2023全国高考数学统计与概率专题

合集下载

专题11 概率与统计的综合问题(课件)2023届高考数学二轮复习(新高考地区专用)

专题11 概率与统计的综合问题(课件)2023届高考数学二轮复习(新高考地区专用)

题后师说 在概率与统计的问题中,决策的工具是样本的数字或有关概率.决 策方案的最佳选择是将概率最大(最小)或均值最大(最小)的方案作为 最佳方案,这往往借助于函数、不等式或数列的有关性质去实现.
巩固训练5 [2023·福建厦门模拟]某汽车公司最近研发了一款新能源汽车,并在 出厂前对100辆汽车进行了单次最大续航里程的测试.现对测试数据 进行分析,得到如图所示的频率分布直方图:
个动作技巧进行集训,且在集训中进行了多轮测试.规定:在一轮测 试中,这3个动作中至少有2个动作达到“优秀”,则该轮测试记为 “优秀”.在集训测试中,小明同学3个动作中每个动作达到“优秀” 的概率均为13,每个动作互不影响且每轮测试互不影响.如果小明同 学在集训测试中要想获得“优秀”的次数的平均值达到5次,那么理
层抽样抽取10名学生准备进行读写测试,在这10名学生中随机抽取3
名学生,记这3名学生每天阅读时间不低于1 h的人数为X,求X的分布
列和数学期望E(X).
附:χ2=
a+b
n ad−bc 2 c+d a+c
b+d
,n=a+b+c+d
α 0.100 0.050 0.010 0.001 xα 2.706 3.841 6.635 10.828
( 参 考 数 据 : 若 随 机 变 量 X ~ N(μ , σ2) , 则 P(μ - σ≤X≤μ + σ)≈0.682 7 , P(μ - 2σ≤X≤μ+2σ)≈0.954 5,P(μ-3σ≤X≤μ+3σ)≈0.997 3)
(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”
题型五 概率与函数、不等式、数列的综合 例 5 [2023·辽宁大连模拟]某网络科技公司在年终总结大会上,为增添喜 悦、和谐的气氛,设计了闯关游戏这一环节,闯关游戏必须闯过若干关口 才 能 成 功 . 其 中 第 一 关 是 答 题 , 分 别 设 置 “ 文 史 常 识 题 ”“ 生 活 常 识 题”“影视艺术常识题”这3道题目,规定有两种答题方案: 方案一:答题3道,至少有两道答对; 方案二:在这3道题目中,随机选取2道,这2道都答对. 方案一和方案二中只要完成一个,就能通过第一关.假设程序员甲和程 序员乙答对这3道题中每一道题的概率都是p(p∈(0,1)),且这3道题是否答 对相互之间没有影响.程序员甲选择了方案一,程序员乙选择了方案二. (1)求甲和乙各自通过第一关的概率; (2)设甲和乙中通过第一关的人数为ξ,是否存在唯一的p的值p0,使得E(ξ) =1?并说明理由.

高考数学经典试题与解析 专题九 计数原理与概率统计

高考数学经典试题与解析 专题九 计数原理与概率统计

专题九计数原理与概率统计——2025届高考数学考点剖析精创专题卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.[2023年全国高考真题]某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.231.答案:D解析:依题意,用1A ,2A 表示高一的2名学生,1B ,2B 表示高二的2名学生,则从4名学生中随机选2名学生的选法有()12,A A ,()12,B B ,()11,A B ,()12,A B ,()21,A B ,()22,A B ,共6种,其中2名学生来自不同年级的选法有()11,A B ,()12,A B ,()21,A B ,()22,A B ,共4种,所以所求概率4263P ==,故选D.2.将甲、乙等5名同学分别保送到北京大学、上海交通大学、浙江大学三所大学就读,则每所大学至少保送一人的不同保送方法有()A.120种 B.150种 C.180种 D.240种2.答案:B解析:根据题意,分2步进行分析:①先将甲、乙等5名同学分成3组:若分成1,2,2的3组,则有12254222C C C15 A =(种)方法;若分成1,1,3的3组,则有11354322C C C 10 A =(种)方法,故将5人分成3组,每组至少有1人,有151025+=(种)分组方法.②将分好的3组对应三所大学,则每所大学至少保送一人的不同保送方法有3325A 150=(种).3.[2023春·高二·四川内江·期中校考]在12nx ⎫-⎪⎭的展开式中,只有第五项的二项式系数最大,则展开式中6x 的系数是()A.454B.358-C.358D.73.答案:C解析:依题意知第五项的二项式系数最大,所以一共是9项,所以8n =,二项式展开项的通项公式为842218811C C 22rrr rr r r r T x x x -++⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,令462r +=,得4r =,所以6x 的系数为448135C 28⎛⎫-= ⎪⎝⎭.故选C.4.抛掷一枚质地均匀的骰子两次,记A ={两次的点数均为奇数},B ={两次的点数之和为8},则()P B A =∣()A.112B.29C.13D.234.答案:B解析:易知()()()n AB P BA n A =∣,其中AB 表示“两次的点数均为奇数,且两次的点数之和为8”,共有两种情况,即(3,5),(5,3),故()2n AB =.而1133()C C 9n A =⋅=,所以()2()()9n AB P B A n A ==∣.故选B.5.[2023春·高二·江苏盐城·月考联考]已知服从正态分布()2,N μσ的随机变量在区间(],μσμσ-+,(]2,2μσμσ-+和(]3,3μσμσ-+内取值的概率分别为68.26%,95.44%和99.74%.若某校高二年级1000名学生的某次考试成绩X 服从正态分布()290,15N ,则此次考试成绩在区间(]105,120内的学生大约有()A.477人B.136人C.341人D.131人5.答案:B 解析:根据题意,()()()60120751050.95440.68261051200.135922P X P X P X <≤-<≤-<≤===,则10000.1359135.9136⨯=≈,故此次考试成绩在区间(]105,120内的学生大约有136人.故选:B.6.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x (元)99.29.49.69.810销量y (件)1009493908578预计在今后的销售中,销量与单价仍然服从这种线性相关关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为()参考公式:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为1221ˆniii nii x ynxy bxnx ==-=-∑∑,ˆˆay bx =-.参考数据:615116iii x y==∑,622160.7i i x x =-=∑.A.9.4元B.9.5元C.9.6元D.9.7元6.答案:B解析:由题意,得1(99.29.49.69.810)9.56x =⨯+++++=,1(1009493908578)906y =⨯+++++=,6162216511669.590ˆ200.76i ii ii x y xybxx ==--⨯⨯===--∑∑,ˆ909.520280a=+⨯=,则ˆ20280y x =-+.设工厂获得利润L 元,则2(5)(20280)20(9.5)405L x x x =--+=--+,当9.5x =时,L 取得最大值.所以当单价定为9.5元时,工厂获得最大利润,故选B.7.[2024春·高一·河南三门峡·期末校考]某高中为了积极响应国家“阳光体育运动”的号召,调查该校3000名学生每周平均体育运动时长的情况,从高一、高二、高三三个年级学生中按照4:3:3的比例进行分层随机抽样,收集了300名学生每周平均体育运动时长(单位:小时)的数据,整理后得到如图所示的频率分布直方图.下列说法不正确的是()A.估计该校学生每周平均体育运动时长为5.8小时B.估计该校高一年级学生每周平均体育运动时长不足4小时的人数为300C.估计该校学生每周平均体育运动时长不少于8小时的百分比为10%D.估计该校学生每周平均体育运动时长不少于8小时的人数为6007.答案:C解析:对于A,估计该校学生每周平均体育运动时长为10.0530.250.370.2590.15110.05 5.8⨯+⨯+⨯+⨯+⨯+⨯=(小时),故选项A 正确;对于B,该校高一年级的总人数为430001200433⨯=++,由题中频率分布直方图可知,该校学生每周平均体育运动时长不足4小时的频率为()0.0250.120.25+⨯=,所以估计该校高一年级学生每周平均体育运动时长不足4小时的人数为12000.25300⨯=,故选项B 正确;对于C,估计该校学生每周平均体育运动时长不少于8小时的百分比为()0.0750.0252100%20%+⨯⨯=,故选项C 错误;对于D,估计该校学生每周平均体育运动时长不少于8小时的人数为300020%600⨯=,故选项D 正确.故选:C.8.甲、乙、丙三人参加“社会主义核心价值观”演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为12,23,34,且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A.14B.724C.1124D.17248.答案:D解析:设甲、乙、丙获得一等奖的概率分别是()12P A =,()23P B =,()34P C =,则不获一等奖的概率分别是()11122P A =-=,()21133P B =-=,()31144P C =-=,则这三人中恰有两人获得一等奖的概率为:()()()()()()()()()()()()P ABC P ABC P ABC P A P B P C P A P B P C P A P B P C ++=++1231131211123423423424=⨯⨯+⨯⨯+⨯⨯=,这三人都获得一等奖的概率为()()()()12312344P ABC P A P B P C ==⨯⨯=,所以这三人中至少有两人获得一等奖的概率1111724424P =+=.故选:D.二、多项选择题9.[2020年全国高考真题]我国新冠肺炎疫情防控进入常态化,各地有序推动复工复产.下面是某地连续11天的复工、复产指数折线图.根据该折线图,()A.这11天复工指数和复产指数均逐日增加B.在这11天期间,复产指数的增量大于复工指数的增量C.第3天至第11天,复工指数和复产指数都超过80%D.第9天至第11天,复产指数的增量大于复工指数的增量9.答案:CD解析:由题图可知第8,9天复工指数和复产指数均减小,故A 错误;第1天时复工指数小于复产指数,第11天时两指数相等,故复产指数的增量小于复工指数的增量,故B 错误;由题图可知第3天至第11天,复工复产指数都超过80%,故C 正确;第9天至第11天,复产指数的增量大于复工指数的增量,故D 正确.10.已知()*nx n ⎛+∈ ⎝N 的展开式中共有7项,则该二项展开式中()A.所有项的二项式系数和为64 B.所有项的系数和为1C.二项式系数最大的项为第4项 D.有理项共有4项10.答案:ACD解析:由题意知6n =,则6x ⎛⎝的展开式的通项为3666216C C (0,1,2,,6)2rr rr r r r T x x r --+===⋅ .对于A ,所有项的二项式系数和为6264=,故A 正确;对于B ,令1x =,得6613122⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,因此所有项的系数和为632⎛⎫⎪⎝⎭,不为1,故B 错误;对于C,由二项式系数的性质,可知6x ⎛⎝的展开式中第4项的二项式系数最大,为36C 20=,故C 正确;对于D ,当362r-∈Z ,即0,2,4,6r =时,对应的项为有理项,共有4项,故D 正确.故选ACD.11.[2023春·高二·江苏·期中联考]红、黄、蓝被称为三原色,选取任意几种颜色调配,可以调配出其他颜色.已知同一种颜色混合颜色不变,等量的红色加黄色调配出橙色,等量的红色加蓝色调配出紫色,等量的黄色加蓝色调配出绿色.现有红、黄、蓝颜料各2瓶,甲同学从6瓶中任取2瓶颜料,乙同学再从余下的4瓶中任取2瓶颜料,两人分别进行等量调配,A 表示事件“甲同学调配出红色”,B 表示事件“甲同学调配出绿色”,C 表示事件“乙同学调配出紫色”,则下列说法正确的是()A.1()15P A =B.1()4P C A =∣C.4()45P BC =D.事件B 与事件C 相互独立11.答案:AC解析:从6瓶中任取2瓶颜料的方法数为26C .对于A ,A 表示事件“甲同学调配出红色”,若调出红色,需要2瓶颜料均为红色,有22C 种方法,则2226C 1()C 15P A ==,故A 正确;对于B ,事件A 发生需要2瓶颜料均为红色,事件C 发生需要1瓶红色颜料和1瓶蓝色颜料,在事件A 发生的条件下,事件C 不可能发生,所以()0P CA =∣,故B 错误;对于C ,若事件B 发生,则甲同学取出1瓶黄色颜料和1瓶蓝色颜料,则112226C C 4()C 15P B ==,此时还剩1瓶黄色颜料和1瓶蓝色颜料,2瓶红色颜料,则1224C 1()C 3P C B ==∣,故414()()()15345P BC P B P C B =⨯=⨯=∣,故C 正确;对于D ,若事件C 发生,则乙取了1瓶红色颜料和1瓶蓝色颜料,甲同学取了至少1瓶黄色颜料或甲同学取了一瓶红色颜料和一瓶蓝色颜料,则21111111222242222264C C C C C C C C 4()C C 15P C ++==,444()()()151545P B P C P BC ⋅=⨯≠=,事件B 与事件C 不相互独立,故D 错误.故选AC.三、填空题12.一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等).若,,{1,2,3,4}a b c ∈,且a ,b ,c 互不相同,则这个三位数为“有缘数”的概率是_________.12.答案:12解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数有6个,由1,3,4组成的三位自然数有6个,由2,3,4组成的三位自然数有6个,共有24个三位自然数.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个.所以这个三位数为“有缘数”的概率121242P ==.13.已知随机变量X 有三个不同的取值,分别是0,1,x ,其中(0,1)x ∈,又1(0)4P X ==,1(1)4P X ==,则随机变量X 方差的最小值为__________.13.答案:18解析:由1(0)4P X ==,1(1)4P X ==,得1()2P X x ==,所以随机变量X 的数学期望21()4x E X +=,则方差222221123121111()42444442162x x x D X x ⎡⎤+--⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯=⨯-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.当12x =时,()D X 取到最小值18,故答案为18.14.[2023届·西北工业大学附中·模拟考试]将8张连号的门票分给5个家庭,甲家庭需要3张连号的门票,乙家庭需要2张连号的门票,剩余的3张门票随机分给其余的3个家庭,并且甲、乙两个家庭不能连排在一起(甲、乙两个家庭内部成员的顺序不予考虑),则这8张门票不同的分配方法有_________种.14.答案:72解析:设8张门票的编号分别为1,2,3,4,5,6,7,8.若甲选123,则乙可以是56,67,78共3种,此时共有333A 18=种;若甲选234,则乙可以是67,78共2种,此时共有332A 12=种;若甲选345,则乙可以是78共1种,此时共有33A 6=种;若甲选456,则乙可以是12共1种,此时共有33A 6=种;若甲选567,则乙可以是12,23共2种,此时共有332A 12=种;若甲选678,则乙可以是12,23,34共3种,此时共有333A 18=种.综上所述,不同的分配方法有181266121872+++++=种.四、解答题15.[2024春·高一·青海西宁·期末]为了解学生的周末学习时间(单位:小时),高一年级某班班主任对本班40名学生某周末的学习时间进行了调查,将所得数据整理绘制出如图所示的频率分布直方图.根据直方图所提供的信息:(1)用分层抽样的方法在[)20,25和[]25,30中共抽取6人成立学习小组,再从该小组派3人接受检测,求检测的3人来自同一区间的概率;(2)估计这40名同学周末学习时间的25%分位数.15.答案:(1)1 5 ;(2)8.75小时.解析:(1)由图可知,40名学生中周末的学习时间在[)20,25的人数为0.035406⨯⨯=人,周末的学习时间在[]25,30的人数为0.0155403⨯⨯=人,从中用分层抽样抽取6人,则周末的学习时间在[)20,25的有4人,记为A,B,C,D;周末的学习时间在[]25,30的有2人,记为a,b;则再从中选派3人接受检测的基本事件有ABC,ABD,ABa,ABb,ACD,ACa,ACb, ADa,ADb,Aab,BCD,BCa,BCb,BDa,BDb,Bab,CDa,CDb,Cab,Dab共有20个,其中检测的3人来自同一区间的基本事件有ABC,ABD,ACD,BCD共有4个,所以检测的3人来自同一区间的概率41205 P==;(2)学习时间在5小时以下的频率为0.0250.10.25⨯=<,学习时间在10小时以下的频率为0.10.0450.30.25+⨯=>,所以25%分位数在区间[)5,10内,则0.250.1 558.750.30.1-+⨯=-,所以这40名同学周末学习时间的25%分位数为8.75小时.16.[2024春·高二·宁夏石嘴山·月考校考]2020年,是人类首次成功从北坡登顶珠峰60周年,也是中国首次精确测定并公布珠峰高程的45周年.华为帮助中国移动开通珠峰峰顶5G ,有助于测量信号的实时开通,为珠峰高程测量提供通信保障,也验证了超高海拔地区5G 信号覆盖的可能性,在持续高风速下5G 信号的稳定性,在条件恶劣地区通过简易设备传输视频信号的可能性.正如任总在一次采访中所说:“华为公司价值体系的理想是为人类服务.”有人曾问,在珠峰开通5G 的意义在哪里?“我认为它是科学技术的一次珠峰登顶,告诉全世界,华为5G 、中国5G 的底气来自哪里.现在,5G 的到来给人们的生活带来更加颠覆性的变革,某IT 公司基于领先技术的支持,5G 经济收入在短期内逐月攀升,该IT 公司在1月份至6月份的5G 经济收入y (单位:百万元)关于月份x 的数据如下表所示,并根据数据绘制了如图所示的散点图.月份x 123456收入y (百万元)6.68.616.121.633.041.0(1)根据散点图判断,y ax b =+与e dx y c =⋅(a ,b ,c ,d 均为常数)哪一个更适宜作为5G 经济收入y 关于月份x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的结果及表中的数据,求出y 关于x 的回归方程,并预测该公司7月份的5G 经济收入.(结果保留小数点后两位)(3)从前6个月的收入中抽取2个,记收入超过20百万元的个数为X ,求X 的分布列和数学期望.参考数据:x yu 621()i i x x =-∑61()()iii x x y y =--∑61()()iii x x uu =--∑ 1.52e 2.66e 3.5021.15 2.8517.70125.35 6.734.5714.30其中,设ln u y =,ln i i u y =(1,2,3,4,5,6i =).参考公式:对于一组具有线性相关关系的数据(),(21,2,3,,)i i x v n = ,其回归直线ˆˆˆvx βα=+的斜率和截距的最小二乘估计公式分别为()()()121ˆniii Ri i x x v v x x β==--=-∑∑,ˆˆv x αβ=-16.答案:(1)e dx y c =⋅更适宜(2) 1.520.38e ˆx y +=,65.35百万元(3)分布列见解析,1解析:(1)根据散点图判断,e dx y c =更适宜作为5G 经济收入y 关于月份x 的回归方程类型;(2)因为e dx y c =,所以两边同时取常用对数,得ln ln y c dx =+,设ln u y =,所以ln u c dx =+,因为 3.50x =, 2.85u =,所以61621()( 6.73ˆ0.380,17.70(iii ii x x u u dx x ==--==≈-∑∑所以ˆln 2.850.380 3.50 1.52c u dx=-≈-⨯=.所以ˆ 1.520.38u x =+,即ˆln 1.520.38y x =+,所以 1.520.38e ˆx y +=.令7x =,得 1.520.387 1.52 2.66ˆe e e 4.5714.3065.35y +⨯==⨯≈⨯≈,故预测该公司7月份的5G 经济收入大约为65.35百万元.(3)前6个月的收入中,收入超过20百万元的有3个,所以X 的取值为0,1,2,2326C 1(0)C 5P X ===,113326C C 3(1)C 5P X ===,2326C 1(2)C 5P X ===,所以X 的分布列为:X 012P153515所以()1310121555E X =⨯+⨯+⨯=.17.[2024春·高三·内蒙古赤峰·开学考试校考]卫生纸主要供人们生活日常卫生之用,是人民群众生活中不可缺少的纸种之一.某品牌卫生纸生产厂家为保证产品的质量,现从甲、乙两条生产线生产的产品中各随机抽取500件进行品质鉴定,并将统计结果整理如下:合格品优等品甲生产线250250乙生产线300200(1)判断能否有99.9%的把握认为产品的品质与生产线有关;(2)用频率近似为概率,从甲、乙两条生产线生产的产品中各随机抽取2件进行详细检测,记抽取的产品中优等品的件数为X ,求随机变量X 的分布列与数学期望.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d=+++()20P K k ≥0.100.050.0250.0100.0010k 2.7069.8415.0246.63510.82817.答案:(1)没有;(2)分布列见解析,95解析:(1)补充列联表如下:合格品优等品总计甲生产线250250500乙生产线300200500总计5504501000根据列联表中的数据,经计算得到221000(250200250300)10.10110.828550450500500K ⨯⨯-⨯=≈<⨯⨯⨯,所以没有99.9%的把握认为产品的品质与生产线有关.(2)由题意,甲生产线生产的产品中抽取优等品的频率为25015002=,乙生产线生产的产品中抽取优等品的频率为20025005=,所以估计从甲、乙生产线生产的产品中各随机抽取优等品的概率分别为12,25,由题意随机变量X 的所有可能取值是0,1,2,3,4,()22139025100P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()22211221312331C C 2525510P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2222211221313212372C C 2525525100P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯⨯⨯⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()22211221212313C C 252555P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2212142525P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,故X 的分布列为:X 01234P91003103710015125所以X 的期望()933711901234100101003255E X =⨯+⨯+⨯+⨯+⨯=.18.[2024春·高二·福建宁德·期末]毒品是人类的公敌,禁毒是社会的责任,当前宁德市正在创建全国禁毒示范城市,我市组织学生参加禁毒知识竞赛,为了解学生对禁毒有关知识的掌握情况,采用随机抽样的方法抽取了500名学生进行调查,成绩全部分布在75145~分之间,根据调查结果绘制的学生成绩的频率分布直方图如图所示.(1)求频率分布直方图中a 的值;(2)由频率分布直方图可认为这次全市学生的竞赛成绩X 近似服从正态分布()2,N μσ,其中μ为样本平均数(同一组数据用该组数据的区间中点值作代表),13.σ=现从全市所有参赛的学生中随机抽取10人进行座谈,设其中竞赛成绩超过135.2分的人数为Y ,求随机变量Y 的期望.(结果精确到0.01);(3)全市组织各校知识竞赛成绩优秀的同学参加总决赛,总决赛采用闯关的形式进行,共有20个关卡,每个关卡的难度由计算机根据选手上一关卡的完成情况进行自动调整,第二关开始,若前一关未通过,则其通过本关的概率为12;若前一关通过,则本关通过的概率为13,已知甲同学第一关通过的概率为13,记甲同学通过第n 关的概率为n P ,请写出n P 的表达式,并求出n P 的最大值.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈.18.答案:(1)0.012;(2)0.23;(3)13217216n n P -⎛⎫=+ ⎪⎝⎭,n P 的最大值为49.解析:(1)由频率分布直方图,得()100.0050.0190.030.020.0021a a ⨯++++++=,解得0.012a =.(2)由题意得:800.05900.121000.191100.3μ=⨯+⨯+⨯+⨯1200.21300.121400.02109.2+⨯+⨯+⨯=,()2109.2,13X N ~,()()()122135.220.022752P X P X P X μσμσμσ--<≤+>=>+=≈,()10,0.02275Y B ~,()0.22750.23E Y np ==≈.(3)记甲同学第()*n n ∈N 关通过为事件n A ,依题意,113P =,当2n ≥时,()113n n P A A -=,()112n n P A A -=,()n n P P A =,所以()()()()()1111n n n n n n n P A P A P A A P A P A A ----=+,所以()111111113262n n n n P P P P ---=+-=-+,所以1313767n n P P +⎛⎫-=- ⎪⎝⎭,又因为113P =,则1320721P -=-≠,所以数列37n P ⎧⎫-⎨⎬⎩⎭是首项为221-,公比为16-的等比数列,所以13217216n n P -⎛⎫=-- ⎪⎝⎭,当n 为奇数时,113213213721672167n n n P --⎛⎫⎛⎫=--=-<⎪⎪⎝⎭⎝⎭,当n 为偶数时,13217216n n P -⎛⎫=+ ⎪⎝⎭,则n P 随着n 的增大而减小,所以,249n P P ≤=,又4397>,所以n P 的最大值为49.19.[2024春·高二·江苏南通·月考校考]篮球运动是在1891年由美国马萨诸塞州斯普林尔德市基督教青年会训练学校体育教师詹姆士·奈史密斯博士,借鉴其他球类运动项目设计发明的.起初,他将两只桃篮钉在健身房内看台的栏杆上,桃篮上沿离地面约3.05米,用足球作为比赛工具,任何一方在获球后,利用传递、运拍,将球向篮内投掷,投球入篮得一分,按得分多少决定比赛胜负.在1891年的12月21日,举行了首次世界篮球比赛,后来篮球界就将此日定为国际篮球日.甲、乙两人进行投篮,比赛规则是:甲、乙每人投3球,进球多的一方获得胜利,胜利1次,则获得一个积分,平局或者输方不得分.已知甲和乙每次进球的概率分别是12和p ,且每人、每次进球与否都互不影响.(1)若23p =,求在进行一轮比赛后甲比乙多投进2球的概率;(2)若1223p ≤≤,且每轮比赛互不影响,乙要想至少获得3个积分且每轮比赛至少要超甲2个球,求:①设事件C 表示乙每轮比赛至少要超甲2个球,求()P C ;(结果用含p 的式子表示)②从数学期望的角度分析,理论上至少要进行多少轮比赛?19.答案:(1)124;(2)①321388p p +;②15解析:(1)设事件i A 表示甲在一轮比赛中投进i 个球,i B 表示乙在一轮比赛中投进i 个球,()0123i =,,,,D 表示进行一轮比赛后甲比乙多投进2球所以2031D A B A B =+()()()2031P D P A B P A B =+2332203133331111211C C C C 22323324⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⨯⨯⨯⨯⎭⎝⎭⎝⎭(2)①()()()()203031P C P B A P B A P B A =++()3332231323311113C 1C 22288p p p p p ⎛⎫⎛⎫⎛⎫=-⨯++⎡⎤⎢⎥⎢⎥=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎣⎭⎦⎝;②设随机变量X 表示n 轮比赛后,乙在每轮比赛至少要超甲2个球的情况下获得的积分,则有3213,88X B n p p ⎛⎫~+ ⎪⎝⎭,故()321388E X n p p ⎛⎫=+ ⎪⎝⎭,要满足题意,则()3E X ≥,即3213388n p p ⎛⎫+≥ ⎪⎝⎭,又12,23p ⎡⎤∈⎢⎥⎣⎦,故3231388n p p ≥+,令()321388f x x x =+,12,23x ⎡⎤∈⎢⎥⎣⎦,则()()3208f x x x '=+>在12,23⎡⎤⎢⎥⎣⎦恒成立,即()f x 在12,23⎡⎤⎢⎥⎣⎦上单调递增,故()f x 的最大值为211354f ⎛⎫=⎪⎝⎭,即321388p p +的最大值为1154,于是,3231388p p +的最小值为16211,因162141511<<,故理论上至少要进行15轮比赛.。

2023新高考数学专题 概率(知识点讲解)

2023新高考数学专题 概率(知识点讲解)

2023新高考数学专题概率(知识点讲解)
以下为2023年新高考数学中概率知识点讲解,包括概率、数学期望和独立事件的定义与计算,以及确定性现象与随机现象的概念等。

一、概率的定义和性质
1. 确定性现象:在自然界中一定发生的现象称为确定性现象。

2. 样本点:构成样本空间的元素,即e中的每个结果,称为样本点。

3. 频数:事件a发生的次数。

4. 频率:频数/总数。

5. 概率:当重复试验的次数n逐渐增大,频率值就会趋于某一稳定值,这
个值就是概率。

概率的特点有:非负性、规范性和可列可加性。

6. 概率性质:p(空集)=0,有限可加性,加法公式:p(a+b)=p(a)
+p(b)-p(ab)。

7. 条件概率:a事件发生条件下b发生的概率p(ba)=p(ab)/p(a)。

8. 独立事件:设 a、b是两事件,如果满足等式p(ab)=p(a)p(b)则称事件a、b相互独立,简称a、b独立。

二、数学期望的含义和计算
数学期望反映了离散型随机变量取值的平均水平。

数学期望又简称期望。

若离散型随机变量ξ的概率分布为则称Eξ为ξ的数学期望或平均数、均值。

数学期望的计算方式如下:
1. 当0=a时,bE=,即常数的数学期望就是这个常数本身。

2. 当1=a时, bEbE+=+ξξ), 即随机变量ξ与常数之和的期望等于ξ的期望与常数的和。

以上内容仅供参考,建议查阅新高考数学专题复习资料获取更全面和准确的信息,以适应新高考的题型变化。

2023年高考数学客观题专题四 概率与统计

2023年高考数学客观题专题四 概率与统计

合计
a+c
b+d
n=a+b+c+d
统计中有一个有用的(读做“卡方”)统计量,它的表达式是:
2
n
(
ad

bc
)
K2 k
(a b)(c d )(a c)(b d )
经过对统计量分布的研究,已经得到了两个临界值:3.841与
6.635.
当根据具体的数据算出的k>3.841时,有95%的把握说事件A与
(A1,A2,B1),(A1,A3,B1),(A2,A3,B1),(A1,A2,B2),(A1,A3,B2),(A2,A3,B
2),(A1,B1,B2),(A2,B1,B2),(A3,B1,B2)共9种.
9
故P(M)=10.故选D.
2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位
同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣
②每个基本事件出现的可能性相等.
五、两个变量的线性相关
1.两个相关变量数据的散点图,会利用散点图认识变量的相关
关系.
2.求回归直线方程:



b
y a bx, 其中



n
n
( x x)( y y) x y nx y
i
i 1
i

n
( x x)
i 1
2
2
2
(
x

x
)

(
x

x
)

...

(
x

x
)
2
n
样本方差计算公式: s 2 1

专题17 概率-2023年高考数学真题题源解密(新高考)(解析版)

专题17  概率-2023年高考数学真题题源解密(新高考)(解析版)

专题17 概率目录一览2023真题展现考向一概率考向二离散型随机变量及其分布列真题考查解读近年真题对比考向一概率考向二离散型随机变量及其分布列考向三正太分布命题规律解密名校模拟探源易错易混速记/二级结论速记考向一概率1.(多选)(2023•新高考Ⅱ•第12题)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1﹣α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1﹣β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1)( )A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1﹣α)(1﹣β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1﹣β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1﹣β)2+(1﹣β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率【答案】ABD解:采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为:(1﹣β)(1﹣α)(1﹣β)=(1﹣α)(1﹣β)2,故A正确;采用三次传输方案,若发送1,依次收到1,0,1的概率为:(1﹣β)β(1﹣β)=β(1﹣β)2,故B正确;采用三次传输方案,若发送1,则译码为1包含收到的信号为包含两个1或3个1,故所求概率为:C23β(2−β)2+(1−β)3,故C错误;三次传输方案发送0,译码为0的概率P1=C23α(1−α)2+(1−α)3,单次传输发送0译码为0的概率P2=1﹣α,P2−P1=(1−α)−C23α(1−α)2−(1﹣α)3=(1−α)[1−C23α(1−α)−(1−α)2]=(1﹣α)(2α2﹣α)=(1﹣α)α(2α﹣1),当0<α<0.5时,P2﹣P1<0,故P2<P1,故D正确.考向二离散型随机变量及其分布列2.(2023•新高考Ⅰ•第21题)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i次投篮的人是甲的概率;(3)已知:若随机变量X i服从两点分布,且P(X i=1)=1﹣P(X i=0)=q i,i=1,2,⋯,n,则E(ni=1X i)=ni=1q i.记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,求E(Y).【解答】解:(1)设第2次投篮的人是乙的概率为P,由题意得P=0.5×0.4+0.5×0.8=0.6;(2)由题意设P n为第n次投篮的是甲,则P n+1=0.6P n+0.2(1﹣P n)=0.4P n+0.2,∴P n+1−13=0.4(P n−13),又P1−13=12−13=16≠0,则{P n−13}是首项为16,公比为0.4的等比数列,∴P n−13=16×(25)n﹣1,即P n=13+16×(25)n﹣1,∴第i次投篮的人是甲的概率为P i=13+16×(25)i﹣1;(3)由(2)得P i=13+16×(25)i﹣1,由题意得甲第i次投篮次数Y i服从两点分布,且P(Y i=1)=1﹣P(Y i=0)=P i,∴E(ni=1Y i)=E(Y)=ni=1P i,∴当n≥1时,E(Y)=ni=1P i=1(25)i−1+n3=16[1−(25)n]1−25+n3=518[1﹣(25)n]+n3;当n =0时,E (Y )=0=518[1﹣(25)0]+03,综上所述,E (Y )=518[1﹣(25)n ]+n3,n ∈N .【命题意图】概率、随机变量的分布列与数学期望.【考查要点】概率多为小题。

新课标全国卷2023届高考理科数学大单元二轮复习讲重难专题八概率与统计第一讲排列组合与二项式定理课件

新课标全国卷2023届高考理科数学大单元二轮复习讲重难专题八概率与统计第一讲排列组合与二项式定理课件

第二步,增播一个商业广告,共 3 个广告,排好有 A33 6 种,
第三步,在
2
个空中,插入两个不同的公益宣传广告,有
A
2 2
2
种方法,
根据乘法原理,共有1062 120 种方法.故选 B.
2.如图所示,用不同的五种颜色分别为 A,B,C,D,E 五部分着色,相邻部分不能用同一种
颜色,但同一种颜色可以反复使用,也可不使用,则复合这些要求的不同着色的方法共有( )
不同点
的每种方法都能独立完成这件事 步骤都完成才算完成这件事情,
情,要注意“类”与“类”之间的独立 要 注 意 “步 ”与 “步 ” 之间的 连续
性和并列性.分类计数原理可利用 性.分步计数原理可利用“串联”
“并联”电路来理解
电路来理解
解题技巧
两个计数原理的应用技巧 (1) 在应用分类加法计数原理和分步乘法计数原理时, 一般先分类再分步,每一步当中又可能用到分类加法计数原理. (2) 对于复杂的两个计数原理综合应用的问题,可恰当列出示意图或表格, 使问题形象化、直观化.
解答排列组合问题的常用方法 排列组合问题从解法上看,大致有以下几种: (1) 有附加条件的排列组合问题,大多需要用分类讨论的方法, 注意分类时应不重不漏; (2)排列与组合的混合型问题,用分类加法或分步乘法计数原理解决; (3)元素相邻,可以看作是一个整体的方法;
解题技巧
(4)元素不相邻,可以利用插空法; (5)间接法,把不符合条件的排列与组合剔除掉; (6)穷举法,把符合条件的所有排列或组合一一写出来; (7)定序问题缩倍法; (8)“小集团”问题先整体后局部法.
A.500 种
B.520 种
√C.540 种
D.560 种

2023年全国各地高考数学真题+详解分类汇编【第7章 统计与概率合集】高清解析版

2023年全国各地高考数学真题+详解分类汇编【第7章 统计与概率合集】高清解析版

第7章统计与概率1(2023•上海)如图为2017-2021年上海市货物进出口总额的条形统计图,则下列对于进出口贸易额描述错误的是()A.从2018年开始,2021年的进出口总额增长率最大B.从2018年开始,进出口总额逐年增大C.从2018年开始,进口总额逐年增大D.从2018年开始,2020年的进出口总额增长率最小【解析】:显然2021年相对于2020年进出口额增量增加特别明显,故最后一年的增长率最大,A对;统计图中的每一年条形图的高度逐年增加,故B对;2020年相对于2019的进口总额是减少的,故C错;显然进出口总额2021年的增长率最大,而2020年相对于2019年的增量比2019年相对于2018年的增量小,且计算增长率时前者的分母还大,故2020年的增长率一定最小,D正确.故选:C.2(2023•上海)现有某地一年四个季度的GDP(亿元),第一季度GDP为232(亿元),第四季度GDP 为241(亿元),四个季度的GDP逐季度增长,且中位数与平均数相同,则该地一年的GDP为.【解析】:设第二季度GDP为x亿元,第三季度GDP为y亿元,则232<x<y<241,∵中位数与平均数相同,∴x+y2=232+x+y+2414,∴x+y=473,∴该地一年的GDP为232+x+y+241=946(亿元).故答案为:946(亿元).3(2023•上海)某校抽取100名学生测身高,其中身高最大值为186cm,最小值为154cm,根据身高数据绘制频率组距分布直方图,组距为5,且第一组下限为153.5,则组数为.【解析】:极差为186-154=32,组距为5,且第一组下限为153.5,325=6.4,故组数为7组,故答案为:7.4(多选)(2023•新高考Ⅰ)有一组样本数据x 1,x 2,⋯,x 6,其中x 1是最小值,x 6是最大值,则()A.x 2,x 3,x 4,x 5的平均数等于x 1,x 2,⋯,x 6的平均数B.x 2,x 3,x 4,x 5的中位数等于x 1,x 2,⋯,x 6的中位数C.x 2,x 3,x 4,x 5的标准差不小于x 1,x 2,⋯,x 6的标准差D.x 2,x 3,x 4,x 5的极差不大于x 1,x 2,⋯,x 6的极差【解析】:A 选项,x 2,x 3,x 4,x 5的平均数不一定等于x 1,x 2,⋯,x 6的平均数,A 错误;B 选项,x 2,x 3,x 4,x 5的中位数等于x 3+x 42,x 1,x 2,⋯,x 6的中位数等于x 3+x 42,B 正确;C 选项,设样本数据x 1,x 2,⋯,x 6为0,1,2,8,9,10,可知x 1,x 2,⋯,x 6的平均数是5,x 2,x 3,x 4,x 5的平均数是5,x 1,x 2,⋯,x 6的方差s 21=16×[(0-5)2+(1-5)2+(2-5)2+(8-5)2+(9-5)2+(10-5)2]=503,x 2,x 3,x 4,x 5的方差s 22=14×[(1-5)2+(2-5)2+(8-5)2+(9-5)2]=252,s 21>s 22,∴s 1>s 2,C 错误.D 选项,x 6>x 5,x 2>x 1,∴x 6-x 1>x 5-x 2,D 正确.故选:BD .5(2023•天津)调查某种花萼长度和花瓣长度,所得数据如图所示,其中相关系数r =0.8245,下列说法正确的是()A.花瓣长度和花萼长度没有相关性B.花瓣长度和花萼长度呈现负相关C.花瓣长度和花萼长度呈现正相关D.若从样本中抽取一部分,则这部分的相关系数一定是0.8245【解析】:∵相关系数r =0.8245>0.75,且散点图呈左下角到右上角的带状分布,∴花瓣长度和花萼长度呈正相关.若从样本中抽取一部分,则这部分的相关系数不一定是0.8245.故选:C .6(2023•乙卷)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.13【解析】:某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,甲、乙两位参赛同学构成的基本事件总数n =6×6=36,其中甲、乙两位参赛同学抽到不同主题包含的基本事件个数m =A 26=30,则甲、乙两位参赛同学抽到不同主题概率为P =mn=3036=56.故选:A .7(2023•甲卷)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.23【解析】:某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n =C 24=6,这2名学生来自不同年级包含的基本事件个数m =C 12C 12=4,则这2名学生来自不同年级的概率为P =m n =46=23.故选:D .8(2023•全国)在2、3、5、6中任选2个不同数字,其乘积能被3整除的概率为()A.16B.17C.13D.56【解析】:在2、3、5、6中任选2个不同数字,基本事件总数n =C 24=6,其乘积能被3整除a 的基本事件有5个,分别为:(2,3),(2,6),(3,5),(3,6),(5,6),则其乘积能被3整除的概率为56.故选:D .9(2023•天津)甲、乙、丙三个盒子中装有一定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为 ;将三个盒子混合后任取一个球,是白球的概率为 .【解析】:设盒子中共有球15n 个,则甲盒子中有黑球2n 个,白球3n 个,乙盒子中有黑球n 个,白球3n 个,丙盒子中有黑球3n 个,白球3n 个,从三个盒子中各取一个球,取到的三个球都是黑球的概率为2n 5n ×n 4n ×3n 6n =120;将三个盒子混合后任取一个球,是白球的概率9n 15n =35.故答案为:120;35.10(2023•甲卷)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.1【解析】:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A ,报乒乓球俱乐部为事件B ,则P (A )=5070=57,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60-70=40人,则P (AB )=4070=47,则P (B |A )=P (AB )P (A )=4757=0.8.故选:A .11(2023•上海)已知事件A 的对立事件为A ,若P (A )=0.5,则P (A )=.【解析】:事件A 的对立事件为A ,若P (A )=0.5,则P (A)=1-0.5=0.5.故答案为:0.5.12(2023•上海)为了学习宣传党的二十大精神,某校学生理论宣讲团赴社区宣讲,已知有4名男生,6名女生,从10人中任选3人,则恰有1名男生2名女生的概率为.【解析】:从10人中任选3人的事件个数为C 310=10×9×83×2×1=120,恰有1名男生2名女生的事件个数为C 14C 26=4×6×52×1=60,则恰有1名男生2名女生的概率为60120=0.5.故答案为:0.5.13(多选)(2023•新高考Ⅱ)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1)()A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率【解析】:采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为:(1-β)(1-α)(1-β)=(1-α)(1-β)2,故A 正确;采用三次传输方案,若发送1,依次收到1,0,1的概率为:(1-β)β(1-β)=β(1-β)2,故B 正确;采用三次传输方案,若发送1,则译码为1包含收到的信号为包含两个1或3个1,故所求概率为:C 23β(2-β)2+(1-β)3,故C 错误;三次传输方案发送0,译码为0的概率P 1=C 23α(1-α)2+(1-α)3,单次传输发送0译码为0的概率P 2=1-α,P 2-P 1=(1-α)-C 23α(1-α)2-(1-α)3=(1-α)[1-C 23α(1-α)-(1-α)2]=(1-α)(2α2-α)=(1-α)α(2α-1),当0<α<0.5时,P 2-P 1<0,故P 2<P 1,故D 正确.故选:ABD .14(2023•乙卷)设O 为平面坐标系的坐标原点,在区域{(x ,y )|1≤x 2+y 2≤4}内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18 B.16 C.14 D.12【解析】:如图,PQ 为第一象限与第三象限的角平分线,根据题意可得构成A 的区域为圆环,而直线OA 的倾斜角不大于π4的点A 构成的区域为图中阴影部分,∴所求概率为28=14.故选:C .。

专题16 统计-2023年高考数学真题题源解密(新高考)(解析版)

专题16 统计-2023年高考数学真题题源解密(新高考)(解析版)

专题16 统计目录一览2023真题展现考向一样本的数字特征考向二频率分布直方图真题考查解读近年真题对比考向一样本的数字特征考向二频率分布直方图考向三独立性检验命题规律解密名校模拟探源易错易混速记/二级结论速记考向一样本的数字特征1.(多选)(2023•新高考Ⅰ•第9题)有一组样本数据x1,x2,⋯,x6,其中x1是最小值,x6是最大值,则( )A.x2,x3,x4,x5的平均数等于x1,x2,⋯,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,⋯,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,⋯,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,⋯,x6的极差【答案】BD解:A选项,x2,x3,x4,x5的平均数不一定等于x1,x2,⋯,x6的平均数,A错误;B选项,x2,x3,x4,x5的中位数等于x3x42,x1,x2,⋯,x6的中位数等于x3x42,B正确;C选项,设样本数据x1,x2,⋯,x6为0,1,2,8,9,10,可知x1,x2,⋯,x6的平均数是5,x2,x3,x4,x5的平均数是5,x1,x2,⋯,x6的方差s12=16×[(0﹣5)2+(1﹣5)2+(2﹣5)2+(8﹣5)2+(9﹣5)2+(10﹣5)2]=50,x2,x3,x4,x5的方差s22=14×[(1﹣5)2+(2﹣5)2+(8﹣5)2+(9﹣5)2]=252,s12>s22,∴s1>s2,C错误.D选项,x6>x5,x2>x1,∴x6﹣x1>x5﹣x2,D正确.考向二频率分布直方图2.(2023•新高考Ⅱ•第19题)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将未患病者判定为阳性的概率,记为q(c).假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率p(c)=0.5%时,求临界值c和误诊率q(c);(2)设函数f(c)=p(c)+q(c).当c∈[95,105],求f(c)的解析式,并求f(c)在区间[95,105]的最小值.解:(1)当漏诊率p(c)=0.5%时,则(c﹣95)•0.002=0.5%,解得c=97.5;q(c)=0.01×2.5+5×0.002=0.035=3.5%;(2)当c∈[95,100]时,f(c)=p(c)+q(c)=(c﹣95)•0.002+(100﹣c)•0.01+5×0.002=﹣0.008c+0.82≥0.02,当c∈(100,105]时,f(c)=p(c)+q(c)=5×0.002+(c﹣100)•0.012+(105﹣c)•0.002=0.01c﹣0.98>0.02,故f(c)=−0.008c+0.82,95≤c≤100 0.01c−0.98,100<c≤105,所以f(c)的最小值为0.02.【命题意图】考查样本的数字特征、频率分布直方图、相关性、独立性检验.【考查要点】考查相关性、频率分布直方图、样本的数字特征、独立性检验、回归分析等.考查学生读取数据、分析数据、处理数据的能力.【得分要点】1.众数、中位数、平均数(1)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.(2)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(x1+x2+⋯+x n).(3)平均数:一组数据的算术平均数,即x=1n2.频率分布直方图(1)频率分布直方图:在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中的各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图.(2)频率分布直方图的特征①各长方形面积等于相应各组的频率的数值,所有小矩形面积和为1.②从频率分布直方图可以清楚地看出数据分布的总体趋势.③从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息被抹掉.(3)频率分布直方图求数据①众数:频率分布直方图中最高矩形的底边中点的横坐标.②平均数:频率分布直方图各小矩形的面积乘底边中点的横坐标之和.③中位数:把频率分布直方图分成两个面积相等部分的平行于y轴的直线横坐标.3.极差、方差与标准差(1)①用一组数据中最大数据减去最小数据的差来反映这组数据的变化范围,这个数据就叫极差.②一组数据中各数据与平均数差的平方和的平均数叫做方差.③方差的算术平方根就为标准差.(2)方差和标准差都是反映这组数据波动的大小,方差越大,数据的波动越大.4.独立性检验(1)分类变量: 如果某种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.(2)原理:假设性检验.一般情况下:假设分类变量X 和Y 之间没有关系,通过计算K 2值,然后查表对照相应的概率P ,发现这种假设正确的概率P 很小,从而推翻假设,最后得出X 和Y 之间有关系的可能性为(1﹣P ),也就是“X 和Y 有关系”.(表中的k 就是K 2的观测值,即k =K 2).利用随机变量2K (也可表示为2χ)2()()()()()n ad bc a b c d a c b d -=++++(其中n a b c d =+++为样本容量)来判断“两个变量有关系”的方法称为独立性检验.(3)2×2列联表:设X ,Y 为两个变量,它们的取值分别为12{}x x ,和12{}y y ,,其样本频数列联表(22⨯列联表)如下:1y 2y 总计1x a b a b +2x cd c d+总计a c+b d+a b c d+++(4)范围:K 2∈(0,+∞);性质:K 2越大,说明变量间越有关系.(5)解题步骤:①认真读题,取出相关数据,作出2×2列联表;②根据2×2列联表中的数据,计算K 2的观测值k ;③通过观测值k 与临界值k 0比较,得出事件有关的可能性大小.考查相关性、频率分布直方图、样本的数字特征、独立性检验、回归分析等.考查形式以多选题和解答题为主。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023全国高考数学统计与概率专题
引言
本文档旨在提供2023全国高考数学统计与概率专题的概述和重点内容。

通过对该专题的了解,学生可以更好地准备和应对高考数学考试。

一、概率计算
1. 确定事件的概率:介绍如何计算事件的概率,包括基本事件和复合事件。

2. 概率分布函数:讲解离散型随机变量和连续型随机变量的概率分布函数。

3. 期望值的计算:介绍如何计算离散型和连续型随机变量的期望值,包括线性期望值的性质。

二、统计推断
1. 抽样方法:介绍简单随机抽样、整群抽样和分层抽样等常用的抽样方法。

2. 参数估计:讨论点估计和区间估计的概念和计算方法,包括样本均值和样本方差的估计。

3. 假设检验:介绍如何进行假设检验,包括设立假设、选择显著性水平和计算检验统计量。

三、相关性和回归分析
1. 相关系数:介绍相关系数的概念和计算方法,包括皮尔逊相关系数和斯皮尔曼相关系数。

2. 线性回归分析:讲解线性回归的原理和应用,包括最小二乘法的计算和回归方程的确定。

结论
本文档简要介绍了2023全国高考数学统计与概率专题的主要内容,包括概率计算、统计推断和相关性回归分析。

学生们可以结合此文档进行针对性的复习和备考,以提高数学成绩。

祝各位同学取得优异的成绩!。

相关文档
最新文档