , 2 x 2x x 2 6x ( )
ab ( ) 2a b ( ) (2) , 2 2 2 ab ab a ab
2
2
变式
6 x 12xy 6y (4) 2 2 y x
2
2
解:
( 6 x y ) 6 ( x y ) (3)原式 (4)原式 ( 3 x y) ( x y)(x y)
2
2
( 2 x y)
6 x 6y x y
(注意符号问题)
例2:计算:
ma mb mc (1) abc
,
a a a ( 1 ) ? (2) ? b b b
偶数个为“正”;奇数个为“负”;
复习设计(1)
1、下列等式的右边是怎样从左边得到的?
2b 2ab ( 1 ) 2 2 2 (a 0) 3ac 3a c
分子分母都
4ab 2a (2) 6b(a 1) 3(a 1) 分子分母都
2
知识梳理
把一个分式的分子和分母的公因式约去, 不改变分式的值,这种变形叫做分式的约分。 1.约分的依据是: 分式的基本性质 2.约分的基本方法是: 先找出分式的分子、分母公因式,再约去公 因式.
3.约分的结果是: 整式或最简分式
例3
1、化简求值:
2 2
x 3xy 4 y (1) 2 2 x y
2 m ( 4) 2 m 1 1 m
拓展延伸:
2 2 ( 1 x ) ( 1 x ) (1)先化简再求值 2 2 ( x 1)
1 其中 x 2
(a b) 2 8(a b) 16 (2) (a b) 2 16
其中 a b 5