东北大学2016-2017矩阵分析 试题

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

矩阵分析期末考试

错误! 2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 一、(共30分,每小题6分)完成下列各题: (1)设4R 空间中的向量????????????=23121α,????????????--=32232α,????????????=78013α,????????????--=43234α,???? ? ? ??????--=30475α Span V =1{}321,,ααα,Span V =2 {}54,αα,分别求21V V +和21V V 的维数. 解:=A {}54321,,,,ααααα? ? ??? ? ??? ???--→000004100030110 202 01 21V V +和21V V 的维数为3和1 (2) 设()T i i 11-=α,()T i i 11-=β是酉空间中两向量,求内积()βα, 及它们的长度(i =). (0, 2, 2); (3)求矩阵?? ??? ?????----=137723521111A 的满秩分解. 解:?? ?? ? ?????----=137723521111A ??????? ? ??? ????? -- --→0000747510737201

??????????----=137723521111A ??????????--=775211??????? ? ?? ??? ??? ----747 510737201* (4)设-λ矩阵??? ? ? ??++=2)1(0000 00 )1()(λλλλλA ,求)(λA 的Sm ith 标准形及其行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()??? ? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 * H x x α=,验证x 是向量 范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为?? ?? ? ?????-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]?? ?? ? ?????-021110111,,321εεε 线性变换T的值域为T(V)= {}321312,span εεεεε+++ 所以A (V)的维数为2, 基为{}321312,εεεεε+++ (2)矩阵A的核为AX=0的解空间。不难求得AX=0的基础解系是[2, -1, 1]T , 因此)(A N 的维数为1, 基为3212εεε+-.

北京理工大学2017级硕士研究生矩阵分析考试题

北京理工大学2017-2018学年第一学期 2017级硕士研究生〈矩阵分析〉终考试题 一、(10分)设线性变换f 在基123[1,1,1],[1,0,1],[0,1,1] ααα=-=-=下的矩阵表示为101110123A -????=????-?? (1)求f 在基123[1,0,0],[0,1,0],[0,0,1]εεε===下的矩阵表示。 (2)求f 的核与值域。 二、(10分)求矩阵20000i A ????=?????? 的奇异值分解。 三、(10分)求矩阵111222111A -????=-????--?? 的谱分解。 四、(15分)已知(1)n u R n ∈>为一个单位列向量,令T A I uu =-,证明 (1)21A =; (2)对任意的X R ∈,如果有AX X ≠,那么22AX X <。 五、(15分)已知矩阵1212a A a ??-??=????-???? , (1)问当a 满足什么条件时,矩阵幂级数121()k k k A ∞ =+∑绝对收敛? (2)取a = 0,求上述矩阵幂级数的和。

七、(20分)求下列矩阵的矩阵函数2,sin ,cos tA e A A π π 300030021 01300103123001013000301 00013()()()A A A ??????????? ???===?????? ???????????? 八、(5分)已知 sin 53sin 2sin 52sin sin 5sin sin sin 5sin 2sin 52sin sin 5sin sin 5sin 2sin 52sin sin 53sin t t t t t t tA t t t t t t t t t t t t +--????=-+-????--+?? 求矩阵A 。 九、(5分)已知不相容线性方程组 141223341 10 x x x x x x x x +=??+=??+=??+=? 求其最佳最小二乘解。 十、(10分)已知Hermite 二次型 12312132131(,,)f x x x ix x x x ix x x x =+-+ 求酉变换X UY =将123(,,)f x x x 化为标准型。

东北大学数值分析实验报告

数值分析设计实验实验报告

课题一 迭代格式的比较 一、问题提出 设方程f 3 - 3x –1=0 有三个实根 x * 1 =1.8793 , x *2=-0.34727 ,x *3=-1.53209现采用下面三种不同计算格式,求 f(x)=0的根 x * 1 或x *2 1、 x = 21 3x x + 2、 x = 3 1 3-x 3、 x = 313+x 二、要求 1、编制一个程序进行运算,最后打印出每种迭代格式的敛散情况; 2、用事后误差估计k k x x -+1? ε来 3、初始值的选取对迭代收敛有何影响; 4、分析迭代收敛和发散的原因。 三、目的和意义 1、通过实验进一步了解方程求根的算法; 2、认识选择计算格式的重要性; 3、掌握迭代算法和精度控制; 4、明确迭代收敛性与初值选取的关系。 四、程序设计流程图

五、源程序代码 #include #include void main() { float x1,x2,x3,q,a,z,p,e=0.00001; x1=-1.0000;x2=-1.0000;x3=1.0000; int i,y=3; printf("0 %f %f %f\n",x1,x2,x3); q=x1-p;a=x2-p;z=x3-p; for(i=1;i<=60;i++) { if(q(0-e)) goto a; else { p=x1; x1=(3*x1+1)/(x1*x1); printf("%d 1 %f\t",i,x1); q=x1-p; }

a: if(a(0-e)) goto z; else { p=x2; x2=(x2*x2*x2-1)/3; printf("%d 2 %f\t",i,x2); a=x2-p; } z: if(z(0-e)) goto end; else { p=x3; x3=pow((3*x3+1),1.0/y); printf("%d 3 %f\n",i,x3); z=x3-p; } end:; } } 六。程序运行结果 七.程序运行结果讨论和分析: 对于迭代格式一、二、三对于初值为-1.0000,-1.0000,1.0000分别迭代了37次,8次,10次,由此可知,简单迭代法的收敛性取决于迭代函数,以及初值x 的选取,并且对初值的选取要求较高,需谨慎选取。

矩阵分析期末考试2012

2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 学号 姓名 一、(共30分,每小题6分)完成下列各题: (1)设4 R 空间中的向量????????????=23121α,????????????--=32232α,????????????=78013α,???? ?? ??????--=43234α, ????? ? ??????--=30475α Span V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和21V V 的 维数. 解:=A {} 54321,,,,ααααα? ? ??? ? ??? ???--→000004100030110 202 01 21V V +和21V V 的维数为 3和1 (2) 设() T i i 11-=α,() T i i 11-=β是酉空间中两向量,求 内积()βα, 与它们的长度(i = . (0, 2, 2); (3)求矩阵?? ?? ? ?????----=137723521111A 的满秩分解.

解:?? ?? ? ?????----=137723521111A ??????? ? ??? ???? ? -- --→0000747510737201 ??????????----=137723521111A ??????????--=775211??????? ??? ??? ?? ? ----747 510737201* (4)设-λ矩阵???? ? ??++=2)1(000000 )1()(λλλλλA ,求)(λA 的标准形与其 行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()??? ? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 *H x x α=, 验证x 是向量范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为 ?? ?? ? ?????-=021110111A , (1)(5分)求T 的值域)(T R 的维数与一组基; (2)(5分)求T 的核)(T N 的维数与一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]?? ?? ? ?????-021110111,,321εεε

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

第1章 线性空间和线性变换(详解) 1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用 ij E (,1,2, ,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素 为1外,其余元素全为0的矩阵. 显然,ii E ,ij E 都是对称矩阵,ii E 有(1) 2 n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1) 2 n n +个矩阵线性表示,此即对称矩阵组成 (1) 2 n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1) 2 n n -. 评注:欲证一个集合在加法与数乘两种运算下是一个(1) 2 n n +维线性空间,只需找出 (1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1) 2 n n +个向量线性表示即可. 1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可. 1-3 解:方法一 设11223344x x x x =+++A E E E E 即 123412111111100311100000x x x x ??????????=+++???????????????????? 故 1234 1231211203x x x x x x x x x x +++++?? ??=??? ?+???? 于是 12341231,2x x x x x x x +++=++=

1210,3x x x +== 解之得 12343,3,2,1x x x x ==-==- 即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --. 方法二 应用同构的概念,22R ?是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T , 1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有 111111 000 31110201003110000 01021000300011???? ????-??? ?→???? ??? ? -???? 因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --. 1-4 解:证:设112233440k k k k αααα+++= 即 12341234123134 12411111110110110110 k k k k k k k k k k k k k k k k k ????????+++???????????????? +++++??==??++++?? 于是 12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++= 解之得 12340k k k k ==== 故1234,,,αααα线性无关. 设

新版东北大学数学考研经验考研真题考研参考书

一年就这样过去了,内心思绪万千。 一年很短,备考的经历历历在目,一年很长,长到由此改变了一个人的轨迹,并且成就一个梦想。回忆着一年的历程,总想把它记录下来,希望可以给还在考研道路上奋斗的小伙伴们一点帮助。 考研是一个非常需要坚持的过程,需要你不断坚持和努力才能获得成功,所以你必须要想清楚自己为什么要考研,这一点非常重要,因为只有确认好坚定的动机,才能让你在最后冲刺阶段时能够坚持下来。 如果你只是看到自己周围的人都在考研而决定的考研,自己只是随波逐流没有坚定的信心,那么非常容易在中途就放弃掉了,而且现在考研非常火热,这就意味着竞争也会非常激烈,而且调剂的机会都会非常难得,所以备考时的压力也会比较大,所以大家一定要调整好心态,既不能压力太大,也不能懈怠。 既然选择了,就勇敢的走下去吧。 考研整个过程确实很煎熬,像是小火慢炖,但是坚持下来,你就会发现,原来世界真的是美好的。 文章整体字数较多,大家可视自己情况阅读,在文章末尾我也分享了自己备考过程中的资料和真题,大家可自行下载。 东北大学数学的初试科目为: (101)思想政治理论(201)英语一或(240)二外德语 (618)数学分析和(814)高等代数 参考书目为: 1.《数学分析》陈传璋,高等教育出版社,2004年 2.《实变函数与泛函分析》(1-3章),宋叔尼,科学出版社,2007年

3.《高等代数》(1-9章),北京大学数学系,高等教育出版社,2003年 4.《近世代数》(1-2章),杨子胥,高等教育出版社,2003年 跟大家先说一下英语的复习吧。 学英语免不了背单词这个难关,词汇量上不去,影响的不仅是考试成绩,更是整体英语能力的提升;背单词也是学习者最感到头痛的过程,不是背完了转身就忘,就是背的单词不会用,重点单词主要是在做阅读的时候总结的,我把不认识不熟悉的单词全都挑出来写到旁边,记下来反复背直至考前,总之单词这一块贵在坚持,背单词的日程一定要坚持到考研前一天。 因此,学会如何高效、科学地记忆词汇,养成良好的记单词习惯,才能达到事半功倍的学习效果,我用的是《木糖英语单词闪电版》,里面的高频词汇都给列出来了,真的挺方便的,并且刷真题我用的《木糖英语真题手译》这本书,我感觉对我帮助特别大,里面的知识点讲解的通俗易懂,而且给出的例子都很经典,不容易忘记。 前期,在这段时间最重要的是积累,也就是扩充自己的词汇量,基础相对差一些的同学可以背考研单词,而基础相对好一些的同学考研单词相对于你来说就会比较简单,这时就不必浪费时间,可以进行外刊阅读。由于考研英语阅读的文章全部都是从外刊中摘录的,所以进行外刊阅读就可以把其当作“真题”的泛读。 中期,在期末考试和小学期结束之后就要开始做真题了,我从最早的那年开始一路做下来,留了三套考前模拟,大概是有二十多套。我一般会第一天做一套然后后面花1~2天的时间对文章进行精读及分析错误原因。早些年的英语出题有相当难度,考察的有不少都是很复杂的句式及熟词僻义,这与近几年的考察角度是完全不同的,所以我建议时间不多的同学完全可以放弃早些年的真题,然后

矩阵分析模拟试题及答案

矩阵分析模拟试题及答案 一.填空题(每空3分,共15分) 1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24. 2. 设向量组T )4,3,2,1(1=α,T )5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则 ),,,(4321ααααR =2. 3. 已知??? ?? ??---=11332 223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵????? ??------=12422 421x A 与??? ? ? ??-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()32212 3222132122, ,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值 范围是22< <-a . 二.单项选择题(每小题3分,共15分) 1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵, 记????? ??=1000110011P ,??? ?? ??=010*******P ,在则=A ( D ) 21)(P P A 211)(P P B - 12)(P P C 112)(-P P D 2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例 )(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合 3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1 )2(-B 的特 征值为(B ) )(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 2 3

东北大学 数值分析 07(研)数值分析

数值分析试题 2007.12 一、简答下列各题:(每题4分,共20分) 1.为了提高计算精度,求方程x 2-72x+1=0的根,应采用何种公式,为什么? 2.设??? ? ??=2112A ,求)(A ρ和2)(A Cond 。 3.设??? ? ? ??=131122321A ,求A 的LU 分解式。 4.问23221)2(x x x x ++=是不是3R 上的向量范数,为什么? 5.求数值积分公式?-≈b a a b a f dx x f ))(()(的截断误差R[?]。 二、解答下列各题:(每题8分,共56分) 1.已知线性方程组??? ??=-+=-+=-+3 53231 4321 321321x x x x x x x x x ,问能用哪些方法求解?为什么? 2.解线性方程组b Ax =的Gauss-Seidel 迭代法是否收敛?为什么?其中: ???? ? ??--=211111112A 3.设]2,0[)(4C x f y ∈=,且0)0(,0)2(,2)1(,1)0(='===f f f f ,试求)(x f 的三次插值多项式)(3x H ,并写出余项)()()(33x H x f x R -=。 4.给定离散数据 试求形如3bx a y +=的拟合曲线。 5.求区间[0,1]上权函数为x x =)(ρ的正交多项式)(0x p ,)(1x p 和)(2x p 。 6.确定求积系数321,,A A A ,使求积公式: ? +++- ≈3 1 321)5 32()2()532()(f A f A f A dx x f

具有尽可能高的代数精度,并问代数精度是多少? 7. 利用2=n 的复化Simpson 公式计算计算定积分 ,并估计误差][f R 。 三、(12分)已知方程0cos 2=-x x , 1.证明此方程有唯一正根α; 2.建立一个收敛的迭代格式,使对任意初值]1,0[0∈x 都收敛,说明收敛理由和收敛阶。 3.若取初值00=x ,用此迭代法求精度为510-=ε的近似根,需要迭代多少步? 四、(12分)已知求解常微分方程初值问题: ?? ?∈=='] ,[,)(),(b a x a y y x f y α 的差分公式: ?? ??????? =++==++=+α 0121211 ) 32 ,32() ,()3(4 y hk y h x f k y x f k k k h y y n n n n n n 1.证明:此差分公式是二阶方法; 2.用此差分公式求解初值问题1)0(,10=-='y y y 时,取步长h=0.25,所得数值解是否稳定,为什么? ?1 0sin xdx

多元统计分析期末试题及答案

22121212121 ~(,),(,),(,),, 1X N X x x x x x x ρμμμμσρ ?? ∑==∑= ??? +-1、设其中则Cov(,)=____. 10 31 2~(,),1,,10,()()_________i i i i X N i W X X μμμ=' ∑=--∑L 、设则=服从。 ()1 2 34 433,4 92,32 16___________________ X x x x R -?? ?'==-- ? ?-? ? =∑、设随机向量且协方差矩阵则它的相关矩阵 4、 , , 。 215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。 12332313116421(,,)~(,),(1,0,2),441, 2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -?? + ??? 、设其中试判断与是否独立? (),123设X=x x x 的相关系数矩阵通过因子分析分解为 211X h = 的共性方差111X σ= 的方差21X g = 1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ? ? - ????? ? -?? ? ? ?=-=-+ ? ? ? ??? ? ? ????? ? ???

矩阵分析课后习题解答版

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

北京交通大学研究生矩阵分析期末考试试卷(7份)

2004-2005学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 班级 学号 姓名 一. (12分)3[]R x 表示由次数小于3的多项式组成的线性空间。在 3[]R x 中取两个基:21231,1,(1)x x ααα==-=-; 21232,2,(2)x x βββ==-=-。(1)求123,,βββ到123,,ααα的过度矩阵,(2) 求21x x ++ 在123,,ααα下的坐标。 二. (14分)设T 是n R 的线性映射,对任意12(,, ,)T n n x x x x R =∈满足 11(0,, ,)n Tx x x -=。(1)证明0n T =; (2)求T 的核()N T 及值域 ()R T 的 基和维数。 三. (12分)设1023510224i A i i i -?? ?=++ ? ?-??,120x i -?? ? ?= ? ? ?-?? ,i = 。 计算11, , , Ax Ax A A ∞∞。 四.(10分)求矩阵1123101032160113A -?? ?-- ? = ?- ? ?-? ? 的满秩分解。 五. (12分)求矩阵011110101A ?? ? = ? ??? 的正交三角分解A UR =,其中U

是酉矩阵,R 是正线上三角矩阵。 六. (16分,1、2小题各5分, 3小题6分)证明题: 1. 设A 是n 阶正规矩阵,且满足2320A A E -+=。证明A 是Hermite 矩阵,并写出A 的Jordan 标准形的形式。 2.设A 是正定Hermite 矩阵,且A 是酉矩阵,证明A E =。 3.证明:若A 是Hermite 矩阵,则iA e 是酉矩阵。 七. (24分) 设100011101A ?? ? =- ? ?-?? 。(1)求E A λ-的Smith 标准形; (2)写出A 的最小多项式, A 的初等因子和Jordan 标准形; (3)求相似变换矩阵P 使得1P AP J -=;(4)求1P -矩阵函数()f A ,并计算tA e 。 2004-2005学年第一学期硕士研究生矩阵分析考试试卷(B) 专业 班级 学号 姓名 一. (12分)设3R 两个:123(1,0,1),(1,0,0),(0,1,1)T T T ααα==-=; 123(0,1,1),(1,1,0),(1,0,1)T T T βββ=-=-=。(1)求123,,ααα到 123,,βββ的过度矩阵,(2) 求子空间V ,其中V 中的向量在两个基下的坐标相同。 二. (14分)设线性映射43:T R R →满足:对任意41234(,,,)T x x x x R ∈, 求的核()N T 及值域()R T 的基和维数。

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

矩阵分析 2018年期末试题

一、填空题 1、4[]R x 表示实数域R 上所有次数小于或等于3的多项式构成的向量空间,则微分算子 D 在4[]R x 的基 321234(),(),(),()1p x x p x x p x x p x ====下的矩阵表示______________。 2、λ-矩阵 322(1)()(1)A λλλλλλ??- ?=- ? ??? 的初等因子组为______________________ _______________, Smith 标准形是___________________________ 3、已知矩阵210024120A -??? ?=??????,则 1____,A =____,A ∞= _____F A = 其中1,∞??分别是由向量的1-范数和∞-范数诱导出来的矩阵范数(也称算子范数), F ?是矩阵的Frobenius 范数。 4. 已知函数矩阵222()2x A x x ??= ???,则22()d A x dx =___________, 5、已知n 阶单位矩阵I , 则 sin _______,2I π= 2______,i I e π=cos _______.I π= 6、设()m J a 表示主对角元均为 a 的m 阶Jordan 块。则 ()k m J a 的Jordan 标准形为________ _______, ()k m J a 的最小多项式为___________,这里0,a ≠ ,m k 是整数且 1,1m k >≥. 二、 已知 220260114A -????=?????? , (1)求矩阵的Jordan 标准形和最小多项式; (2)求矩阵函数 sin ,.t A A e 30(())_______.t A x dx '=?

矩阵分析习题

一,设311202113A -?? ?=- ? ?--?? (1)求矩阵e At . (2)求()At d e dt . 二,(15分)设矩阵1001200-1A ??????=?????? , (1)求矩阵A 的奇异值。 (2)求矩阵A 的奇异值分解。 三、证明对任何方阵A 和B ,有 A B A B B A e =e e =e e ⊕??,其中A B=A I+I B ⊕??。 四、已知102011121A -?? ?= ? ?--?? (1) 写出A 的若当标准型 (2) 写出A 的最小多项式()A m λ (3)计算矩阵函数At e 五、设矩阵方程为AX XB D +=,其中111020,,02011A B D λ--??????=== ? ? ??????? (1) 当λ为何值时, 矩阵方阵有唯一解 (2) 当=1λ 时,求矩阵的解X 六、设 110021001A ?? ?= ? ??? ,求一个次数不超过3 的矩阵多项式 ()g x , 将矩阵函数 ()cos A 用矩阵多项式 ()g A 表示出来 七、对给定的矩阵5010,1253A B -????== ? ????? , 矩阵空间22 R ?上的线性变换 T 被定义为 : ()22 ,T X AX XB X R ?=+?∈ (a) 求变换 T 在空间 22 R ?的基 {}11211222,,, E E E E 下的变换矩阵P .

(b) 求矩阵P 的特征值 , 讨论P 是否可逆 八、叙述奇异值分解定理(即酉相抵标准形定理)并用其证明方阵的极分解定理: 九、设A 是n 阶不可约非负矩阵,证明:若A 恰有d 个对角元非零,则21n d A O --> . 十、证明分块上三角矩阵为酉矩阵当且仅当其为对角块均为酉矩阵的分块对角阵 十一、试证:如果A 是n 阶正规矩阵,则A 相应于不同特征值的特征向量复正交 十二、设矩阵U 是酉矩阵,()12diag ,, ,n A a a a = 证明UA 的所有特征值λ满足 不等式 {}{}min max i i i i a a λ≤≤ 十三、设A 是正定Hermite 矩阵,B 是斜Hermite 矩阵,证明A B +是可逆矩阵. 十四、证明若A 是Hermite 矩阵,则i A e 为酉矩阵 十五、设A 是正规矩阵,证明A 是酉矩阵的充要条件是A 的特征值的绝对值等于1。 十六、设,A B 均为n 阶半正定阵,证明A B 也是半正定阵. 十七、设,m m n n A C B C ??∈∈ 及m n F C ?∈ ,且,A B 无公共特征值, 证明: B O F A ?? ??? 与B O O A ?? ??? 相似 十八、设A 是n 阶复方阵,(){}12,,,n Spec A λλλ=,证明: ()(){} 1211k k i i i k Spec C A i i n λλλ=≤<<≤ 十九、陈述Perron-Frobenius 系列定理。 二十、陈述关于Hermite 方阵特征值的min-max 原理

东北大学数值分析上机实验报告

《数值分析》上机实验报告课题三解线性方程组的迭代法 学生姓名: 学生系别: 学生班级: 日期:

上机实践报告 【运行环境】 软件:Windows、Microsoft Visual C++ 6.0 PC一台 【问题提出】 对课题二所列目的和意义的线性方程组,试分别选用Jacobi 迭代法,Gauss-Seidol迭代法和SOR方法计算其解。 【实践要求】 1、体会迭代法求解线性方程组,并能与消去法做比较; 2、分别对不同精度要求,如ε=10-3,10-4,10-5 由迭代次数体会 该迭代法的收敛快慢; 3、对方程组2,3使用SOR方法时,选取松弛因子 =0.8,0.9,1, 1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松 弛因子的最佳者; 4、给出各种算法的设计程序和计算结果。

【目的意义】 1、通过上机计算体会迭代法求解线性方程组的特点,并能和消去法 比较; 2、运用所学的迭代法算法,解决各类线性方程组,编出算法程序; 3、体会上机计算时,终止步骤 < 或k >(予给的迭代次数),对迭 代法敛散性的意义; 4、体会初始解 x ,松弛因子的选取,对计算结果的影响。 【程序代码】 //Jacobi.cpp #include #include using namespace std; #define N 15//最大迭代次数 #define P 10//矩阵的阶数 //#define P 8 static double a[10][10]={4,2,-3,-1,2,1,0,0,0,0, 8,6,-5,-3,6,5,0,1,0,0, 4,2,-2,-1,3,2,-1,0,3,1, 0,-2,1,5,-1,3,-1,1,9,4, -4,2,6,-1,6,7,-3,3,2,3, 8,6,-8,5,7,17,2,6,-3,5, 0,2,-1,3,-4,2,5,3,0,1, 16,10,-11,-9,17,34,2,-1,2,2, 4,6,2,-7,13,9,2,0,12,4, 0,0,-1,8,-3,-24,-8,6,3,-1}; static double b[10]={5,12,3,2,3,46,13,38,19,-21}; static double x_jing[10]={1,-1,0,1,2,0,3,1,-1,2};//精确解 static double x0[10]={0,0,0,0,0,0,0,0,0,0}; static double x1[10]; static int k,i,j; //static double a[8][8]={4,2,-4,0,2,4,0,0,

相关文档
最新文档