基于单片机的动力电池管理系统的硬件设计

基于单片机的动力电池管理系统的硬件设计
基于单片机的动力电池管理系统的硬件设计

最新单片机硬件系统设计原则

单片机硬件系统设计 原则

●单片机硬件系统设计原则 ●一个单片机应用系统的硬件电路设计包含两部分内容:一是系统扩展,即单片机内部的功能单 元,如ROM、RAM、I/O、定时器/计数器、中断系统等不能满足应用系统的要求时,必须在片外进行扩展,选择适当的芯片,设计相应的电路。二是系统的配置,即按照系统功能要求配置外围设备,如键盘、显示器、打印机、A/D、D/A转换器等,要设计合适的接口电路。 ●系统的扩展和配置应遵循以下原则: ● 1、尽可能选择典型电路,并符合单片机常规用法。为硬件系统的标准化、模块化打下良好的基 础。 ● 2、系统扩展与外围设备的配置水平应充分满足应用系统的功能要求,并留有适当余地,以便进行 二次开发。 ● 3、硬件结构应结合应用软件方案一并考虑。硬件结构与软件方案会产生相互影响,考虑的原则 是:软件能实现的功能尽可能由软件实现,以简化硬件结构。但必须注意,由软件实现的硬件功能,一般响应时间比硬件实现长,且占用CPU时间。 ● 4、系统中的相关器件要尽可能做到性能匹配。如选用CMOS芯片单片机构成低功耗系统时,系统 中所有芯片都应尽可能选择低功耗产品。 ● 5、可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷 电路板布线、通道隔离等。 ● 6、单片机外围电路较多时,必须考虑其驱动能力。驱动能力不足时,系统工作不可靠,可通过增 设线驱动器增强驱动能力或减少芯片功耗来降低总线负载。 ● 7、尽量朝“单片”方向设计硬件系统。系统器件越多,器件之间相互干扰也越强,功耗也增大, 也不可避免地降低了系统的稳定性。随着单片机片内集成的功能越来越强,真正的片上系统SoC已经可以实现,如ST公司新近推出的μPSD32××系列产品在一块芯片上集成了80C32核、大容量FLASH 存储器、SRAM、A/D、I/O、两个串口、看门狗、上电复位电路等等。 ●单片机系统硬件抗干扰常用方法实践 ●影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结 构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。 ●形成干扰的基本要素有三个: ●(1)干扰源。指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt大的地 方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 ●(2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线 的传导和空间的辐射。 ●(3)敏感器件。指容易被干扰的对象。如:A/D、 D/A变换器,单片机,数字IC,弱信号放大器 等。 ● 1 干扰的分类 ● 1.1 干扰的分类 ●干扰的分类有好多种,通常可以按照噪声产生的原因、传导方式、波形特性等等进行不同的分 类。按产生的原因分: ●可分为放电噪声音、高频振荡噪声、浪涌噪声。 ●按传导方式分:可分为共模噪声和串模噪声。 ●按波形分:可分为持续正弦波、脉冲电压、脉冲序列等等。 ● 1.2 干扰的耦合方式

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

电池管理系统软件设计

电池管理系统软件设计 本电池管理系统的软件主要包括三个部分:数据采集与控制部分、中央处理单元的管理部分、整个系统的CAN 通讯部分。从软件载体上分为:控制器程序和与之相配套的监视软件。 1.1 数据采集与控制部分 1.1.1 数据采集程序 数据采集系统在硬件上由片外独立A/D(TLC2543)和S12 片内A/D 模块组成,数据采集 统程序需要分两块处理。数据采集的频率是每10ms 一次刷新一次数据。 1)片外独立A/D(TLC2543)采集程序。该部分负责对电流、电压模拟量的转换,考虑到硬件上采用浮地技术,故需要I/O 口控制电子开关矩阵,以配合TLC2543的通道选择,完成电流、电压数据的采集。 2)S12 片内A/D 模块采集程序。该部分负责对温度模拟量的转换,由于温度模拟量物理信号直接与S12 的端口连

接,程序上只需要对A/D 模块的相关寄存器配置好(如位数、时钟频率、数据对齐方式等),便完成初始化,随后启动转换,查询转换结束标志位,即可完成一次A/D 转转。 1.1.2 热量管理控制程序 由于充、放电过程中,电池本身会产生一定热量,从而导致温度的上升。温度会影响电池的很多特性参数,故对电池组进行热量管理是非常重要的。采用并行通风散热方式,可以获得均匀的电池箱内的温度场分布,从而保证电池组各单体电池的温度平衡。热量管理的方式是通过分析采集的温度数据,采用一定的控制策略,控制冷却风扇控制的开启,维持电池工作的最佳环境温度。 1.2 中央处理单元的管理部分 中央处理单元主要执行以下工作:电压、电流与温度测量数据滤波;计算电池SOC;计算电池放电深度DOD;计算最大允许放电电流;计算最大允许充电电流;预测蓄电池寿命指数和SOH;故障诊断。 1.2.1 电池状态参数计算流程

动力电池系统设计讲解

深入浅出史上最易懂的动力电池系统 设计讲解 2 [摘要]动力电池系统设计要以满足整车的动力要求和其他设计为前提,同时要考虑电池系统自身的内部结构和安全及管理设计等方面。 动力电池系统指用来给电动汽车的驱动提供能量的一种能量储存装置,由一个或多个电池包以及电池管理(控制)系统组成。动力电池系统设计要以满足整车的动力要求和其他设计为前提,同时要考虑电池系统自身的内部结构和安全及管理设计等方面。 比如整车厂会针对要设计的整车,在考虑安全设计、线束连接线设计、接插件设计等相关要求后,形成一个有限的动力电池系统空间大小。然后在有限的空间约束下,进行电池模组、电池管理系统、热管理系统、高压系统等布置,保证电池单体及模块均匀散热,保证电池的一致性,提高电池系统的寿命与安全。设计时要考虑到的一些整体和通用性原则包括安全性好、高比能量、高比功率、温度适应性强、使用寿命长、安装维护性强、综合成本低等。

一种典型的动力电池系统 由于不同种类电动汽车的结构和工作模式的不同,导致对动力电池的性能要求也不一样。纯电动汽车行驶完全依赖于动力电池系统的能量,电池系统容量越大,可以续航里程越长,但所需电池系统的体积和重量也越大。虽然混合动力汽车对动力电池系统的容量要求比纯电动汽车要低,但要能够在某些时候提供较大的瞬时功率。而串联式和并联式混合动力汽车对电池系统的要求又有所区别。 因此动力电池系统的设计流程一般如下:(1)先确定整车的设计要求;(2)然后确定车辆的功率及能量要求(3)选择所能匹配合适的电芯(4)确定电池模块的组合结构形式(5)确定电池管理系统设计及热管理系统设计要求(6)仿真模拟及具体试验验证。

单片机红绿灯电路设计

四川现代职业学院《单片机原理及应用》课程设计红绿灯实训报告 题目:红绿灯项目设计报告 系别:电子信息技术系 专业:电子信息工程技术 组员:贺淼、纪鹏、邵文稳 指导老师:陶薇薇 2014年7月12日

摘要 交通在人们的日常生活中占有重要的地位,随着人们社会活动的日益频繁,这点更是体现的淋漓尽致。交通信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构软硬件结合,加以完善。本系统采用STC89C52点单片机以及数码管为中心器件来设计交通灯控制器,实现了南北方向为主要干道,要求南北方向每次通行时间为30秒,东西方向每次通行时间为25秒。启动开关后,南北方向红灯亮25秒钟,而东西方向绿灯先亮20秒钟,然后闪烁3秒钟,转为黄灯亮2秒钟。接着,东西方向红灯亮30秒钟,而南北方向绿灯先亮25秒,然后闪烁3秒钟,转为黄灯亮2秒钟,如此周而复始。 软件上采用C语言编程,主要编写了主程序,中断程序延时程序等。经过整机调试,实现了对十字路口交通灯的模拟。

目录 (一)硬件部分--------------------------- 3 1.1 STC89C52芯片简介-----------------------3 1.2 主要功能特性---------------------------4 1.3 STC89C52芯片封装与引脚功能-------------5 1.4 基于STC89C52交通灯控制系统的硬件电路分析及设计-------------------------------------------10 (二)软件部分----------------------------14 2.1 交通灯的软件设计流程图-----------------14 2.2 控制器的软件设计-----------------------15 (三)电路原理图与PCB图的绘制-------------16 3.1 电路原理图的绘制(见附录二)----------16 3.2 PCB图的绘制(见附录三)---------------16 3.3 印刷电路板的注意事项------------------16 (四)调试及仿真---------------------------------------19 4.1 调试----------------------------------19 4.2 仿真结果------------------------------20 (五)实验总结及心得体会---------------------------21 5.1 实验总结-----------------------------------------------21 5.2 实验总结-----------------------------------------------22 附录程序清单---------------------------22

电池电源管理系统设计

电源招聘专家 我国是一个煤矿事故多发的国家,为进一步提高煤矿安全防护能力和应急救援水平,借鉴美国、澳大利亚、南非等国家成功的经验和做法,2010年,国家把建设煤矿井下避难硐室应用试点列入了煤矿安全改造项目重点支持方向。 为了满足井下复杂的运行环境及井下避难硐室对电池电源运行稳定、安全可靠、大电流输出等关键要求,研发了基于MAX17830的矿用电池电源管理系统。 1 总体技术方案 根据煤矿井下的环境及井下避难硐室对电池电源运行稳定、安全可靠、大电流输出等关键要求,结合磷酸铁锂电池的特性,采用MAX17830作为矿用电池管理系统的采集与保护芯片。 本矿用电池电源管理系统由五部分组成,分别为显示模块、管理模块、执行机构、电池组、防爆壳。整个电池电源管理系统共设有4对接线口:24 V直流输出端口、24 V直流充电端口、485通信端口和CAN通信端口[1-2]。 本矿用电池电源管理系统的工作流程如图1所示。 2 电池电源管理系统硬件设计 2.1 器件选择及布局 本矿用电池电源管理系统设计所采用的主要器件如表1所示。 按照器件的功能及电池管理系统的特点,对器件进行布局设计,器件布局情况如图2所示。 2.2 核心电路解析 2.2.1 MAX17830介绍 MAX17830芯片由美国的美信半导体公司生产,包含12路电压检测通道、12路平衡电路控制引脚及2路NTC温度传感器。在本电池电源管理系统中使用了8路电压检测通道、8路平衡电路控制引脚和2路NTC温度传感器。MAX17830采集8个单体电池的电压并使用IIC通信协议与CPU通信,将采集的数据发送给CPU,接受CPU的控制[3-4]。 2.2.2 电池电压采集与过充保护电路 此电路围绕着MAX17830而设计,负责整个电池组单体电池的电压采集、过充保护、平衡管理等,其电路设计的原理图如3所示。 3 电池电源管理系统软件设计 3.1 软件基本功能 为了保证电池电源系统的稳定,设计电池电源管理系统软件的基本功能如下[5]: (1)动态信息的采样,对单体电压、单体温度、电池组电流、电池组电压进行采样;(2)电管理,根据系统动态参数对充电过程、放电过程、短路情况进行报警、主动保护多级管理措施; (3)热管理,电池单体高于或低于指定界限时电池电源管理系统将采取保护措施并报警;(4)均衡管理,充、放电过程中可对单体电池持续有效地提供高达70 mA的均衡电流,每块单体电池设有一路均衡电路; (5)数据管理,使用CAN/485通信协议可实时读取、调用系统存储的数据及管理系统工作状态。详实记录过流、过压、过温等报警信息,作为系统诊断的依据; (6)电量评估,长时间精准剩余电量估计,实验室SoC估计精度在97%以上(-40 ℃~

电动汽车动力电池系统总体方案设计

电动汽车动力电池系统总体方案设计 1.1 额定电压及电压应用范围 对于高速电动车辆动力电池系统的额定电压等级,参照《GB/T31466-2015 电动车辆高压系统电压等级》可选择144V、288V、320V、346V、400V、576V等。对于微型低速电动车动力电池系统的电压等级,100V以下主要以48V、60V、72V和96V为主。 动力电池系统的额定电压及电压范围必须与整车所选用的 电机和电机控制器工作电压相匹配,因此为保证整车动力系统的可靠运行,需要根据电动整车电机的电压等级及工作电压范围要求,选择合适的单体电池规格(化学体系、额定电压、容量规格等)并确定单体电池的串联数量、系统额定电压及工作电压范围。通常允许使用的电压范围上限为系统额定电压的115%~120%,下限为系统额定电压的75%~80%。

1.2 动力电池系统容量 整车概念设计阶段,从整车车重和设定的典型工况出发,续驶里程、整车性能(最高车速、爬坡度、加速时间等)要求,可以计算出汽车行驶所需搭载的总能量需求。动力电池系统容量主要基于总能量和额定电压来进行计算。 1.3 功率和工作电流 整车在急加速情况下,动力电池系统需要提供短时脉冲放电功率,对应的工作电流为峰值放电电流;在紧急刹车情况下,需要提供短时能量回收功率,对应的回馈电流为峰值充电电流。

整车在平路持续加速或长坡道时,动力电池系统需要提供稳定的持续放电功率,此时要求能够长时间稳定输出一定额度的电流,即持续放电工作电流。 1.4 可用SOC范围 在动力电池系统产品设计上,由于SOC可用范围会直接影响总能量的设计,直接体现到单体电池的选型及数量要求,因此,也会对电池箱体的包络尺寸设计、内部布置及安装空间间隙以及对总体成本等方面产生最直接的影响。动力电池系统SOC应用范围的选择首先考虑整车对充放电功率和可用能量等方面的需求,同时结合单体电池在不同温度条件下的充放电能力(功率和能量)、存储性能(自放电率)、寿命、安全特性,以及电池管理系统的SOC估算精度等影响因素来确定。

电池管理系统BMS控制策略方案书

项目编号: 项目名称:电池管理系统(BMS)文档版本:V0.01 技术部 2015年月日

版本履历

目录 1.前言 (4) 2.名词术语 (5) 3.概要 (6) 4.总体要求 (7) 5.系统原理图 (9) 6.模块的构成 (10) 6.1BMS程序模块图 (10) 6.2整体方案图 (10) 7.电池串管理单元BCU (11) 7.1模块的概述 (11) 7.2模块的输入 (11) 7.3模块的功能 (11) 7.4模块的输出 (11) 8.电池检测模块BMU (11) 8.1模块的概述 (11) 8.2模块的输入 (11) 8.3模块的功能 (11) 8.4模块的输出 (12) 9.绝缘检测模块LDM (12) 9.1模块的概述 (12) 9.2模块的输入 (12) 9.3模块的功能 (12) 9.4模块的输出 (12) 10.强电控制系统HCS (12) 10.1模块的概述 (12) 10.2模块的输入 (12) 10.3模块的功能 (12) 10.4模块的输出 (13) 11.电流传感器CS (13) 11.1模块的概述 (13) 12.显示屏LCD (13) 12.1模块的概述 (13) 13.后记 (14) 14.参考资料 (15)

1.前言 开发电动汽车电池管理系统,此系统的全面实时监控,具有良好的电池均衡性能,检测精度高。

2.名词术语 BMS:电池管理系统 BCU:电池串管理单元 BMU:电池检测单元 LDM:绝缘检测模块 HCS:强电控制系统 SOC: 电池荷电状态

3.概要 电动汽车电池管理系统(BMS),管理系统状态用于监测电动汽车的动力电池的工作状态,从而采集动力电池的状态参数,实现动力电池的SOC状态、温度、充放电电流和电压的监控。电池管理系统主要是BMS通过CAN总线与整车控制器、智能充电器、仪表进行通讯,对电池系统进行安全可靠、高效管理。电池管理系统包括BCU和BMU,BCU主要作用是:根据动力电池的工作状态,对电池组SOC进行动态估计,通过霍尔电流传感器,实现对充放电回路电流的实时监测,保护电池系统,可以实现与BMU、整车控制器、充电机等进行通信,交互电压、温度、故障代码、控制指令等信息;BMU的功能是通过对各个单体电压的实时监测、对箱体温度的实时监测,通过CAN总线将电池组内各单体的电压、箱体温度以及其他信息传送到BCU,通过与智能充电桩交互数据信息,充电期间实时估算电池模块SOC,对电芯进行充电均衡,提高单节电芯的一致性,提高整组电池使用性能,对电池进行主动式冷热管理,保护电池使用寿命,延长电池寿命。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

电动汽车用动力电池系统安全性设计-0901..

电动汽车用动力锂离子电池系统 安全性设计 拟稿:张建华 2014、7、31

目录 1、序言 2、锂离子电芯安全特性 3、几种锂离子电芯安全特性分析 4、由锂离子电芯组成的电池PACK的安全性特性分析 5、锂离子电池PACK安全性设计 6、结论

一、序言 1、特斯拉电动汽车六次碰触起火事件 7月4日,在一起离奇的盗窃事件中,特斯拉意外成为了主角。一名身份未明的男子7月4日早间盗窃ModelS汽车后,引发警方的高速追逐。该男子随后在西好莱坞撞上多辆汽车,并在撞击路灯后解体成两半,引发电池着火。7月7日,特斯拉表示,该公司将调查在高速追逐中因碰撞而解体成两半,并着火的ModelS汽车残骸。 从2013年下半年开始,特斯拉已经发生了六起起火事件。其中两起是行驶中车辆自燃,两起是碰撞起火,原因是车主驶过路面上的残骸致使电池箱被刺穿后起火,有一起在充电时发生,还有一起原因不明。 1)11月6日,据海外网站报道,一辆特斯拉Model S电动车在美国田纳西州纳什维尔附近再度遭遇起火事故,车头几乎全部烧毁。 2)10月1日,一辆Model S撞上了路中的金属残片引发事故着火燃烧,车辆前部的一块电池包起火。 3)10月18日中旬,在墨西哥,一辆高速行驶特斯拉Model S撞到了一堵混凝土墙,紧接着又撞上了一棵大树,随后起火燃烧。 结论:汽车底盘在受到猛烈冲击变形后会产生着火事故; 底盘受到猛烈冲击类似于挤压和针刺的综合测试。

2、比亚迪e6着火事件 2012年5月26日凌晨3时08分,深圳滨海大道西行侨城东路段发生的一起重大交通事故,让电动汽车的安全问题成为了全世界关注的焦点。当时,一男子载三女驾驶一辆红色日产GT-R跑车,高速撞上两辆同方向行驶的出租车。其中一辆比亚迪E6电动出租车起火燃烧,一名男性出租车司机连同两名女性乘客被困火中当场死亡。 涉及各领域的13名知名专家,包括电动汽车整车及动力系统、部件安全、结构安全、汽车碰撞、电子电气安全、动力电池、汽车交通事故鉴定、火灾调查、材料燃烧特性等专业领域。专家分别来自中国汽车技术研究中心、交通运输部、科学研究院、公安部天津消防研究所、广东省消防总队、北方车辆研究所、S MG等,进行为期70天的调查。 专家组得到的结论是:电池没爆炸,着火起因是e6受到两次严重碰撞,车身后部及电池托盘严重变形、动力电池组和高压配电箱受到严重挤压,导致部分动力电池破损短路、高压配电箱内的高压线路与车体之间形成短路,产生电弧,引燃内饰材料及部分动力电池等可燃物质。e6的动力电池系统在整车上的安装布局、绝缘防护及高压系统等方面设计合理,“整车安全未见设计缺陷”。 结论: 汽车底盘在受到猛烈冲击变形后会产生着火事故; 底盘受到猛烈冲击类似于挤压和针刺的综合测试。

动力电池系统设计输入地要求

纯电动大巴车用动力电池系统设计输入要求 一.设计输入--项目可行性报告 1、车辆技术参数: 车辆尺寸(车辆三维模型) 总质量 kg 轴荷分配 kg 主传动比 最大车速 km/h 常规车速 km/h 爬坡车速 km/h 最大爬坡度 % 迎风面积 m2 风阻系数 车轮的滚动半径 m 2、车辆性能: 车速、加速性、行驶距离、车速变化曲线 3、使用环境: 路面、全年早晚温度变化与负荷变化关系曲线、全年雨量分布、湿度范围、 4、运行工况:

负荷变化曲线、每天运行时间 实际路测数据输入: 1)行驶里程(平路里程和坡道里程)按满备质量计算 2)运行的最高车速 3)运行的平均车速 4)爬坡车速 5)满载质量波动 5、驱动电机参数: 电机结构、工作电压范围、工作温度范围 电动机的额定功率、扭矩、转速、尺寸、重量等基本参数 电动机的瞬时最大功率、扭矩、转速等参数 变速箱的主减速比、传动比等基本参数 电机制动参数 6、控制器参数 7、充电机参数 二.根据需求输入及汽车改装的实际情况,编制技术协议--项目设计任务书,需要提供的参数: 1.提出电池箱最大包络; 2.确定电池箱体固定安装方式、固定点及定位销位置(三维模型);

3.明确接插件及管脚定义; 4.提出电性能指标(电压等级﹑能量密度﹑功率密度﹑寿命等)及试验工况要求; 5.提出环境适应性能指标(防腐等级﹑冲击振动﹑高低温等);6.提出安全性能指标(过充﹑过放﹑短路﹑挤压﹑针刺﹑跌落等; 高压安全,碰撞与高压安全,绝缘安全,防水安全等); 7.提出上下电及相关逻辑; 8.确定通信协议(和VCU﹑CHARGER); 9.确定故障定义及故障分类,并设置合理的阀值; 10.对售后服务提出一定的要求。 三.动力电池组设计输入要求 纯电动电池pack性能

89C51单片机44键盘应用实例程序设计(含硬件仿真电路图)

89c51单片机4*4键盘应用实例硬件仿真电路图如下: 程序如下(编译成功): #include"reg51.h" #include"LCD1602.h" #include"hardware.h" char code tab[4][4]={ {'1','4','7','#'}, {'2','5','8','0'}, {'3','6','9','*'}, {'A','B','C','D'}}; //0到F的16个键植 void delay(unsigned char a) { unsigned char i; while(a--)

for(i=100;i>0;i--) ; } char kbscan() //键盘扫描 { unsigned char hang,lie,key; if(P3!=0x0f) delay(5); if(P3!=0x0f) { switch(P3&0x0f) { case 0x0e:lie=0;break; case 0x0d:lie=1;break; case 0x0b:lie=2;break; case 7:lie=3;break; } P3=0xf0; P3=0xf0; switch(P3&0xf0) { case 0xe0:hang=0;break; case 0xd0:hang=1;break; case 0xb0:hang=2;break; case 0x70:hang=3;break; } P3=0x0f; while(P3!=0x0f); key=tab[hang][lie]; } else key=0; return (key); } void main() { unsigned char temp; LCD_initial(); LCD_prints("piaoling"); P3=0x0f; P0=0xff; while(1)

动力电池智能制造技术【全面解析】

动力电池智能制造技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 1新能源汽车动力电池的智能制造 我国已成为名副其实的全球最大的新能源汽车市场。动力电池作为最为核心的 关键零部件,它的相关技术必须与电动汽车的发展相适应。新能源汽车能走多远, 最终取决于动力电池能走多远。综合各类电池的技术优势及发展趋势,锂离子电池 在混合动力汽车、插电式混合动力汽车和纯电动汽车领域,将会有越来越广泛的应 用。该类电池技术对新能源汽车产业发展的意义重大。 当前国内生产动力电池的企业约有上百家,但由于自动化程度低,不少企业呈 现出生产效率低、产品良品率低和运营信息互联互通效率低的“三低”特点。这使 得动力电池在技术以及一致性问题上一直很难有实质性突破,严重影响了动力电池 的整体性能,也制约了我国新能源汽车产业的发展。 基于此,动力电池的智能制造应运而生。什么是动力电池的智能制造?它是指, 动力电池生产智能工厂综合运用ERP系统、MES系统等软件,并实现全周期生产的 可视化、自动化、智能化。未来,包括动力电池在内的新能源汽车制造,未来必然 走向大规模和智能化,呈现高精度、高速度和高可靠性的“三高”特点。而以无人 化、可视化和信息化为代表的“三化”是实现“三高”的利器,亦是智能制造的范 畴。 2动力电池工艺装备智能制造技术的发展水平

作为动力电池制造环节必需的工具,动力电池生产工艺装备对动力电池规模化生产条件下的技术发展起着极为关键的作用,近年来动力电池装备产业发展势头迅猛。结合动力电池生产工艺流程,我们将从动力电池电芯生产的前、中、后各段工序以及电池组模组及系统装配工序对动力电池装备产业的智能制造技术发展现状进行分析。 1.动力电池电芯生产前段工序的技术水平 作为动力电池整条产线最为关键的环节,生产前段工序对动力电池产品品质一致性和性能稳定性产生直接影响。动力电池电芯生产前段工序是指实现锂离子动力电池从原材料输送到模切的极片加工成型的过程。自动加料系统、搅拌机、涂布机、辊压机和模切机等是动力电池制造过程的核心工艺装备。 由于前段工艺装备对动力电池性能影响较大,各项技术指标要求高,且设备技术复杂程度高,前几年国产装备技术相对较为落后,在效率、精度、稳定性等方面与国外还存在一定差距,尤其是涂布机。近年来随着行业技术日趋成熟,国内装备行业快速发展,自动加料系统、大容积自动搅拌机、高速涂布机、高速模切机等高端设备逐步实现国产化,并在实际应用中产生了较好效果。 表1. 国内电池电芯前段工序设备情况 2.动力电池电芯生产中段工序的技术水平 传统工艺主要以手工作业和单机自动化为主,近年来随着大规模生产对生产效率和过程控制的要求,动力电池生产中段装配工序已逐步实现整线自动化控制。通过对自动化工作站、上下料机构、自动传输机构、多轴机器人等部件的连接整合,采用高精度传感器技术实现对过程数据数据的自动采集、监控和反馈,并结合设备MES系统的应用,实现动力电池中段工序智能化生产。

ATmega128 单片机硬件电路设计

ATmega128 单片机硬件电路设计 在本系统中,本小节主要讲ATmega128 单片机的内部资源、工作原理和硬件电路设计等。2.5.1 ATmega128 芯片介绍ATmega128 为基于AVR RISC 结构的8 位低功耗CMOS 微处理器。片内ISP Flash 可以通过SPI 接口、通用编程器,或引导程序多次编程。引导程序可以使用任何接口来下载应用程序到应用Flash 存储器。通过将8 位RISC CPU 与系统内可编程的Flash 集成在一个芯片内,ATmega128 为许多嵌入式控制应用提供了灵活而低成本的方案。ATmega128 单片机的功能特点如下:(1)高性能、低功耗的AVR 8 位微处理器(2)先进的RISC 结构①133 条指令大多数可以在一个时钟周期内完成② 32x8 个通用工作寄存器+外设控制寄存器③全静态工作④工作于16 MHz 时性能高达16 MIPS ⑤只需两个时钟周期的硬件乘法器(3)非易失性的程序和数据存储器① 128K 字节的系统内可编程Flash ②寿命: 10,000 次写/ 擦除周期③具有独立锁定位、可选择的启动代码区(4)通过片内的启动程序实现系统内编程① 4K 字节的EEPROM ② 4K 字节的内部SRAM ③多达64K 字节的优化的外部存储器空间④可以对锁定位进行编程以实现软件加密⑤可以通 过SPI 实现系统内编程(5)JTAG 接口(与IEEE 1149.1 标准兼容)①遵循JTAG 标准的边界扫描功能②支持扩

展的片内调试③通过JTAG 接口实现对Flash,EEPROM,熔丝位和锁定位的编程(6)外设特点①两个具有独立的预分频器和比较器功能的8 位定时器/ 计数器②两个具 有预分频器、比较功能和捕捉功能的16 位定时器/ 计数器③具有独立预分频器的实时时钟计数器④两路8 位PWM ⑤ 6 路分辨率可编程(2 到16 位)的PWM ⑥输出比较调制器⑦ 8 路10 位ADC ⑧面向字节的两线接口⑨两个可编程的串行USART ⑩可工作于主机/ 从机模式的SPI 串行接口(7)特殊的处理器特点①上电复位以及可编程的掉电检测②片内经过标定的RC 振荡器③片内/ 片外中断源④ 6 种睡眠模式: 空闲模式、ADC 噪声抑制模式、省电模式、掉电模式、Standby 模式以及扩展的Standby 模式⑤可以通过软件进行选择的时钟频率⑥通过熔丝 位可以选择ATmega103 兼容模式⑦全局上拉禁止功能ATmega128 芯片有64 个引脚,其中60 个引脚具有I/O 口功能,资源比较丰富,下面对ATmega128 的各个引脚做简单介绍:VCC:数字电路的电源。GND:接地。端口(PA7..PA0)、(PB7..PB0)、(PC7..PC0)、(PD7..PD0)、(PE7..PE0)、(PF7..PF0)、(PG4..PA0):为8 位双向I/O 口,并具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,则端口被外部电路拉低时将

质子交换膜燃料电池控制器的设计

质子交换膜燃料电池控制器的设计 质子交换膜燃料电池控制器的设计 摘要:介绍了基于嵌入式PIC16F876A-I/SP芯片的质子交换膜燃料电池控制器的软硬件的设计,该控制器很好地改善了燃料电池的输出性能。实验结果表明,设计的质子交换膜燃料电池控制器不仅具有保护反应堆和蓄电池等功能,并可以在多变的环境下保持燃料电池的高度可靠性和稳定性。其性能基本达到预期指标。关键词:燃料电池;主控芯片;控制器质子交换膜燃料电池系统是一种功率调节设备,已广泛应用于电脑、医疗/生命维持系统、电信、工业控制等领域。它的主要功能是持续以高质量的功率供给负载。一个高性能燃料电池系统应该有一个线性和非线性负载的较低总谐波失真、效率高、可靠性好、突发电网故障和负载改变时的快速瞬态响应的净输出电压[1]。伴随着个人电脑和互联网的普及,低容量燃料电池产品将在工业领域和国内市场进一步增长。由于国际市场的高度竞争,许多先进的技术,例如更高的功率密度、更高的效率、智能化控制被应用在质子交换膜燃料电池系统中。1质子交换膜燃料电池的工作原理质子交换膜燃料电池由一个负充电电极(阳极)、一个正充电电极(阴极)和一个电介质膜组成[2]。氢气在阳极氧化,氧气在阴极还原。质子通过电解质膜从阳极传送至阴极,电子经外部电路负载传送。在阴极上,氧气与质子和电子发生反应,产生水和热。原理图,电极上的各化学反应如下:

2燃料电池控制器的硬件设计硬件的设计首先必须满足系统的要求才能实现有效的控制。由于燃料电池控制系统的组成比较复杂,采用单一的控制单元实现所有的功能存在连线复杂、控制单元负载率过高等缺点。因而可以根据实现功能和安装位置的不同进行功能模块划分,实现分布式控制。燃料电池控制器主要由以下几个部分组成[4]:燃料电池系统的主控制单元、燃料电池堆的电压检测单元、监控模块单元和显示模块。燃料电池控制器结构框图。 主控制单元作为控制系统的核心,其主要功能是:接收其他功能模块的数据,对发电系统的工作状态做出判断,根据当前发电系统的工作参数控制其工作在最佳状态。2.1主控芯片本次燃料电池控制系统采取PIC16F876A-I/SP作为主控芯片[5],该芯片采用的是哈佛结构,其工作频率可达20MHz,片内具有8KB快速Flash程序存储器、368B数据存储器、256B EEPROM数据存储器。其内部包含2个模拟比较器,3个计时器,5输入通道的10位模数转换器。指令系统只有35个指令,通过外扩DAC芯片可以输出模拟电压或电流,进而实现对鼓风机和水泵的转速控制。2.2A/D采集模块在燃料电池发电系统中,温度、压力、电压、电流等被检测的对象都是连续变化的量,通过温度传感器、压力传感器、电压传感器、电流传感器将它们转换为连续变化的电压或电流。模数转换器ADC的作用就是将这些模拟电压或电流转换成计算机能识别的数字量。2.3保护与抗干扰电路故障检测由主控芯片和比较电路来完成。监测到故障后,由主控芯片发出信息给蜂鸣器报警,同时切断DC-DC模

单片机硬件设计经验总结

单片机硬件设计经验总结 下面是总结的一些设计中应注意的问题,和单片机硬件设计原则,希望大家能看完 (1)在元器件的布局方面,应该把相互有关的元件尽量放得靠近一些,例如,时钟发生器、晶振、CPU的时钟输入端都易产生噪声,在放置的时候应把它们靠近些。对于那些易产生噪声的器件、小电流电路、大电流电路开关电路等,应尽量使其远离单片机的逻辑控制电路和存储电路(ROM、RAM),如果可能的话,可以将这些电路另外制成电路板,这样有利于抗干扰,提高电路工作的可靠性。 (2)尽量在关键元件,如ROM、RAM等芯片旁边安装去耦电容。实际上,印制电路板走线、引脚连线和接线等都可能含有较大的电感效应。大的电感可能会在Vcc走线上引起严重的开关噪声尖峰。防止Vcc走线上开关噪声尖峰的唯一方法,是在VCC与电源地之间安放一个0.1uF的电子去耦电容。如果电路板上使用的是表面贴装元件,可以用片状电容直接紧靠着元件,在Vcc引脚上固定。最好是使用瓷片电容,这是因为这种电容具有较低的静电损耗(ESL)和高频阻抗,另外这种电容温度和时间上的介质稳定性也很不错。尽量不要使用钽电容,因为在高频下它的阻抗较高。 在安放去耦电容时需要注意以下几点:

在印制电路板的电源输入端跨接100uF左右的电解电容,如果体积允许的话,电容量大一些则更好。 原则上每个集成电路芯片的旁边都需要放置一个0.01uF的瓷片电容,如果电路板的空隙太小而放置不下时,可以每10个芯片左右放置一个1~10的钽电容。 对于抗干扰能力弱、关断时电流变化大的元件和RAM、ROM等存储元件,应该在电源线(Vcc)和地线之间接入去耦电容。 电容的引线不要太长,特别是高频旁路电容不能带引线。 (3)在单片机控制系统中,地线的种类有很多,有系统地、屏蔽地、逻辑地、模拟地等,地线是否布局合理,将决定电路板的抗干扰能力。在设计地线和接地点的时候,应该考虑以下问题:逻辑地和模拟地要分开布线,不能合用,将它们各自的地线分别与相应的电源地线相连。在设计时,模拟地线应尽量加粗,而且尽量加大引出端的接地面积。一般来讲,对于输入输出的模拟信号,与单片机电路之间最好通过光耦进行隔离。 在设计逻辑电路的印制电路版时,其地线应构成闭环形式,提高电路的抗干扰能力。 地线应尽量的粗。如果地线很细的话,则地线电阻将会较大,造成接地电位随电流的变化而变化,致使信号电平不稳,导致电路的抗干扰能力下降。在布线空间允许的情况下,要保证主要地线的宽度至少在2~3mm以上,元件引脚上的接地线应该在1.5mm左右。 要注意接地点的选择。当电路板上信号频率低于1MHz时,由于

电动汽车动力电池系统五大国标最详解读

电动汽车动力电池系统五大国标最详解读 [导读]国标针对动力电池系统,建立了常规性能和功能要求,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。 关键词:电池系统电动汽车 国标针对动力电池系统,建立了常规性能和功能要求——容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等,建立了安全防护要求——操作安全、故障防护、人员触电防护、滥用防护、环境适应性、事故防护、用户手册和特殊说明等,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。 一、构建标准体系 电动汽车早期的发展过程中,GB或GB/T国家标准的缺失在一定程度上造成了行业的良莠不齐和鱼龙混杂。仅依靠汽车行业的QC/T推荐标准作为一种参考,并不具有权威性和广泛性,整车企业和电池企业要么茫无头绪,要么各行其是、各执一词,缺乏一个统一的衡量标准。 随着2015年新版GB/T国家推荐标准的陆续发布,我国电动汽车产业围绕动力电池系统已基本上构建了完整的标准体系,形成了行业的准入门槛,有利于行业的规范发展和优胜劣汰。 新国标在2015年5月颁布(部分标准将在10月份或年底颁布),与旧标准之间有一年的过渡期,从2016年开始,相关企业都将遵循新的标准进行相关检测。新国标与工信部2015年3月发布的《汽车动力蓄电池行业规范条件》一起,将加速动力电池行业的洗牌,提高行业集中度水平。

动力电池系统方案书

管理编号: 项目编号:EVPS(JS)ZZYF150609 项目名称:PL151V220电池系统文档版本:V0.01 技术部 2013年 8 月 1 日

版本履历

目录 一、前言 (4) 二、概述 (4) 三、系统部件清单 (5) 四、电池组性能指标 (5) 五、电池系统结构规格 (6) 六、蓄电池控制单元技术要求 (7) 6.1 蓄电池控制单元基本功能 (7) 6.2 电池管理系统技术指标 (7) 6.3蓄电池控制单元策略及动作参数 (8) 6.4 控制方式 (9) 6.5 充电方式 (10) 七、国家标准 (10)

一、前言 本方案采用的主要技术符号和术语: C1:1小时率额定容量(Ah); I1:1小时率放电电流,其数值等于C1(A); Cn1:1小时率实际放电容量(Ah); In1:1小时率实际放电电流,其数值等于Cn1(A); BCU(BMS):蓄电池控制单元,控制、管理、检测或计算蓄电池电和热相关参数,并提供蓄电池系统和其他车辆控制器通讯的电子装置; 单体蓄电池:直接将化学能转换为电能的基本单元装置,包括电极、隔膜、电解质、外壳和端子,并被设计成可充电; 蓄电池包:通常包括蓄电池组,蓄电池管理模块(不含BCU),蓄电池箱及相应附件,具有从外部获得电能并可对外输出电能的单元, 亦称之为电池包; 蓄电池系统:一个或一个以上蓄电池包及相应附件(管理系统、高压电路、低压电路、热管理设备以及机械总成等)构成的能量存储装置; 高压盒:用来集中放置高压接触器、继电器、汇流排、保险丝、BMS等部件,实现蓄电池系统电能集中管理和分配的部件; 二、概述 本方案约定的电池系统(以下可简称本系统或系统)名称为PL151V220锂离子电池系统,型号为:PL151V220,额定电压为151.2V,额定容量为 220 Ah,额定能量33.2度。电池系统由100并42串,合计4200只规格为 18650 的单体蓄电池成组,在部件上包含1个蓄电池包以及配套的高、低压线束线缆。

相关文档
最新文档