镁合金力学性能
镁合金强度低的原因

镁合金强度低的原因
镁合金是一种重要的轻质金属材料,广泛应用于航空、汽车、铁路、3C等领域。
然而,镁合金的强度却不如其他金属材料。
需要深入
探究,以便采取相应的改进措施。
1. 金属晶体结构:镁合金的原子间间距较大,晶体结构松散。
同等情况下,镁合金的结晶更不紧密,因此强度自然就低了不少。
2. 内在缺陷:镁合金在生产加工过程中,难以避免存在些微的
内在缺陷。
比如晶界、夹杂或气孔等缺陷,会导致合金的强度降低。
3. 金属元素的纯度:合金中各金属元素的纯度不同,也能直接
影响合金的力学性能。
比如,纯度不够的镁合金中,镁的含量可能不足,会直接影响合金强度的提升。
4. 热处理分析:归根结底,获得高强度的镁合金,需要一定的
热处理分析,在实际操作中难以真正保证,如果制程不专业,热处理
不足,也容易影响到镁合金的性能。
为提升镁合金强度,对上述影响因素,还需深入研究。
比如,针
对晶体结构的问题,需要进一步模拟仿真才能得出精准的数据。
而对
于合金中各金属元素纯度的影响,则有必要采取科学的物理化学技术、不断提升加工工艺,把合金强度提升至最高。
同时,在保证合金纯度
的同时,加强热处理分析的掌控,做到精细控制,可有效提高镁合金
的强度。
总的来说,镁合金的强度低主要是受到金属晶体结构、内在缺陷、金属纯度和热处理分析等因素的影响。
加强研究,深度分析,寻求有
效改进措施,可以提高镁合金的强度和其他力学性能,为该材料在未
来的应用开发方面提供坚实的支持。
AZ31镁合金组织性能的影响分析

摘要挤压变形AZ31镁合金组织以绝热剪切条纹和细小的α再结晶等轴晶为基本特征。
挤压变形可显著地细化镁合金晶粒并提高镁合金的力学性能。
随挤压比的增大,晶粒细化程度增加,晶粒尺寸由铸态的d400μm减小到挤压态的d12μm(min);强度、硬度随挤压比的增大而增大,延伸率在挤压比大于16时呈单调减的趋势。
轧制变形使板材晶粒明显细化,硬度提高。
AZ31合金中添加Ce,其铸态组织中能够形成棒状Al4Ce相,并能改善合金退火态组织和力学性能;添加Ce可以改善AZ31的综合力学性能。
关键词:AZ31变形镁合金;强化机制;组织;性能绪论20世纪90年代以来,作为最轻金属结构材料的镁合金的用量急剧增长,在交通、计算机、通讯、消费类电子产品、国防军工等诸多领域的应用前景极为广阔,被誉为“21世纪绿色工程材料”,许多发达国家已将镁合金列为研究开发的重点。
大多数镁合金产品主要是通过铸造生产方式获得,变形镁合金产品则较少。
但与铸造镁合金产品相比,变形镁合金产品消除了铸造缺陷,组织细密,综合力学性能大大提高,同时生产成本更低,是未来空中运输、陆上交通和军工领域的重要结构材料。
目前,AZ31镁合金的应用十分广泛,尤其用于制作3C产品外壳、汽车车身外覆盖件等冲压产品的前景被看好,正成为结构镁合金材料领域的研究热点而受到广泛重视。
第1章挤压变形对AZ31镁合金组织和性能的影响1.1 挤压变形组织特征及挤压比的影响作用图1-1为动态挤压变形过程中的组织变化。
动态变形过程大致分为3个区域:初始区、变形区和稳态区,分别对应着不同的组织。
图1-1a为初始区挤压变形前的铸态棒料组织。
由粗大的α-Mg树枝晶和分布其间的α-Mg+Mg17Al12共晶体组成,枝晶形态十分发达,具有典型的铸造组织特征。
晶粒尺寸为112~400μm。
图1-1b为变形区近稳态区组织。
图中存在大量无序流线,流线弯曲度大、方向不定且长短不一,显然这种组织特征是在挤压力作用下破碎的树枝晶晶臂(α固溶体)发生滑移、转动的结果。
新能源汽车用镁合金的热处理与力学性能

新能源汽车用镁合金的热处理与力学性能随着全球对环境保护和可持续发展的日益重视,新能源汽车产业蓬勃发展。
在新能源汽车的制造中,材料的选择至关重要,而镁合金因其独特的性能逐渐受到关注。
镁合金具有密度低、比强度和比刚度高、减震性能好等优点,在实现汽车轻量化方面具有巨大潜力。
然而,要充分发挥镁合金在新能源汽车中的优势,其热处理工艺和力学性能的研究至关重要。
一、镁合金在新能源汽车中的应用优势新能源汽车对于轻量化的要求极高,因为车辆重量的减轻可以显著提高续航里程和能源利用效率。
镁合金的密度约为 174g/cm³,相比铝合金和钢铁,其重量更轻。
这使得在汽车零部件中使用镁合金能够有效降低整车重量,从而减少能源消耗。
此外,镁合金还具有良好的电磁屏蔽性能,能够有效减少车辆内部的电磁干扰,提高电子设备的稳定性和可靠性。
同时,镁合金的减震性能优于其他金属材料,能够提升车辆的行驶舒适性和稳定性。
二、新能源汽车用镁合金的常见热处理方法1、固溶处理固溶处理是将镁合金加热到一定温度,使合金元素充分溶解在基体中,形成过饱和固溶体,然后快速冷却。
这一过程可以提高镁合金的强度和塑性,改善其综合力学性能。
2、时效处理时效处理是将经过固溶处理的镁合金在一定温度下保温一段时间,使过饱和固溶体中的溶质原子析出,形成强化相,从而提高合金的强度。
时效处理的温度和时间对镁合金的性能有着重要影响。
3、退火处理退火处理主要用于消除镁合金在加工过程中产生的残余应力,提高其塑性和韧性。
退火温度和时间的选择需要根据具体的合金成分和加工工艺来确定。
三、热处理对新能源汽车用镁合金力学性能的影响1、强度经过适当的热处理,镁合金的强度可以得到显著提高。
固溶处理使合金元素均匀分布在基体中,时效处理则通过强化相的析出进一步增强合金的强度。
然而,热处理参数的不当选择可能导致强度下降。
2、塑性热处理对镁合金的塑性也有重要影响。
合理的固溶处理和退火处理可以改善镁合金的塑性,使其更容易加工成型。
镁合金挤压及其力学性能研究

随温度降低而降低。如有一B含量大于B。的合
room temperature,they have moderate exlnldability when heated to 230"Cor higher.Under the
condition of these experiment parameters,the extrBded rods end bars have good surface,and
20030305
沈阳工业大学硕士学位论文
摘要
本文研究了AZ91、AZ61及几种含锆镁合金的挤压性能,结果表明尽管镁合金具有 密排六方结构,室温下滑移系较少,塑性较差,但在加热到230℃以上时仍表现出良好 的可挤压性。在本实验参数下,挤压出的杆材和板材表面良好,尺寸符合设计要求。
本文对挤压态镁合金杆材和板材进行了热处理,然后做了显微组织分析和力学性能 测试。结果表明挤压后的镁合金综合力学性能明显高于铸态,抗拉强度较铸态提高 50MPa以上,屈服强度提高30MPa以上。延伸率提高5%以上:挤压后的镁合金显微组织 均匀细小,平均晶粒度在15 p m以下,而挤压前的铸态组织晶粒度在80 u m以上:热处 理对挤压态镁合金力学性能的影响因合金牌号不同而不同,对于AZ91板材而言,T4、 T6处理均降低其力学性能,挤压后F态性能最佳,而其它几种含锆合金T6态要好于F 态:断口分析表明AZ61板材的横向拉伸断口与纵向断口形貌有很大不同,横向断口韧 窝呈细条状,而纵向断口呈大小和深浅不一的圆形韧窝,这种断口形貌的差异证明材料 在挤压过程中晶粒有择优取向。其它几种镁合金挤压态断口皆表现为韧性断裂的特征, 室温断口与高温断口特征基本相同,分析表明由于挤压态镁合金室温塑性已经很好,所 以尽管高温下镁合金塑性进一步提高,但断口特征较室温下并无明显变化。
镁合金性质与特点

与氧的亲合力大,常用做还原剂,去置换钛、锆、铀、铍等金属 粉状或细条状的镁,在空气中很易燃烧 金属镁无磁性,且有良好的热消散性 镁能直接与氮、硫和卤素等化合
2020/7/1
2
镁合金的性能
➢ 比重小:铝的2/3,铁的1/4 ➢ 比强度高:比铝合金高50MPa,是碳钢2倍 ➢ 减震性好:阻尼性优于铸铁 ➢ 抗冲击:优于铝合金和软钢 ➢ 切削性好:切削力为铝和软钢的1/2 ➢ 电磁屏蔽优良:可屏蔽频率范围较广 ➢ 易再生利用:可节约资源、保护环境
2020/7/1
10
镁合金性能的改善方法
合金元素影响镁合金的力学、物理、化学和工艺性能
利用固溶强化、析出强化、弥散强化来提高合金的常温和高温力学性能
1.从晶体学、原子的相对大小、化学因素进行考虑 2.较高的固溶度,随温度变化有明显变化,时效后形成有效强化效果的过渡相 3.提高强度: Al>Zn >Cu 4.提高韧性: Zn>Al >Cu
(2) 提高耐蚀性,但也同时增加应力腐蚀敏感性
Zn: (1) 具有固溶强化及时效强化作用,改善机械性质及耐腐蚀性 (2) 含量过高时,流动性降低,减低铸造性
Mn: (1) 与Fe形成高熔点的Al-Fe-Mn化合物沉淀,减少了杂质铁对抗蚀性的危害 (2) 细化晶粒 (3) 提高韧性
Si: (1) 改善铸件的热稳定性, (2) 降低塑性 (3) 提高流动性
比重小 抗冲击
减震 性好
电磁屏蔽 优良
耐腐蚀 性能差
ห้องสมุดไป่ตู้
比强度高
延展 性差
易再生 利用
材料 镁合金
铝合金 工程塑料 铸铁
ρ/gcm-3 1.74-1.90
2.70 1.13-2.0
7.15
镁合金使用寿命以及性能特点

如何提高镁合金的耐高温性能?镁合金在汽车制造、航空工业等方面的应用要求具有一定的高温性能和抗蠕变性能,稀土镁合金(AE系列)能提高合金的高温强度和蠕变强度。
研究表明,加入一定量的锡可改善合金的高温强度;加人硅可改善合金的蟠变强度;加人鳃可提高合金的高温(超过300℃)性能;加入银可提高合金的高温强度和蠕变强度。
在Mg-5Al-1 Zn-1 Si合金中加人0.5%(质量分数)的锑,使合金在150℃时的强度从168 MPa上升到178MPa,屈服强度也从81 MP。
上升到90MPa,抗冲击韧性值从21J上升到30J。
稀土会使镁合金的室温性能变差,为此,加人一些短纤维、晶须、颗粒等复合材料,以改善合金的室温和高温性能。
在Mg-/Li合金中加人一定的Mg0/Mg2Si颗粒,使合金的高温抗蠕变。
性能在温度达210℃前得到显著改善,而且随着温度的升高,改善效果更为明显。
笔记本电脑和手机外壳等在一定的工作温度范围内,要求其尺寸稳定性(抗蠕变性能)要好。
与现有的工程塑料相比,不会因环境改变而改变的镁基耐高温复合材料的性能优势可得到充分施展。
镁基复合材料的制备方法主要有真空(或保护性气氛)浸渗法、粉末冶金法、薄膜冶金法、搅拌铸造法。
提高镁合金材料使用寿命有何技术措施?镁是活泼的金属元素,标准电极电位为负值,且绝对值很大,导致镁及镁合金的耐腐蚀性很差,这阻碍了镁合金产品在应用中发挥优势,限制了其应用范围。
镁合金腐蚀的直接原因是合金元素及杂质元素的引入导致镁合金中出现第二相。
镁合金的腐蚀形态有:电偶腐蚀、点蚀、应力腐蚀开裂、晶间腐蚀和丝状腐蚀以及高温氧化。
镁合金发生电化学腐蚀与溶液的pH值、溶液的性质、合金的成分及所处的环境有关。
为提高镁合金材料的使用寿命,应控制冶金因素以提高镁合金的耐腐蚀性,具体包括合金元素、杂质元素、相组成和微结构。
表面处理技术的研究,如镁合金的化学转化处理、阳极氧化、等离子微弧阳极氧化、金属镀层和物理气相沉积涂层技术等,为等离子技术提高镁合金的耐腐蚀性带来了新的生机。
笔记本镁合金的主要测试指标

笔记本镁合金的主要测试指标文章标题:深度剖析笔记本镁合金的主要测试指标1. 简介笔记本电脑在现代人生活中扮演着越来越重要的角色,而作为其主要结构材料之一的镁合金,其性能测试指标显得尤为重要。
本文将深入探讨笔记本镁合金的主要测试指标,帮助读者更深入地了解这一重要主题。
2. 主要测试指标笔记本镁合金的主要测试指标包括抗拉强度、屈服强度、硬度、延展率、疲劳性能等。
这些指标不仅直接关系到镁合金的力学性能,也影响着其在实际应用中的表现。
2.1 抗拉强度抗拉强度是指在拉伸状态下材料发生破裂之前所能承受的最大拉力,它是评价镁合金拉伸性能的重要指标之一。
高抗拉强度意味着材料具有较高的抗拉性能,能够承受更大的拉力而不破裂。
2.2 屈服强度屈服强度是指材料在拉伸过程中开始出现塑性变形的应力值,它反映了材料的抗塑性变形能力。
对于笔记本镁合金来说,良好的屈服强度能够保证其在长时间使用中不会出现过度的塑性变形。
2.3 硬度硬度是衡量材料抵抗外部力量压入的能力,在评价镁合金的使用寿命和耐磨性方面具有重要意义。
笔记本镁合金具有足够的硬度可以有效抵抗外部损伤,延长其使用寿命。
2.4 延展率延展率是材料在断裂前能够伸长的百分比,它直接影响材料的加工性能和变形能力。
对于笔记本镁合金来说,良好的延展率意味着它在加工成型过程中不易出现开裂和变形。
2.5 疲劳性能疲劳性能是指材料受到交变应力作用下抵抗疲劳破坏的能力。
对于经常需要携带使用的笔记本电脑来说,良好的疲劳性能能够保证其在长时间使用中不会出现因应力变化而导致的损坏。
3. 个人观点和理解在我看来,笔记本镁合金的主要测试指标代表着其在实际应用中的性能表现。
而这些指标不仅是从材料力学性能的角度来考量,更是直接关系到笔记本电脑的使用寿命、耐久性和安全性。
对于厂商来说,必须高度重视这些测试指标,才能保证生产出具有高品质和高可靠性的笔记本产品。
结语通过对笔记本镁合金的主要测试指标进行深入剖析,我们更加全面地了解了这一重要主题。
镁合金熔点

镁合金熔点镁合金熔点是1500-1700摄氏度左右,镁合金具有比铝合金更好的成形性能,且密度也只有铝合金的四分之三,同时还能提高零件的抗腐蚀能力。
因此,在航空发动机制造领域中,镁合金被广泛应用于结构件。
然而,镁合金虽然具有诸多优势,但是由于在生产过程中存在含有大量杂质,导致镁合金的力学性能远低于钢铁,加工困难,这无疑对材料的耐热性和其他机械性能带来不利影响。
并且镁合金需要特殊的表面处理工艺才能满足要求,处理后使得镁合金在氧化气氛中的高温抗蠕变性能严重下降,从而导致部件损坏。
为了解决以上问题,近年来人们开始对镁合金进行改良,并取得了一定的成效,例如采用纳米粉末技术改善镁合金材料的韧性,纳米复合技术增强镁合金的抗疲劳性能等。
在未来的航空发动机中,新型高温合金应该满足三个条件:( 1)减轻重量;( 2)提高疲劳寿命;( 3)实现零件的长寿命设计。
因此,在镁合金领域我们需要注意以下几个方面: 1、材料的组织结构; 2、材料的成形性能; 3、材料的组织稳定性。
随着高强度铝合金在航空发动机结构件中的应用逐渐减少,我国研究人员开始将注意力转移到镁合金身上。
毕竟在高强度轻量化方面,相比于其它航空金属,镁合金的综合优势十分明显。
因此,我们要做的就是采用优化手段将其机械性能与材料的综合性能相匹配,这样才能满足航空发动机结构件所需的力学性能和可靠性。
与此同时,由于镁合金自身较差的导热性,在飞机及航空器中会受到很多约束。
因此,必须要通过改变结构或改善材料来克服,目前常用的解决方案是选用高导热系数的基体材料作为隔热层。
但是由于基体材料的限制,我们只能在隔热材料和热量传输方向发展,因此隔热方法越来越多,例如:陶瓷纤维复合隔热、碳纤维毡隔热、石墨隔热等。
由于镁合金的热导率仅为铝合金的2/3,所以常规方法难以应用。
另外,由于镁合金的密度仅为铝合金的三分之二,使得镁合金在进行深度冷却时受到限制,所以对于单晶体镁合金难以进行连续退火。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引伸计在金属拉力中的作用
如果需要做σ0.2,就需要引伸计。
一般结构钢机械性能试验不用引伸计。
引伸计一般用于屈服强度台阶不明显的材料。
不要引伸计的拉伸曲线,是把标距以外的变形等干扰都包含进曲线了。
试验的可靠性或称准确性值得商榷。
用引伸计才是最准确的。
引申计的量程小,一般用在屈服和屈服之前使用,如在屈服后继续使用,会损坏引申计,引申计用来测量弹性模量,如用一般的差动编码器测量,计算结果会和真实的弹性模量差一个数量级,由标距造成的,引伸计在测量中精度高,但是量程小,所以一般试验机进行拉伸压缩试验都不用引伸计,除非测量弹性模量和要求很高的精度时,而一般试验,一般的差动编码器测位移精度足够,引申计是用来测量变形部分延伸率的,如果不用引伸计就不能得到应力-应变曲线,因为此时得到的应变把拉伸机齿轮空转及位移和非测试部分的位移都算上了。
但是不用引伸计还是可以得到抗拉强度的,另外对于有屈服平台的材料也能得到屈服强度,但是对于没有屈服平台就是连续屈服的材料就没办法得到屈服强度了。
关于引伸计除了通产所见的机械引伸计外目前比较流行的是激光引伸计,测试时有激光打在样品上作为测量位移的标定。
应力-应变曲线
•标题:时效处理对变形镁合金延伸率的影响
•作者:姜婷郭学锋马光杨文朋来源期刊:《钛工业进展》2008年第6期格式:PDF 页数:3页
•摘要:对ZK60镁合金进行不同工艺的时效处理,分析时效工艺对组织和硬度的影响,同时研究了时效前后的延伸率变化。
结果表明:时效处理后,随时效时间的延长和温度的升高,合金组织出现晶粒长大,强化相的扩散,溶解;在120℃,12h处理后,硬度提高43.44%,延伸率达到2 4.87%。
弹性模量
弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
第二相强化
复相合金与单相合金相比,除基体相以外,还有第二相得存在。
当第二相以细小弥散的微粒均匀分布于基体相中时,将会产生显著的强化作用。
这种强化作用称为第二相强化。
第二相强化的主要原因是它们与位错间的交互作用,阻碍了位错运动,提
高了合金的变形抗力。
对于位错的运动来说,合金所含的第二相有以下两种情况:
1、不可变形微粒的强化作用。
2、可变形微粒的强化作用。
弥散强化和沉淀强化均属于第二相强化的特殊情形。