根轨迹分析根轨迹分析稳定性

合集下载

自动控制原理第5章根轨迹分析法

自动控制原理第5章根轨迹分析法

04
CATALOGUE
根轨迹分析法的限制与挑战
参数变化对根轨迹的影响
参数变化可能导致根轨迹的形状和位置发生变化 ,从而影响系统的稳定性和性能。
对于具有多个参数的系统,根轨迹分析可能变得 复杂且难以预测。
需要对参数变化进行细致的监测和控制,以确保 系统的稳定性和性能。
复杂系统的根轨迹分析
对于复杂系统,根轨 迹分析可能变得复杂 且难以实现。
02
CATALOGUE
根轨迹的基本概念
极点与零点
极点
系统传递函数的极点是系统动态 特性的决定因素,决定了系统的 稳定性、响应速度和超调量等。
零点
系统传函数的零点对系统的动 态特性也有影响,主要影响系统 的幅值和相位特性。
根轨迹方程
根轨迹方程是描述系统极点随参数变 化的关系式,通过求解根轨迹方程可 以得到系统在不同参数下的极点分布 。
05
CATALOGUE
根轨迹分析法的改进与拓展
引入现代控制理论的方法
状态空间法
将根轨迹分析法与状态空间法相结合,利用状态空间法描述系统的动态行为,从而更全 面地分析系统的稳定性。
最优控制理论
将根轨迹分析法与最优控制理论相结合,通过优化系统的性能指标,提高系统的稳定性 和动态响应。
结合其他分析方法
根轨迹方程的求解方法包括解析法和 图解法,其中图解法是最常用的方法 。
根轨迹的绘制方法
手工绘制
通过选取不同的参数值,计算对应的极点,然后绘制极点分布图。这种方法比较繁琐,但可以直观地了解根轨迹 的形状和变化规律。
软件绘制
利用自动控制系统仿真软件,如MATLAB/Simulink等,可以方便地绘制根轨迹图,并分析系统的动态特性。

自动控制原理--控制系统的根轨迹分析及特殊根轨迹

自动控制原理--控制系统的根轨迹分析及特殊根轨迹

j1
s0
j1
jk
s sk
j1
jk
单位阶跃响应为
n
y(t) A0 Akeskt k 1
m
m
Ks zi Kzi
A0
i1 n
s sj
i1 n
GB(0)
sj
j1
s0
j1
m
m
K s zi
Ak
i1 n
s sj
1 s
K sk zi
i1 n
sk sk sj
jk
1
s2
100 8s 100
4 3
os1
1.5
1.7
可求得 0.4, ,n 10
s3
所以 % e 1 2 100% 25%,ts (s3.)5 n 3.5 4 0.9
j
0
利用根轨迹分析控制系统的性能
例11 分析K的变化对系统稳定性的影响
K (s 3) G(s)H (s) s(s 5)(s 6)(s2 2s 2)
增加开环极点的影响 增加极点对根轨迹形状的影响
增加开环零点的影响 增加零点对根轨迹形状的影响
例9 已知某系统闭环传递函数
GB (s) 0.67s 1
1 0.01s2
0.08s 1
试计算在单位阶跃输入时的系统输出超调量 % 和调节时间t。s
解:该闭环系统有三个极点,s1 1.5, s2,3 零4 、j9.2极点 分布如右图。
系统稳定的K的范围为: 0<K<35
例12 分析K的变化对系统的影响。设负反馈系统的开环传递函数为
K s z G(s)H(s) ss p
z p
求系统闭环根轨迹,并分析 p 2, 时z系 统4 的动态性能。

利用根轨迹法分析汽车结构参数对操纵稳定性的影响

利用根轨迹法分析汽车结构参数对操纵稳定性的影响
4 3 2
As 4 B " C +D - =0 - s 4 - s4E
其 中,
2 2 2

A = Tm 4 ms n - m h


m1II £ z
’ 2
B = 一 一 ms I Y I h Na m h u ' h Ym — N _I I I Z
根轨迹是当开环系统某一参数 ( 如根轨迹增益 K ,从 零 变化 到无 穷 时 , 一 c ) 闭环 特征 方 程 的根 在 s 面 平 上移动 的轨迹。根轨迹增益 K 是首 1 形式开环传 递 函数 对应 的系数 】 。 依据根轨迹图 , 就可 以分 析系统性 能随参数 ( 如
K 变 化 的规 律 。开环 增益 从零 变 到无 穷 大 时 , 轨 ) 根 迹 全 部 落 在左 半 s 面 , 平 因此 , K>0时 , 当 系统 是 稳 定 的 ;如果 系统 根 轨迹越 过 虚轴 进 入右 半 s 面 , 平 则 在 相 应 值 下 , 统是 不稳 定 的 ; 轨迹 与 虚 轴 交 点 系 根 处 的 K值 , 是 临界 开环增 益 。 就
研究操纵稳定性影响因素的方法很多 ,其 中根
轨 迹 法 在稳 定性 研究 方 面 , 有非 常 好 的直 观性 。 具

mu l N -y

I PN Y l+m u l t + | s N 一 L h N
^ y —Y

D = Y ^

一m N ̄y + , hu ,
利用 Maa tb软件 编程 , 制 根轨 迹 图。由于根 轨 l 绘
1 汽 车三 自 由度 方 程传 递 函数 和 特 征 方程 迹图对称于实轴 , 以只画出实轴 以上的部分。汽车 所 的求解 的结构参数是相互影响的 ,但为 了分析这些参数对

自动控制原理根轨迹法总结

自动控制原理根轨迹法总结

自动控制原理根轨迹法总结
【根轨迹法概述】
-根轨迹法是分析线性时不变系统稳定性和动态性能的一个重要工具。

它通过在复平面上绘制闭环极点随系统参数变化的轨迹来实现。

【根轨迹法的基本原理】
1. 定义与目的:
-根轨迹是系统开环增益变化时,闭环极点在s平面上的轨迹。

-主要用于分析系统稳定性和设计控制器参数。

2. 绘制原则:
-根据系统开环传递函数,确定轨迹的起点和终点,分支点,穿越虚轴的点等。

-利用角度判据和幅值判据确定根轨迹。

【根轨迹法的应用】
1. 系统稳定性分析:
-根据闭环极点的位置判断系统的稳定性。

-极点在左半平面表示系统稳定,右半平面表示不稳定。

2. 控制器设计:
-调整控制器参数(如比例增益、积分时间常数、微分时间常数等),使根轨迹满足性能指标要求。

-确定合适的开环增益,使闭环系统具有期望的动态性能和稳定裕度。

【根轨迹法的优势与局限性】
-优势:直观、便于分析系统特性,特别是在控制器设计中。

-局限性:仅适用于线性时不变系统,对于非线性或时变系统不适用。

【实践中的注意事项】
-在绘制根轨迹时,应仔细考虑系统所有极点和零点的影响。

-必须结合其他方法(如奈奎斯特法、波特法等)进行综合分析。

【结语】
-根轨迹法是自动控制领域中一种非常有效的工具,对于理解和设计复杂控制系统具有重要意义。

-掌握根轨迹法,能够有效地指导实际的控制系统设计和分析。

编制人:_____________________
日期:_____________________。

控制系统中的稳定性分析

控制系统中的稳定性分析

控制系统中的稳定性分析控制系统是现代工业生产中不可或缺的一部分,它可以通过传感器采集实时数据、通过控制器对数据进行处理,进而控制被控对象的运动或状态,达到控制目的。

在控制系统中,稳定性是最基本也是最重要的性能之一,而稳定性分析是控制系统的重要组成部分。

本文将围绕控制系统中的稳定性分析进行阐述。

一、稳定性的定义稳定性是指该系统在输入外部干扰或扰动的影响下,输出的运动状态是否始终保持在某一范围内,没有出现震荡或失稳的现象。

稳定性是控制系统的最基本的性能之一,是控制系统能否正常工作的基础。

二、控制系统中的稳定性类型根据控制系统的输出,控制系统的稳定性被分为两个主要类型:渐进稳定和瞬态稳定。

1. 渐进稳定渐进稳定是指控制系统在受到外界扰动后输出逐渐趋于稳定的情况。

在控制系统中,一个标准的渐进稳定系统应该满足以下三个条件:(1)系统输出必须有界;(2)当外界干扰为零时系统输出应该收敛于一个固定的值;(3)系统必须不具有周期性行为。

2. 瞬态稳定瞬态稳定是指控制系统在受到外界干扰后,输出通过系统自身调节能够在短时间内恢复到初始状态。

对于瞬态稳定的控制系统,在外界扰动干扰之后,系统应该在一定的时间范围内就能够恢复到稳态,并不受外界扰动的影响。

三、稳定性分析方法1. 时域分析法时域方法是根据系统传递函数展开的分析方法,它可以通过对系统传递函数进行分析,从而得出系统的稳定性状态。

时域方法的主要思路是,将系统的传递函数加上一个扰动,观察系统的反应,并根据系统的反应进行分析。

2. 频域分析法频域方法是根据系统的频率特性展开的分析方法,它可以通过对系统在不同频率下的响应进行分析,从而得出系统的稳定性状态。

频域方法的核心思想是,根据系统的传递函数得到其频率响应,然后通过求解系统的幅频特性曲线和相频特性曲线,来判断系统的稳定性情况。

四、稳定性分析技术1. 极点分析法极点分析法是一种基于控制理论的分析方法,它可以将系统的传递函数分解为多个一次项的乘积,然后分析每个一次项的为稳定极点,找出系统的稳定性状况。

控制系统的根轨迹分析实验报告

控制系统的根轨迹分析实验报告

一、实验目的1. 熟悉控制系统根轨迹的基本概念和绘制方法。

2. 掌握利用MATLAB软件绘制和分析控制系统根轨迹的方法。

3. 通过根轨迹分析,了解系统参数变化对系统性能的影响。

4. 培养实验操作能力和数据处理能力。

二、实验原理根轨迹是指当系统的某一参数(如开环增益K)从0变化到无穷大时,闭环系统的特征根在s平面上的变化轨迹。

通过分析根轨迹,可以了解系统在参数变化时的稳定性、瞬态响应和稳态误差等性能。

三、实验设备1. 计算机2. MATLAB软件3. 控制系统实验箱四、实验内容1. 绘制控制系统根轨迹(1)首先,根据实验要求,搭建控制系统的数学模型。

(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。

(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。

2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。

(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。

(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。

3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。

(2)重新绘制根轨迹,观察根轨迹的变化规律。

(3)分析系统参数变化对系统性能的影响。

五、实验结果与分析1. 绘制控制系统根轨迹(1)根据实验要求,搭建控制系统的数学模型,得到开环传递函数。

(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。

(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。

2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。

(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。

(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。

3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。

(2)重新绘制根轨迹,观察根轨迹的变化规律。

(3)分析系统参数变化对系统性能的影响。

《根轨迹分析法》课件

《根轨迹分析法》课件

《根轨迹分析法》课件1. 课件简介根轨迹分析法是一种用于分析和设计反馈控制系统的方法,通过绘制系统的根轨迹来了解系统在不同参数下的稳定性和动态性能。

本课件将介绍根轨迹分析法的基本概念、方法和应用。

2. 课件内容2.1 根轨迹分析法的基本概念2.1.1 根轨迹的定义根轨迹是指在系统参数变化范围内,使闭环系统稳定的闭环极点轨迹。

2.1.2 根轨迹的性质(1)根轨迹是闭环极点在复平面上的轨迹,反映了闭环系统的稳定性。

(2)根轨迹的形状由系统开环传递函数的极点和零点决定。

(3)根轨迹的分布与系统参数有关,通过改变参数可以改变系统的稳定性和动态性能。

2.2 根轨迹分析法的方法2.2.1 绘制根轨迹的基本步骤(1)确定系统开环传递函数。

(2)画出开环传递函数的极点和零点。

(3)根据系统参数的变化,绘制出根轨迹。

(4)分析根轨迹的形状,判断闭环系统的稳定性。

2.2.2 根轨迹的绘制技巧(1)利用软件工具,如MATLAB,自动绘制根轨迹。

(2)手动绘制根轨迹时,注意利用对称性和周期性简化绘制过程。

2.3 根轨迹分析法的应用2.3.1 设计控制器通过分析根轨迹,可以确定控制器参数,使闭环系统具有所需的稳定性和动态性能。

2.3.2 系统优化根轨迹分析法可以帮助我们找到系统参数的最佳组合,从而优化系统的性能。

2.3.3 故障诊断分析根轨迹可以帮助我们发现系统中的故障,为故障诊断提供依据。

3. 课件总结本课件介绍了根轨迹分析法的基本概念、方法和应用。

通过学习本课件,您可以了解根轨迹分析法在控制系统设计和分析中的重要性,并掌握绘制根轨迹的基本方法。

希望这有助于您在实际工作中更好地应用根轨迹分析法。

科学性:1. 内容准确:课件内容基于控制理论的基本原理,准确地介绍了根轨迹分析法的概念、方法和应用。

2. 逻辑清晰:课件从基本概念入手,逐步深入到方法介绍和应用实例,逻辑结构清晰,易于理解。

3. 实例典型:课件中提供了控制系统的实例,帮助学习者更好地理解根轨迹分析法的应用场景。

(自动控制原理)4.4利用根轨迹分析系统性能

(自动控制原理)4.4利用根轨迹分析系统性能

根轨迹的特点和规律
根轨迹具有以下特点和规律: • 根轨迹是一条连续的曲线,代表了特征方程根的轨迹 • 根轨迹始终位于系统开环增益与相位的交点上 • 根轨迹趋近于无限远点的方向,表示系统的稳定性 • 根轨迹与该点的对称位置具有相同的特性
利用根轨迹评价系统性能
根轨迹可以评估系统的稳定性和动态响应性能,通过观察根轨迹的形状和位置,可以得出以下结论:
根轨迹的概念
根轨迹是反映闭环控制系统特征方程根随参数变化而变化的图形。通过观察 根轨迹可以分析系统的稳定性、动态响应和频率响应特性。
如何绘制根轨迹
绘制根轨迹的步骤如下: 1. 得到系统的特征方程 2. 使用根轨迹的绘制规则和技巧,画出根轨迹的大致形状 3. 通过调整系统参数,绘制出完整的根轨迹图形
自动控制原理 4.4 利用根 轨迹分析系统性能
自动控制系统的性能对于系统的稳定性和响应速度至关重要。本章将介绍根 轨迹方法,用于绘制系统的根轨迹图,并利用根轨迹图评估系统的稳定性和 动态响应性能。
系统性能的定义
系统性能是指系统对于输入信号的响应质量和稳定性。主要包括以下几个方 面:时间响应特性、频率响应特性、稳定性和误差特性。
结论和要点
1 根轨迹是分析系统
性能的重要工具
根轨迹反映了系统的稳 定性和动态响应性能。
2 根轨迹的绘制方法
可以通过特征方程和绘 制规则来绘制根轨迹。
3 根轨迹的应用
根轨迹分析在实际控制 系统中具源自广泛的应用。稳定性如果根轨迹位于左半平面,则系统是稳定的。
动态响应
根轨迹的形状和位置可以反映系统的响应速 度和超调量。
频率响应
根轨迹的形状和位置可以反映系统的频率响 应特性。
稳定裕度
根轨迹与虚轴的交点距离表示系统的稳定裕 度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根轨迹分析根轨迹分析稳定性实验报告
课程名称:控制理论指导老师:________________成绩:
__________________ 实验名称:控制系统的根轨迹分析实验类型:________________同组学生姓名:__________
一、实验目的
1. 掌握用计算机辅助分析法分析控制系统的根轨迹
2. 熟练掌握Simulink 仿真环境
二、实验原理及方法
根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k )从零变到无穷大时,死循环系统特征方程的根在s 平面上的轨迹。

因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。

同时,对于设计系统内可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设计也具有指导意义。

在MATLAB 中,绘制根轨迹有关的函数有:rlocus ,rlocfind ,pzmap 等。

三、实验内容
一开环系统传递函数为
G (s ) =k (s +2) 22(s +4s +3)
绘制出此闭环系统的根轨迹,并实证系统的稳定性。

四、实验过程
1. 绘制根轨迹
num = [1 2];
den = conv([1 4 3],[1 4 3]);
G = tf(num,den);
rlocus(G)得根轨迹图:
由根轨迹图可以知道信噪比临界开环增益为55.425。

现用闭环系统的冲击响应证明。

num2 = 55.425*num;
G2 = tf(num2,den);
G2 = G2/(G2+1);
t = 20;
r_impulse = impulse(G2,t);
plot(r_impulse)
title("单位冲击响应") 得到:
可以辨认出这是一种临界震荡。

2. Simulink 仿真
其中num(s)= [55.4250 110.8500],den(s)= [1 8 22 24 9],得到的结果是;
可以发现该下的单位阶跃响应也是临界震荡的。

相关文档
最新文档