牛顿第二定律板块模型
牛顿第二定律的应用--板块模型及图像小汇总

板块模型小汇总一、地面光滑,上表面粗糙,无拉力,物块A 带动木板B (地面粗糙,有可能B 不动,有可能共速后一起减速)(1)物块滑离木板,物块滑到木板右端时二者速度不相等,x B +L =x A ,速度时间图像类似图1(2)物块恰好不从木板上掉下的临界条件是物块恰好滑到木板右端时二者速度相等,则位移关系为x B +L =x A ,速度时间图像类似图2二、地面光滑,上表面粗糙,无拉力,木板B 带动物块A (地面粗糙,有可能共速后一起减速,也可能共速后各自减速)(1)物块滑离木板,物块从木板左端滑离时二者速度不相等,x B =x A +L ,速度时间图像类似图3(2)物块恰好不从木板上掉下的临界条件是物块恰好滑到木板左端时二者速度相等,则位移关系为x B =x A +L ,速度时间图像类似图4三、地面光滑,上表面粗糙,有拉力F 较小时,木板和木块一起做加速运动,有F =(m A +m B )a ,对A 分析,f BA =m A a临界情况f BA =μm A g ,此时F 是AB 一起加速运动的临界最大值,F 临=(m A +m B )μg ,a 的变化和F 图像如图5 F 超过F 临,AB 各自加速,A 从B 左端滑落,速度时间图像如图6 四、地面光滑,上表面粗糙,有拉力F 较小时,木板和木块一起做加速运动,有F =(m A +m B )a ,对B 分析,f AB =m B a临界情况f AB =μm A g ,此时F 是AB 一起加速运动的临界最大值,F 临=(m A +m B )A Bm g m ,a 的变化和F 图像如图7 F 超过F 临,AB 各自加速,A 从B 右端滑落,速度时间图像如图8五、地面粗糙,动摩擦因数μ0,上表面粗糙,动摩擦因数μ,有拉力,F 0=μ0(m A +m B )g ,F 临=(μ0+μ)(m A +m B )g图1图2图3图4图5图6图7图8①F ≤F 0时,整体静止 ②F 0<F ≤F 临时,一起加速 ③F >F 临时,各自加速,且a B >a A六、地面粗糙,动摩擦因数μ0,上表面粗糙,动摩擦因数μ,有拉力,μm A g≤μ0(m A+m B)g,A带不动B,B相当于地面七、地面粗糙,动摩擦因数μ0,上表面粗糙,动摩擦因数μ,有拉力,μm A g≥μ0(m A+m B)g,F0=μ0(m A+m B)g板块模型板块类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
物理牛顿第二定律板块模型

物理牛顿第二定律板块模型引言:一、牛顿第二定律的基本原理牛顿第二定律是由英国科学家艾萨克·牛顿在17世纪提出的。
它的表达式为F=ma,其中F代表物体所受的合力,m代表物体的质量,a代表物体的加速度。
这个定律表明,物体所受的力越大,加速度也就越大;物体的质量越大,加速度就越小。
二、板块模型的基本概念在物理学中,板块模型是一种常用的简化模型,用于描述物体在受力作用下的运动规律。
板块模型假设物体是一个质点,忽略了物体的形状和大小,只考虑其质量和受力情况。
三、牛顿第二定律在板块模型中的应用在板块模型中,牛顿第二定律可以用来计算物体的加速度和受力。
根据牛顿第二定律的公式F=ma,我们可以通过已知的力和质量来求解物体的加速度。
同样地,我们也可以通过已知的加速度和质量来求解物体所受的力。
四、实例分析为了更好地理解牛顿第二定律板块模型的应用,我们来看一个简单的实例。
假设有一个质量为2kg的物体,受到一个力为10N的作用,我们可以通过牛顿第二定律来计算该物体的加速度。
根据公式F=ma,我们可以得到a=F/m=10N/2kg=5m/s^2。
因此,该物体的加速度为5m/s^2。
五、牛顿第二定律在力学问题中的应用牛顿第二定律在力学问题中有着广泛的应用。
通过牛顿第二定律,我们可以解决各种关于力、质量和加速度的问题。
例如,在斜面上滑动的物体,我们可以通过牛顿第二定律来计算物体的加速度和受力;在弹簧振子中,我们可以通过牛顿第二定律来计算振子的周期和频率。
六、结论牛顿第二定律是物理学中的重要定律,它描述了物体受力和加速度之间的关系。
在板块模型中,牛顿第二定律可以用来计算物体的加速度和受力。
通过牛顿第二定律,我们可以解决各种关于力、质量和加速度的问题。
牛顿第二定律在力学问题中有着广泛的应用,可以帮助我们更好地理解和分析物体的运动规律。
牛顿第二定律板块模型是物理学中重要的概念和工具之一。
通过对牛顿第二定律的理解和应用,我们可以更好地研究和解决各种物理问题。
专题05 牛顿运动定律中的斜面和板块模型(解析版)-高考物理计算题专项突破

专题05 牛顿运动定律中的斜面和板块模型一、牛顿第二定律:ma F =合;x ma F x =合;y ma F y =合。
二、牛顿第三定律:'F F -=,(F 与'F -等大、反向、共线)在解牛顿定律中的斜面模型时,首先要选取研究对象和研究过程,建构相应的物理模型,然后以加速度为纽带对研究对象进行受力分析和运动分析,最后根据运动学公式、牛顿运动定律、能量守恒定律、动能定理等知识,列出方程求解即可。
在解决牛顿定律中的板块模型时,首先构建滑块-木板模型,采用隔离法对滑块、木板进行受力分析,运用牛顿第二定律运动学公式进行计算,判断是否存在速度相等的临界点;若无临界速度,则滑块与木板分离,只要确定相同时间内的位移关系,列出方程求解即可;若有临界速度,则滑块与木板没有分离,此时假设速度相等后加速度相等,根据整体法求整体加速度,由隔离法求滑块与木板间的摩擦力f 以及最大静摩擦力m f 。
如果m f f ≤,假设成立,整体列式,求解即可;如果m f f >,假设不成立,需要分别列式求解。
一、在斜面上物块所受摩擦力方向的判断以及大小的计算1.物块(质量为m )静止在粗糙斜面上:(1)摩擦力方向的分析:对物块受力分析,因为物块重力有沿斜面向下的分力,故物块有沿斜面向下的运动趋势,则物块所受摩擦力沿斜面向上。
(2)摩擦力大小的计算:物块处于平衡状态,沿斜面方向受力平衡,即0=合F ,则有θsin mg F f =。
2.物块(质量为m )在粗糙的斜面上匀速下滑:(1)摩擦力方向的分析:物块沿斜面向下运动,可以根据摩擦力的方向与相对运动的方向相反来判断物块受到的摩擦力的方向沿斜面向上。
(2)摩擦力大小的计算:①物块处于平衡状态,沿斜面方向受力平衡,即0=合F ,则有θsin mg F f =,N F f μ=。
②物块沿斜面向下做匀加速运动,滑动摩擦力为N F f μ=,由牛顿第二定律有ma F mg f =-θsin 。
高中物理牛顿第二定律——板块模型解题基本思路.pdf

现对物块施加一外力 F ,板块间动摩擦因数为
,
F
m 的物块,
假设长板与物块无相对运动一起加速,所以我们可以采用整体法来进行求解:
4
F (M m)a
当外力 F 增大时,整体的加速度 a 增大,说明长板和物块的加速度同时增大,
但对于 m :由于受到外力 F 的作用作为动力来源,所以 m 的加速度无最大值。
假设长板与物块无相对运动一起加速,所以我们可以采用整体法来进行求解:
F (M m)a 当外力 F 增大时,整体的加速度 a 增大,说明长板和物块的加速度同时增大, 但对于 m :由于加速度的来源是 M 施加的静摩擦力产生,二者间的静摩擦力存在最大值, 所以当二者间静摩擦力达到最大值是 m 的加速度也就存在着对应的最大值。 但对于 M :由于受到外力 F 的作用作为动力来源,所以 m 的加速度无最大值。
但对于 M :由于加速度的来源是 m 施加的静摩擦力产生,二者间的静摩擦力存在最大值,
所以当二者间静摩擦力达到最大值时 M 的加速度也就存在着对应的最大值,
即: mg 解得: F 当0 F
Ma ,将 a
mg
带入上式,
M
m( M m)g
为一临界值。
M
m( M m) g 时,板块间无相对滑动,一起匀以共同的加速度匀加速运动 M
5
即: mg ma ,将 a g 带入上式, 解得: F ( M m) g 为一临界值。
当 0 F ( M m) g 时,板块间无相对滑动,一起匀以共同的加速度匀加速运动 F 增大,二者间的静摩擦力增大。 当 F (M m)g 时,板块间发生相对滑动, am aM F 增大,二者间的滑动摩擦力不变为 f mg , aM 增大, am 不变
牛顿第二定律的应用——板块、皮带模型

假设法
整体法
假设两物体间无相对滑动,先用
对滑块和木板进
将滑块和木板看
整体法算出一起运动的加速度,
行隔离分析,弄
成一个整体,对
再用隔离法算出其中一个物体“
具体步骤 清每个物体的受
整体进行受力分
所需要”的摩擦力Ff;比较Ff与最
体情况与运动
析和运动过程
大静摩擦力Ffm的关系,若Ff>Ffm,
过程
分析
则发生相对滑动
D.行李在传送带上的时间一定大于 L
v
D
)
类型(二)
情境
倾斜传送带问题
滑块可能的运动情况
情境1:上传
>
即 >
(1)可能一直加速 还未共速,传送带较短
(2)可能先加速后匀速
mg
情境2:下传(v0=0)
FN
mgsin + =
FN
(1)可能一直加速
类型(一) 水平传送带问题
情境
情境1:轻放
Ff =μmg=ma
a=μg
滑块可能的运动情况
(1)可能一直加速 = >
(2)可能先加速后匀速 = <
情境2:同向
Ff
Ff
(1)v0>v时,可能一直减速,也可能先减速再匀速
(2)v0<v时,可能一直加速,也可能先加速再匀速
当f=fm=μmAg时相对滑动
f
aBm=
μg
a
=
Am
f
F
第四讲 牛顿第二定律的应用--板块模型、皮带模型
一、板块模型
1.水平面光滑:
F甲=(mA+mB)am = ( + )
牛顿第二定律的综合应用——动力学中的“板块”和“传送带”模型

动力学中的“板块”和“传送带”模型一.“滑块—滑板”模型1. 模型特点:上下叠放两个物体,在摩擦力的相互作用下发生相对滑动。
2. 两种位移关系①物体的位移:各个物体对地的位移,即物体的实际位移。
②相对位移:一物体相对另一的物体的位移。
两种情况。
(1)滑块和滑板同向运动时,相对位移等两物体位移之差,即.21x x x -=∆相 (2)滑块和滑板反向运动时,相对位移等两物体位移之和,即.21x x x +=∆相 这是计算摩擦热的主要依据,.相滑x f Q ∆=3. 解题思路:(1)初始阶段必对各物体受力分析,目的判断以后两物体的运动情况。
(2)二者共速时必对各物体受力分析,目的判断以后两物体的运动情况。
二者等速是滑块和滑板间摩擦力发生突变的临界条件,是二者相对位移最大的临界点。
(3)物体速度减小到0时,受力分析,判断两物体以后是相对滑动还是相对静止。
相对静止二者的加速度a 相同;相对滑动二者的加速度a 不同。
(4)明确速度关系:弄清各物体的速度大小和方向,判断两物体的相对运动方向,从而弄清摩擦力的方向,正确对物体受力分析。
例.如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1.某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s.A 、B 相遇时,A 与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2.求:(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离.〖思路指导〗(1)AB 开始运动时,相向均做减速运动,二者初速等大,加速度等大,则经历相等时间,v ∆相等.即相同时刻速度等大.对A 、B 、木板分析B 和木板同向向右运动,A 和木板反向运动,故B 和木板先相对静止,A 减速到0后,反向加速再与木板共速. (2)B 和木板共速后是相对滑动还是相对静止,假设法讨论.相对静止的条件:f<f max . 解析:(1)B 和木板共速前,AB 加速度分别为a A 、a B ,木板加速度为a 1.经t 1木板和B 共速. 对A 向左减速,加速度大小:../5,211向右解得s m a a m g m A A A ==μ 对B 向右减速,加速度大小:.m /s 5,21==B B B B a a m g m 解得μ对木板,由于g m m m g m g B A A B )(m 211++>-μμμ,则合外力向右,向右加速运动../5.2,)(-m 211211s m a ma g m m m g m g B A A B ==++-解得μμμB 和木板共速有:,1110t a t a v B =-解得t 1=0.4s../110s m t a v v B B =-=0.8m.t 2v v x 1Bo B =+= A 的速度大小v A =v B =1m/s.(2)设B 和木板共速后相对静止,对B 和木板:./m 35,)m 22212s a a m m g m g m m B A B A =+=+++解得)((μμ向右减速运动. 对B 有,木板和A相对静止.假设正确,设再经t g,m μN 320a m f 2B 12B B <== A 全程加速度不变.对B 和木板:,222t a v v B -=对A 有:,222t a v v A +-=解得t 2=0.3s.v 2=0.5m/s.0.225m,m 409t 2v v x 22B /B ==+=0.875m.)t (t a 21)t (t v x 221A 210A =+-+= 故 1.9m.x x x L /B B A =++= 练习1. (水平面光滑的“滑块—滑板”模)如图所示,质量M =8 kg 的小车静止在光滑水平面上,在小车右端施加一水平拉力F =8 N .当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m =2 kg 的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t =1.5 s 的时间,物体相对地面的位移为(g 取10 m/s 2)( )A .1 mB .2.1 mC .2.25 mD .3.1 m解析:(1)刚放上物体时,对物体:.2m/s解得a ,ma μmg 211== 对小车:,/5.0,222s m a Ma mg F ==-解得μv 0=1.5m/s.设经t 1二者等速v 1.则2m/s.1s,v 解得t ,t a v t a v 11120111==+==此时物体运动:1m.t v 21x 111==故A 错.(2)共速后,设二者相对静止,整体:.0.8m/s,解得a m)a (M F 233=+= 对物体:μmg,<1.6N =ma =f 3假设正确.再经0.5s 物体运动:.1.2,1.12121223212m x x x m t a t v x =+==+=故故B 对CD 错.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t =0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的( )解析:(1)物体刚放上木板,对木板:.a ,mg g )1121向左,减速运动(Ma M m =++μμ (2)共速后若二者相对静止:错,,则(BC a a Ma g M 2121,)m >=+μ 由于地面有摩擦,共速后木板做减速运动,故D 错。
(完整)高中物理牛顿第二定律——板块模型解题基本思路

高中物理基本模型解题思路——板块模型(一)本模型难点:(1)长板下表面是否存在摩擦力,摩擦力的种类;静摩擦力还是滑动摩擦力,如滑动摩擦力,N F 的计算(2)物块和长板间是否存在摩擦力,摩擦力的种类:静摩擦力还是滑动摩擦力。
(3)长板上下表面摩擦力的大小。
(二)在题干中寻找注意已知条件:(1)板的上下两表面是否粗糙或光滑(2)初始时刻板块间是否发生相对运动(3)板块是否受到外力F ,如受外力F 观察作用在哪个物体上(4)初始时刻物块放于长板的位置(5)长板的长度是否存在限定一、光滑的水平面上,静止放置一质量为M ,长度为L 的长板,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为μ。
首先受力分析:对于m :由于板块间发生相对运动,所以物块所受长板向左的滑动摩擦力, 即:⎪⎩⎪⎨⎧===m N N ma f F f mg F 动动μg a m μ= (方向水平向左)由于物块的初速度向右,加速度水平向左,所以物块将水平向右做匀减速运动。
对于M :由于板块间发生相对运动,所以长板上表面所受物块向右的滑动摩擦力,但下表面由于光滑不受地面作用的摩擦力。
即:动f N F N F '⎪⎩⎪⎨⎧==+='M N N N Ma f F f F Mg F 动动μM mg a M μ= (方向水平向右) 由于长板初速度为零,加速度水平向右,所以物块将水平向右做匀加速运动。
假设当M m v v=时,由于板块间无相对运动或相对运动趋势,所以板块间的滑动摩擦力会突然消失。
则物块和长板将保持该速度一起匀速运动。
关于运动图像可以用t v -图像表示运动状态:公式计算:设经过时间 t 板块共速,共同速度为共v 。
由 共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共M 做初速度为零的匀加速直线运动:t a v M M =可计算解得时间: t a t a v M m =-0物块和长板位移关系:m : 2021t a t v x m m -= M : 221t a x M M = 相对位移:M m x x x -=∆v v二、粗糙的水平面上,静止放置一质量为M ,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为1μ,长板和地面间的动摩擦因数为2μ,长板足够长。
台师高级中学高三一轮复习:牛顿第二定律-板块模型(解析版)

台师高级中学高三一轮复习:牛顿第二定律-板块模型 (1)不受外力作用的带动问题:1.如图所示,质量 M =8.0kg 的薄木板静置在光滑水平地面上,质量m =2.0kg 的小滑块(可视为质点)以速度 v 0=5.0m/s 从木板的左端冲上木板,恰好不滑离木板。
已知滑块与木板间的动摩擦因数 μ=0.20,重力加速度 g 取 10m/s 2。
求(1)小滑块的加速度大小(2)薄木板的加速度大小(3)薄木板的长度【答案】(1) 2m/s 2 (2) 0.5m/s 2 (3) 5m【解析】【分析】由题意可知考查滑块—滑板模型,采用隔离法根据牛顿第二定律分析计算可得。
【详解】(1) 取滑块为研究对象,由牛顿第二定律可得1mg ma μ=1100.20m/s=2m/s a g μ==⨯(2) 取薄木板为研究对象,由牛顿第二定律可得2mg Ma μ=222100.200.5m/s 8mg a M μ⨯⨯=== (3) 滑块恰好不滑离木板,由运动学公式可得220121122L v t a t a t =-- 速度关系012v a a t -=两式联立可得t =2s L =5m【点睛】滑块和滑板加速度不同,采用隔离法求得各自的加速度,滑块恰好不滑离木板,说明滑块滑到木板的最右端时二者速度刚好相同,根据位移关系和速度关系列式计算可得。
2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:,1)木块刚滑上木板时,木块和木板的加速度大小;,2,木板长度;,3)木板在地面上运动的最大位移。
【答案】(1(5m/s 2 2m/s 2(2(14m(3(12m【解析】【分析】(1)由题意知,冲上木板后木块做匀减速直线运动,木板由静止做匀加速度直线运动,根据牛顿第二定律求解加速度;(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等;根据位移关系求解木板的长度;(3)木块木板达到共同速度后将一起作匀减速直线运动,结合运动公式求解木板在地面上运动的最大位移.【详解】(1)由题意知,冲上木板后木块做匀减速直线运动,初速度 v 0=14m/s ,加速度大小 212a μg 5m /s ==木板由静止做匀加速度直线运动即 ()212μmg μM m g Ma -+=解得 22a 2m /s =(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板块模型
考点:【牛二列式】【多物体牛二】【临界限制】【运动学】
分类:有无外力/地面摩擦类型(地面光滑,地面小粗糙,地面大粗糙)
难点:容易急躁导致空白不写、达到共速时没有自己的解题体系
底线:至少要列牛二算到每个物体的加速度
钩子法
使用目的:用来判断到达共速后,两个物体即将做什么运动
使用前提:无外力共速时
使用步骤:
1.判断木板上表面摩擦因数与下表面摩擦因数大小
2.若下上μμ>则到达共速后,两物体能一起运动,不一定是匀速,也可以减速,关键点是能整
体分析
3.若下上μμ<则到达共速后,两物体会相对滑动,不能用整体,需要重新受力分析
注意事项:
先找对象再受力,顺序场弹阻题目
质量跟着对象走,析力先要明状态
状态变化重析力,受力变化重明态
解题关键公式: 求共速:相对相对共速a v t =
相对位移:木板物块物块相对x x x -=(位移是矢量,考虑方向)
【类型一】:无外力地面光滑
例题1:如图所示,一质量kg M 40=、长m L 25=的平板车静止在光滑的水平地面上。
一质量kg m 10=可视为质点的滑块,以s m v /50=的初速度从左滑上平板车,滑块与平板车间的动摩擦因数0.4=μ,取2/10s m g =
(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;
(2)计算说明滑块能否从平板车的右端滑出。
例题2:如图,光滑水平面上,质量为kg M 2=的木板B (足够长),在N F 6=的水平向右外力作用下从静止开始运动,s t 10=未将一质量为kg m 1=的煤块A 轻放在B 的右端,A 、B 间动摩擦因数为0.3=μ(最大静摩擦力等于湑动摩擦力,2/10s m g =),求
(1)煤块A 刚放上时,A 、B 的加速度大小;
(2)煤块A 在B 上划过的痕迹的长度。
例题3:木板和滑块摩擦系数0.21=μ,地面摩擦系数0.12=μ,木板质量5.02=m g ,滑块质量kg m 11=,物块以初速度s m v /40=向右冲上木板左端,木板足够长,求1m 和2m 相对位移?及1m 总运动时间?
2m
例题4:如图所示,可看成质点的物体A 放在长m L 1=的木板B 的右端,木板B 静止于水平面上,已知A 的质量A m 和B 的质量B m 均为kg 2,AB 之间的动摩擦因数2.01=μ,B 与水平面之间的动摩擦因数1.02=μ,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度取2/10s m g =。
若从t=0开始,木板B 受N F 16=的水平恒力作用,求
(1)木板B 受N F 16=的水平恒力作用时,AB 的加速度A a 、B a ;
(2)物体A 经多长时间从木板B 上滑下;
(3)当s t 2=时,木板B 的速度v 。
例题五:地面摩擦系数0.31=μ,木板B 和滑块A 之间摩擦系数0.22=μ,AB 质量相同,B 以初速度s m v /50=向右运动,A 初始静止可当做质点。
B 足够长,求A 和B 总相对位移?
【类型六】:图象问题
例题六:如图甲所示,质量为M=4kg 的木板静止在水平面上,质量m=1kg 的小滑块静止在木板的右端,可看成质点,已知木板与水平面间的动摩擦因数0.11=μ,小滑块与木板间的动摩擦因数0.42=μ,重力加速度2/10s m g =,现用力F 作用在木板M 上,F 随时间t 变化的关系如图乙所示,求
(1)t=1s 时,小滑块和木板的速度大小;
(2)为使小滑块不从木板上滑落下来,木板的最小长度
变式训练
1、如图所示,质量为kg M 4=的木板长m L 4.1=,静止放在光滑的水平地面上,其右端静置一质量为kg m 1=的小滑块(可视为质点),小滑块与木板间的动摩擦因数0.4=μ,今用水平力N F 28=向右拉木板,要使小滑块从木板上掉下来,力F 作用的时间至少要多长?(不计空气阻力,g 取2/10s m g =)。
2、如图所示,有一长度m x 1=,质量kg M 10=的平板小车,静止在光滑的水平面上,在小车一端放置一质量kg m 4=的小物块,物块与小车间的动摩擦因数0.25=μ,要使物块在2 s 末运动到小车的另一端,那么作用在物块上的水平力F 是多少?
3、如图所示,质量kg M 2.0=的长板静止在水平地面上,与地面间动摩擦因数0.11=μ,另一质量kg m 1.0=的小滑块以s m v /9.00=初速度滑上长木板,滑块与长木板间动摩擦因数0.4=μ,求小滑块自滑上长板到最后静止(仍在木板上)的过程中,它相对于地面运动的路程。