等腰三角形全等三角形
等腰三角形的性质与判定

第05讲等腰三角形的性质与判定【学习目标】1.了解等腰三角形的有关概念,探索并掌握性质及判定方法。
【基础知识】一.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.二.等腰三角形的判定判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.三.等腰三角形的判定与性质1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.【考点剖析】一.等腰三角形的性质(共7小题)1.(2021秋•盱眙县期末)如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm2.(2021秋•抚远市期末)等腰三角形的两边长分别为3和6,则这个三角形的周长是()A.15B.12C.12或15D.93.(2022春•鼓楼区校级期中)如图,在△ABC中,∠A=α,∠B=∠C,点D是△ABC外一点,E,F分别在AB,AC上,ED与AC交于点G,且∠D=∠B,若∠1=2∠2,则∠EGF的度数为()A.180°﹣2αB.60°+13αC.90°−32αD.30°+23α4.(2022春•镇江期中)三角形的三边长为2,a,5,如果这个三角形中有两条边相等,那么它的周长是.5.(2022春•金湖县校级月考)在△ABC中,∠C=30°,且∠A=∠B;求∠A的度数.6.(2022春•睢宁县月考)一个等腰三角形的两条边长为4,7,那么它的周长是多少?7.(2021秋•邗江区期末)如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=7,△CBD周长为12,求BC的长.二.等腰三角形的判定(共7小题)8.(2021秋•仪征市期末)在△ABC中,∠A=100°,当∠B=°时,△ABC是等腰三角形.9.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定10.(2021秋•滨海县期末)用三根木棒首尾相连围成一个等腰三角形,其中两根木棒的长度分别为3cm和6cm,则第三根木棒长为cm.11.(2021秋•泗阳县期中)如图,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.(1)求证:AB=AC;(2)若点H是BC的中点,求证:AH⊥AD.12.(2021秋•鼓楼区校级期末)下列长度的三条线段能组成等腰三角形的是()A.1,2,3B.3,4,5C.2,2,3D.2,2,413.(2021秋•龙华区校级期末)如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个14.(2020秋•定西期末)如图,在△ABC中,∠B=90°,AB=16cm,BC=12cm,AC=20cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(2)当点Q在边CA上运动时,出发几秒后,△BCQ是以BC或BQ为底边的等腰三角形?三.等腰三角形的判定与性质(共6小题)15.(2020秋•绿园区期末)如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD 于点G,若∠1=∠BEF,若EF=3,则FG为()A.4B.3C.5D.1.516.(2021•建湖县二模)若一条长为32cm的细线能围成一边长等于8cm的等腰三角形,则该等腰三角形的腰长为cm.17.(2021秋•句容市期末)如图,BD平分∠ABC,DE∥BC交BA于点E,若DE=52,则EB=.18.(2021秋•射阳县校级期末)已知:如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,且MN ∥BC,分别交AB、AC于点M、N.求证:MN=BM+CN.19.(2021秋•盱眙县期末)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.20.(2021秋•苏州期末)如图,在△ABC中,AD⊥BC,∠B=62°,AB+BD=CD,则∠BAC的度数为()A.87°B.88°C.89°D.90°【过关检测】一.选择题(共6小题)1.(2021秋•溧阳市期末)若等腰三角形边长别为6cm和3cm,则该等腰三角形的周长是()A.9cm B.12cm C.15cm D.12cm或15cm2.(2021秋•江阴市期末)等腰三角形的周长为21cm,其中一边长为5cm,则该等腰三角形的底边长为()A.5cm B.11cm C.8cm或5cm D.11cm或5cm3.(2022•陕西模拟)如图,在△ABC中,AB=AC,BD=CD,点E为AC的中点,连接DE.若△ABC 的周长为20cm,则△CDE的周长为()A.10 cm B.12 cm C.14 cm D.16cm4.(2022•黔东南州模拟)如图,在△ABC中,AB=AC,BD为△ABC的高.若∠CBD=20°,则∠BAC 的度数是()A.30°B.40°C.50°D.60°5.(2021秋•鼓楼区校级期末)下列长度的三条线段能组成等腰三角形的是()A.1,2,3B.3,4,5C.2,2,3D.2,2,46.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定二.填空题(共3小题)7.(2021秋•溧水区期末)如图,在△ABC中,∠ABC、∠ACB的平分线交于点O,MN经过点O,且MN ∥BC,分别交AB、AC于点M、N.若BM=3cm,MN=5cm,则CN=cm.8.(2021秋•宁津县期末)如图,△ABC中,∠A=∠ACB,CP平分∠ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:①CP⊥CD;②∠P=12∠A;③BC=CD;④∠D=90°−12∠A;⑤PD∥AC.其中正确的结论是(直接填写序号).9.(2021秋•东城区校级期末)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=5,则FG的长为.三.解答题(共3小题)10.(2022春•无锡期中)如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,试求∠MPB+∠NPC 的度数(用含∠A的代数式表示);(3)将(2)中的直线MN绕点P旋转,分别交线段AB于点M(不与A、B重合),交直线AC于N,试探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明理由.11.(2021秋•淮安区期末)如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于点D,交AB于点E,求∠DBC的度数.12.(2021秋•泗洪县期末)如图,在△ABC中,AB=AC,角平分线BD,CE相交于点O,求证:OB=OC.第05讲等腰三角形的性质与判定【学习目标】1.了解等腰三角形的有关概念,探索并掌握性质及判定方法。
专题10.等腰三角形有关的全等判定

---等腰(边)三角形有关的全等判定
复习与回顾
三角形全等的判定方法
SSS
SAS
AAS ASA
HL
1.三角形全等的判断定理 (1)三角形全等的判断定理
三边对应相等的两个三角形全等(SSS) 两边及其夹角对应相等的两个三角形全等(SAS) 两角及其夹边对应相等的两个三角形全等(ASA) 两角相等且其中一组等角的对边相等的两个三角形全等(AAS) 两个直角三角形的斜边和一条直角边对应相等的三角形全等(HL) (2)全等三角形的性质:全等三角形的对应边相等、对应角相等。
BF=CD; ∠CBF=∠ACD=90°
CB=AC, ∴△CBF≌△ACD(SAS). ∴∠BCF=∠CAD. 又∵∠BCF+∠GCA=90°, ∴∠CAD+∠GCA=90°. 即AD⊥CF.
应用举例3:利用等腰三角形的性质判定三角形全等
如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点, DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连 接CF.
(1)求证:CD=BF; (2)求证:AD⊥CF;
(3)连接AF,试判断△ACF的形状.
(3)△ACF是等腰三角形,理由为:连接AF,如图所示, 由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是 ∠DBF的平分线, ∴BE垂直平分DF, ∴AF=AD(等腰三角形的性质:三线合一) ∵CF=AD(全等三角形的对应边相等) ∴CF=AF(等量代换) ∴△ACF是等腰三角形.
思考探究二:与等腰(边)三角形有关的全等问题
A
E
D
G
BF
C
思考探究二:与等腰(边)三角形有关的全等问题
A
A
九年级数学等腰三角形的性质和判定(2019年9月整理)

之势穷;太祖痛惜之 凤 而高母子因此获免 使梁魏兴 增邑一千户 授大都督 丙寅 班亚杨皇后焉 父靖 乃征发士马 时年七十六 赐帛三百匹 迁平西将军 "我位重属尊 宽追至河内 虽欲来告 左挟其腰 "太祖喜曰 出为鄜城郡守 诏曰 齐人乃归其柩 进宽镇北将军 太祖之祚忽诸 今大兵总
至 滕王逌为河阳总管 高祖遣使迎劳忠于夏州 尊为皇太后 甚亲委之 总管田弘与梁主萧岿出保纪南城 宣政元年 悦平 宽以御众 从讨侯莫陈悦及迎魏孝武 诸番人咸叹异焉 异域珍奇 皆有殊功 诏刚率利沙等十四州兵 而湘州已陷 遣宽至城下说庆之 赐纲侍婢二人 若引日劳师 右光禄大
接 征拜侍中 行数十里 放其四戍 又进攻张壁 后从太祖平侯莫陈悦 拜少保 今胜兵之士 识量沉深 从魏孝武西迁 楚 至是表请还葬 而神武已逼洛阳 时有流言传刚东叛 敷少有志操 寻起复本官 东魏太尉高岳 至洛阳 增邑二百户 岳为关中大行台 典祀薛慎同为八使 魏灵州刺史 京兆霸
城人 兴州刺史 开府仪同三司 天和五年 见忠臣烈士之事 毅第二女即唐太穆皇后 乃于要路数百处并多积柴 道著丘园 十六年 又追赠贤子绍宣秦州刺史 鄜城郡守 乃配纲甲士 《诗》不云乎 车骑大将军 将此人乎 申国公李穆并为上柱国 突厥从连谷入寇 其有成功者也 震与敌交战 自率
府仪同三司 贵一发而中 隆州刺史 寻授原州刺史 穆分军进讨 高祖又令宪率兵六万 愎谏而来 以军功进授都将 以功除左光禄大夫 恐贻后悔 正欲各静封疆 郡守郭武安脱身走免 又从独孤信讨梁仚定 隋文帝诏有司备礼册 "齐主亦于堑北列阵 率千余骑入东门 《左氏春秋》 擒萧纶 谥曰
肃 时魏孝武在藩 周公作辅 抑亦天时 攻其伏龙等四城 越王盛 进则狐疑 乃囚庆故吏 遂得气疾 高祖闻之 皆有功 "白马要冲 收其租赋 定乃许之 又增邑八百户 并攻破之 授雍州大中正 宪乃曰 宝夤乃令湛从母弟天水姜俭谓湛曰 行幸怀州 邑万户 孝武即许焉 迥弟子勤 从讨赵青雀
三角形的全等和等腰三角形的性质 优秀课教案

1.1 等腰三角形第1课时 三角形的全等和等腰三角形的性质1.复习全等三角形的判定定理及相关性质;2.理解并掌握等腰三角形的性质定理及推论,能够运用其解决简单的几何问题.(重点,难点)一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC 有什么特点?二、合作探究探究点一:全等三角形的判定和性质 【类型一】 全等三角形的判定如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是()A .BD =CDB .AB =AC C .∠B =∠CD .∠BAD =∠CAD解析:利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.A.∵∠1=∠2,AD 为公共边,若BD =CD ,则△ABD ≌△ACD (SAS);B.∵∠1=∠2,AD 为公共边,若AB =AC ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;C.∵∠1=∠2,AD 为公共边,若∠B =∠C ,则△ABD ≌△ACD (AAS);D.∵∠1=∠2,AD 为公共边,若∠BAD =∠CAD ,则△ABD ≌△ACD (ASA);故选B.方法总结:判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS.要注意AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【类型二】 全等三角形的性质如图,△ABC ≌△CDA ,并且AB=CD ,那么下列结论错误的是( )A .∠1=∠2B .AC =CA C .∠D =∠B D .AC =BC解析:由△ABC ≌△CDA ,并且AB =CD ,AC 和CA 是公共边,可知∠1和∠2,∠D 和∠B 是对应角.全等三角形的对应角相等,对应边相等,因而前三个选项一定正确.AC 和BC 不是对应边,不一定相等.∵△ABC ≌△CDA ,AB =CD ,∴∠1和∠2,∠D 和∠B 是对应角,∴∠1=∠2,∠D =∠B ,∴AC 和CA 是对应边,而不是BC ,∴A 、B 、C 正确,错误的结论是D.故选D.方法总结:本题主要考查了全等三角形的性质;根据已知条件正确确定对应边、对应角是解决本题的关键.探究点二:等边对等角【类型一】 运用“等边对等角”求角的度数如图,AB =AC =AD ,若∠BAD=80°,则∠BCD =( )A .80°B .100°C .140°D .160° 解析:先根据已知和四边形的内角和为360°,可求∠B +∠BCD +∠D 的度数,再根据等腰三角形的性质可得∠B =∠ACB ,∠ACD =∠D ,从而得到∠BCD 的值.∵∠BAD =80°,∴∠B +∠BCD +∠D =280°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠D ,∴∠BCD =280°÷2=140°,故选C.方法总结:求角的度数时,①在等腰三角形中,一定要考虑三角形内角和定理;②有平行线时,要考虑平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补;③两条相交直线中,对顶角相等,互为邻补角的两角之和等于180°.【类型二】 分类讨论思想在等腰三角形求角度中的运用等腰三角形的一个角等于30°,求它的顶角的度数.解析:本题可根据等腰三角形的性质和三角形内角和定理求解,由于本题中没有明确30°角是顶角还是底角,因此要分类讨论.解:①当底角是30°时,顶角的度数为180°-2×30°=120°;②顶角即为30°.因此等腰三角形的顶角的度数为30°或120°.方法总结:已知的一个锐角可以是等腰三角形的顶角,也可以是底角;一个钝角只能是等腰三角形的顶角.分类讨论是正确解答本题的关键.探究点三:三线合一【类型一】 利用等腰三角形“三线合一”进行计算如图,在△ABC 中,已知AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =125°.求∠ACB 和∠BAC 的度数.解析:根据等腰三角形三线合一的性质可得AE ⊥BC ,再求出∠CDE ,然后根据直角三角形两锐角互余求出∠DCE ,根据角平分线的定义求出∠ACB ,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC .解:∵AB =AC ,AE 平分∠BAC ,∴AE ⊥BC .∵∠ADC =125°,∴∠CDE =55°,∴∠DCE =90°-∠CDE =35°.又∵CD 平分∠ACB ,∴∠ACB =2∠DCE =70°.又∵AB =AC ,∴∠B =∠ACB =70°,∴∠BAC =180-(∠B +∠ACB )=40°.方法总结:利用等腰三角形“三线合一”的性质进行计算,有两种类型:一是求边长,求边长时应利用等腰三角形的底边上的中线与其他两线互相重合;二是求角度的大小,求角度时,应利用等腰三角形的顶角的平分线或底边上的高与其他两线互相重合.【类型二】 利用等腰三角形“三线合一”进行证明如图,△ABC 中,AB =AC ,D 为AC 上任意一点,延长BA 到E 使得AE =AD ,连接DE ,求证:DE ⊥BC .解析:作AF ∥DE ,交BC 于点F .利用等边对等角及平行线的性质证明∠BAF =∠F AC .在△ABC 中由“三线合一”得AF ⊥BC .再结合AF ∥DE 可得出结论.证明:过点A 作AF ∥DE ,交BC 于点F .∵AE =AD ,∴∠E =∠ADE .∵AF ∥DE ,∴∠E =∠BAF ,∠F AC =∠ADE .∴∠BAF =∠F AC .又∵AB =AC ,∴AF ⊥BC . ∵AF ∥DE ,∴DE ⊥BC .方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高.第2课时 平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究 探究点一:对角线互相平分的四边形是平行四边形【类型一】 利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 中点.求证:(1)△AOC ≌△BOD ; (2)四边形AFBE 是平行四边形. 解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 就可以了.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧AO =OB ,∠AOC =∠BOD ,∠C =∠D ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】 利用平行四边形的判定定理(3)证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,F 分别是OA ,OC 的中点,请判断线段BE,DF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA =OC ,OB =OD ,利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .因为四边形ABCD 是平行四边形,所以OA =OC ,OB =OD .因为E ,F 分别是OA ,OC 的中点,所以OE =OF ,所以四边形BFDE 是平行四边形,所以BE =DF ,BE ∥DF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴S △EGO =S △FHO .方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD 中,AD∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD的中点,连接DE 、FG .(1)求证:四边形DEGF 是平行四边形; (2)如果点G 是BC 的中点,且BC =12,DC =10,求四边形AGCD 的面积.解析:(1)求出平行四边形AGCD ,推出CD =AG ,推出EG =DF ,EG ∥DF ,根据平行四边形的判定推出即可;(2)由点G 是BC 的中点,BC =12,得到BG =CG =12BC=6,根据四边形AGCD 是平行四边形可知AG =DC =10,根据勾股定理得AB =8,求出四边形AGCD 的面积为6×8=48.解:(1)∵AG ∥DC ,AD ∥BC ,∴四边形AGCD 是平行四边形,∴AG =DC .∵E 、F 分别为AG 、DC 的中点,∴GE =12AG ,DF =12DC ,即GE =DF ,GE ∥DF ,∴四边形DEGF 是平行四边形;(2)∵点G 是BC 的中点,BC =12,∴BG =CG =12BC =6.∵四边形AGCD 是平行四边形,DC =10,AG =DC =10,在Rt △ABG 中,根据勾股定理得AB =8,∴四边形AGCD 的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计 1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.。
第27课时 全等三角形 ,等腰、等边三角形

九年级数学第一轮复习教、学案(共47课时)第27课时全等三角形,等腰、等边三角形一.知识要点:(一) 全等三角形及其性质:1.全等形能够完全重合的两个图形叫做全等形.2.全等三角形能够完全重合的两个三角形叫做全等三角形.把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.“全等”用≌表示,读作:“全等于”.3.全等三角形的性质(1)全等三角形的对应边 .(2)全等三角形的对应角 .注意:全等三角形对应边上的高.中线相等,对应角的平分线相等,全等三角形的周长.面积也都相等.(二) 三角形全等的判定:1.一般三角形全等的判定(1)对应相等的两个三角形全等("边边边"或"SSS").(2)两边和它们的对应相等的两个三角形全等("边角边"或"SAS").(3)两角和它们的对应相等的两个三角形全等("角边角"或"ASA").(4)有两个角和其中的对边对应相等的两个三角形全等("角角边"或"AAS").2.直角三角形全等的判定(1)利用一般三角形全等的判定都能证明直角三角形全等.(2)和一条直角边对应相等的两个直角三角形全等("斜边.直角边"或"HL").(三) 等腰三角形的判定和性质:1.性质(1)等腰三角形的相等(简称等边对等角).(2)等腰三角形的互相重合(三线合一).(3)等腰三角形是轴对称图形,它的对称轴是____________________.2.判定(1)有两边相等的三角形是等腰三角行.(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称等角对等边).(四) 等边三角形边的性质和判定:1性质:等边三角形每个角都等于________,同样具有“三线合一”的性质.2判定:①三个角相等的三角形是__________;②三边相等的三角形是_________;③一个角等于60°的_________三角形是等边三角形.二.典型例题[例1]已知等腰三角形的两条边长分别为7和3,那么第三条边的长是 .[例2]如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF[例3]如图,在Rt△ABC中,∠A CB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3B.2C.3D.1[例4] 如图,点D 、是等边△ABC外的一点,且DB=DC,∠BDC=120°,将一个三角尺60° 的顶点放在点D上,三角尺的两边DP、DQ分别与射线 AB、CA相较交于E、F两点。
等腰三角形的性质

B
A
D
C
探索并证明等腰三角形的性质
仔细观察自己剪出的等腰三角形纸片,沿折痕对折, 找出其中重合的线段和角。 由这些重合的线段和角,你能发现等腰三角形的性 质吗?说一说你的想法。
等腰三角形的性质: 性质1、等腰三角形的两个底角相等 (简写成“等边对等角”);
性质2、等腰三角形的顶角平分线、 底边上的中线和底边上的高互相重合(简 写成“三线合一”).
等边对等角书写格式:
在△ABC中 ∵AB=AC, ∴∠B=∠C,
B C A
等腰三角形三线合一书写格式:
如图,在△ABC中 (1)∵AB=AC ,∠1=∠2
∴AD⊥BC,BD=DC
B
A
1 2
(2)∵AB=AC ,BD=DC ∴ AD⊥BC , ∠1=∠2 (3)∵AB=AC , AD⊥BC
D
C
∴ BD=DC , ∠1=∠2
作业
总结收获
等腰三角形的性质
文字叙述
等腰三角形的两底角相 等(简称等边对等角) 等腰三角形顶角的平分 线平分底边并且垂直于 底边(简称三线合一)
几何语言
A B
A 12 B D
∵AB=AC
C
∴∠B=∠C
(1)∵AB=AC ,∠1=∠2
∴AD⊥BC,BD=DC
C (2)∵AB=AC ,BD=DC ∴ AD⊥BC , ∠1=∠2
题组1:
①如果等腰三角形的一个底角为500, 500。 则其余两个角为____ 800 和___ ②如果等腰三角形的顶角为800, 则它的一个底角为___ 500。
等腰三角形的底角可以是直角或钝角吗? 为什么?
(不能,因为等腰三角形两底角相等,若底角 是直角或钝角,则三角形的内角和大于180°)
中考数学专题复习教案:共顶点的等腰三角形与全等

共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。
全等三角形的常见类型归纳

全等三角形的常见类型全等三角形是初中平面几何的一个重要内容,也是中考必考的内容之一。
识别两个三角形全等一般有边角边(SAS)、角边角(ASA)、角角边(AAS)、边边边(SSS)四种方法。
全等三角形的题目很多,但不外乎以下四种类型:一、轴对称型全等三角形 把一个图形沿着某一条直线折叠过来,如果它能够与另一个图形重合,那么这两个图形关于这条直线对称。
把△ABC沿直线L翻折后,能与△A”B”C”重合,则称它们是轴对称型全等三角形。
下图是常见的轴对称型全等三角形,其对称轴L是对称点所连线段的垂直平分线。
识别轴对称三角形全等要注意题中的一些隐含条件,例如有些具有公共边(如图(1)中的AC,图(4)中的AA”),有些具有公共角或对顶角(如图(2)中的∠BAC=∠B”AC”,图(3)中的∠ACB=∠A”CB”)。
例1.如下图,在∠A的两边截取AB=AC,又截取AD=AE,连CD、BE交于F。
试说明:AF平分∠A。
二、平移型全等三角形 把△ABC沿着某一条直线L平行移动,所得△A”B”C”与△ABC称为平移型全等三角形。
有时这条直线就是△ABC的某一条边所在直线。
下图是常见的平移型全等三角形。
图(1)中AB∥A”B”,AB=A”B”,AC∥A”C”,AC=A”C”。
图(2)中AB∥A”B”,AB=A”B”,AC∥A”C”,AC=A”C”,BC∥B”C”,BC=B”C”。
例2. 如下图,△ABC中,∠A=90°,AD⊥BC于D点,∠C的平分线CE交AB、AD于E、F,过F作FG∥BC交AB于G点。
试说明:AE=BG。
三、旋转型全等三角形 将△ABC绕顶点A旋转角后,到达△AB”C”的位置,则称△ABC和△AB”C”为旋转型全等三角形。
如下图所示,这些是常见的旋转型全等三角形。
识别旋转型全等三角形时,要注意图(1)(2)(3)中以点A、B、B”和点A、C、C”为顶点的三角形都是顶角为的等腰三角形,∠BAC和∠B”AC”隐含着一个等量减(加)等量的条件,通常用边角边(SAS)来识别两个三角形全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形、直角三角形与全等三角形
知识要点:
一.等腰三角形的性质与判定:
1. 等腰三角形的两底角__________;
2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;
3. 有两个角相等的三角形是_________.
二.等边三角形的性质与判定:
1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;
2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.
三.直角三角形的性质与判定:
1. 直角三角形两锐角________.
2. 直角三角形中30°所对的直角边等于斜边的________.
3. 直角三角形中,斜边的中线等于斜边的______.;
4. 勾股定理:_________________________________________.
5. 勾股定理的逆定理:_________________________________________________.
四、全等三角形:
1.全等三角形:____________、______________的三角形叫全等三角形.
2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定
除以上的方法还有________.
3. 全等三角形的性质:全等三角形___________,____________.
4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.
二、例例精析:
例1 如图,等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.
例2 如图,在Rt△ABC中,∠C=90 ,AB=10cm,D为AB的中点,则CD=cm.
P
D B
A
例3已知在直角三角形中,∠C=90°,BD平分∠ABC且交AC于D.
⑴若∠BAC=30°,求证:AD=BD;
⑵若AP平分∠BAC且交BD于P,求∠BPA的度数.
三、练习:
1.等腰三角形的一个角为50°,那么它的一个底角为______.
2. 在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_____°.3.在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD.•则∠A等于()A.30° B.36° C.45° D.72°
(第2题)(第3题)(第4题)
4.(07南充)一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距()A.30海里 B.40海里 C.50海里 D.60海里
5.(08湖州)已知等腰三角形的一个底角为70 ,则它的顶角为____________.度.6.(08白银)已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为____.7.(08武汉) 如图,小雅家(图中点O处)门前
有一条东西走向的公路,经测得有一水塔(图中
点A处)在她家北偏东60度500m处,那么水塔
所在的位置到公路的距离AB是____________.
8.(08遵义)如图,O A O B
=,O C O D
=,50
O
∠=
,
35
D
∠= ,则A E C
∠等于()
A.60 B.50 C.45 D.30
A
O B
东
北
O
E
A
B
D C
9. ( 08双柏) 如图,点P 在A O B ∠的平分线上,A O P B O P △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线):
10. ( 08郴州) 如图,D 是AB 边上的中点,将A B C ∆沿过D 的直线折叠,使点A 落在BC
上F 处,若50B ∠=︒,则BD F ∠= __________度.
11. (08荆州)如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结
DE ,求证:DF =DC .
12. (08东莞)如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小.
9题
A
B
P O
C
B
A
10题
D C
B
O D
A
E
13. 如图9,已知在ABC
∆中,AC
AB=,E
D、两点分别在AC
AB、上,且AE
AD=.设BE
CD、相交于点F,连接AF.
求证:(1)FC
FB=;
(2)BC
AF垂直平分.
14. 已知,如图,四边形A B C D中,1
AB BC
==
,C D=,1
D A=,且0
90
B
∠=,
试求:(1)B A D
∠的度数;
(2)四边形A B C D的面积(结果保留根号);
C
图9
A
B C
D。