2021高考数学分类汇编:导数及其应用

2021高考数学分类汇编:导数及其应用
2021高考数学分类汇编:导数及其应用

2021年高考数学理试题分类汇编

导数及其应用

一、选择题

1、(2016年四川高考)设直线l 1,l 2分别是函数f (x )= ln ,01,

ln ,1,x x x x -<

>?

图象上点P 1,P 2处的切线,

l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是

(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A

2、(2016年全国I 高考)函数y =2x 2–e |x |在[–2,2]的图像大致为

【答案】D

二、填空题

1、(2016年全国II 高考)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = . 【答案】1ln2-

2、(2016年全国III 高考)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程 是_______________。 【答案】21y x =--

三、解答题

1、(2016年北京高考) 设函数()a x

f x xe

bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为

(1)4y e x =-+,

(1)求a ,b 的值; (2)求()f x 的单调区间. 【解析】 (I )

()e a x f x x bx -=+

∴()e e (1)e a x a x a x f x x b x b ---'=-+=-+

∵曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ ∴(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+①

2(2)(12)e e 1a f b -'=-+=- ②

由①②解得:2a =,e b =

(II )由(I )可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+

令2()(1)e x g x x -=-,

∴222()e (1)e (2)e x x x g x x x ---'=---=-

∴g 的最小值是(2)(12)e 1g =-=-

∴()f x '的最小值为(2)(2)e e 10f g '=+=-> 即()0f x '>对x ?∈R 恒成立 ∴()f x 在(),-∞+∞上单调递增,无减区间.

2、(2016年山东高考)已知()221

()ln ,R x f x a x x a x

-=-+

∈. (I )讨论()f x 的单调性;

(II )当1a =时,证明()3

()'2

f x f x +

>对于任意的[]1,2x ∈成立. 【解析】(Ⅰ) 求导数32

2)11

(=)(′x

x x a x f --- 3

22)(1(=x ax x )

--

当0≤a 时,(0,1)∈

x ,0>)(′x f ,)(x f 单调递增, )(1,∈+∞x ,0<)(′x f ,)(x f 单调递减;

当0>a 时,3

322

+(2)(1(=2)(1(=)(′x a x a x x a x ax x x f )

)--)--

(1) 当<2<a 0时,

1>2

a

, (0,1)∈x 或),(

∈+∞2a

x ,0>)(′x f ,)(x f 单调递增, )(1,

∈a

x 2

,0<)(′x f ,)(x f 单调递减; (2) 当2=a 时,

1=2

a

, )(0,

∈+∞x ,0≥)(′x f ,)(x f 单调递增, (3) 当2>a 时,1<2

<

0a

, )(0,

∈a

x 2

或∞)(1,∈+x ,0>)(′x f ,)(x f 单调递增, ,1)(

∈a

x 2

,0<)(′x f ,)(x f 单调递减; (Ⅱ) 当1=a 时,2

1

2+

ln =)(x x x x x f --,

323

22

+11=2)(1(=)(′x x x x x x x f 2--)--

于是)2

+1112+ln =)(′

)(322x

x x x x x x x f x f 2---(---, -1-1-322+3+

ln =x

x x x x ,]2,1[∈x

令x x x ln =)g(- ,322

+3+

=)h(x

x x x -1-1,]2,1[∈x , 于是)(+(g =)(′

)(x h x x f x f )-, 0≥1

=1=)(g ′x

x x x -1-,)g(x 的最小值为1=g(1);

又4

2432+=+=)(h ′x x x x x x x 6

-2-362-3-

设6+23=)(θ2

x x x --,]2,1[∈x ,因为1=)1(θ,10=)2(θ-

, 所以必有]2,1[0∈x ,使得0=)(θ0x ,且

0<<1x x 时,0>)(θx ,)(x h 单调递增; 2<<0x x 时,0<)(θx ,)(x h 单调递减;

又1=)1(h ,21=

)2(h ,所以)(x h 的最小值为2

1

=)2(h . 所以2

3

=21+1=)2(+1(g >)(+(g =)(′

)(h x h x x f x f ))-. 即2

3

)()(+

'>x f x f 对于任意的]2,1[∈x 成立.

3、(2016年四川高考)设函数f (x )=ax 2-a -ln x ,其中a ∈R. (I )讨论f (x )的单调性;

(II )确定a 的所有可能取值,使得f (x ) >-e 1-x+在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。

【解析】(I )由题意,()2121

'2,0ax f x ax x x x

-=-=

> ①当0a ≤时,2210ax -≤,()'0f x ≤,()f x 在()0,+∞上单调递减.

②当0a >时,(

)2'a x x f x x

?+ ????=

,当x ?∈ ?时,()'0f x <;

当x ?

∈+∞???

时,()'0f x >.

故()f x

在? ?

上单调递减,在?+∞???

上单调递增. (II )原不等式等价于()11e 0x

f x x

--+>在()1,x ∈+∞上恒成立.

一方面,令()()12

111e ln e x x g x f x ax x a x x

--=-+=--+-,

只需()g x 在()1,x ∈+∞上恒大于0即可.

又∵()10g =,故()'g x 在1x =处必大于等于0.

令()()1211'2e x

F x g x ax x x -==-+-,()'10g ≥,可得12

a ≥.

另一方面,

当12a ≥时,()311123233

12122'2e 1e e x x

x x x F x a x x x x x

---+-=+-+≥+-+=+ ∵()1,x ∈+∞故320x x +->,又1e 0x ->,故()'F x 在1

2

a ≥时恒大于0.

∴当1

2

a ≥时,()F x 在()1,x ∈+∞单调递增.

∴()()1210F x F a >=-≥,故()g x 也在()1,x ∈+∞单调递增. ∴()()10g x g >=,即()g x 在()1,x ∈+∞上恒大于0.

综上,1

2

a ≥.

4、(2016年天津高考)设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈,

(I)求)(x f 的单调区间;

(II) 若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...4

1

. 【解析】(1)()()3

1f x x ax b

=---

()()2'31f x x a =--

① 0a ≤,单调递增;

②0a >,()f x 在,1?-∞ ?单调递增,在11?-+ ?单调递减,在

1??+∞ ? ???

单调递增 (2)由()0'0f x =得()2

031x a -=

∴()()()3

2

0000131f x x x x b =----()()2

00121x x b =----

()()()()32

000032223132f x x x x b -=-----

()[]2

00018896x x x b =---+-

()()2

00=121x x b ----

()()()00132=f x f x f x ∴-=

1023

x x ∴+=

(3)欲证()g x 在区间[02],上的最大值不小于

1

4

,只需证在区间[02],上存在12,x x , 使得121

()()2

g x g x -≥即可

①当3a ≥时,()f x 在[]02,上单调递减

(2)12f a b =-- (0)1f b =--

1

(0)(2)2242

f f a -=->≥递减,成立

当03a <<时,

3

11333a a a f a b ??????

-=---- ? ? ? ? ? ???????

333a a a a a b =--+-233a a a b =-- 113333a a a a f a b ????+=-+- ? ? ? ?????

233

a

a a

b =--- ∵(2)12f a b =-- (0)1f b =-- ∴(2)(0)22f f a -=-

若3

04

a <≤时,()()102222f f a -=-≥,成立

当3

4a >时,411133332a a a f f a ????--+=> ? ? ? ?????

, 所以,()g x 在区间[02],上的最大值不小于1

4

成立

5、(2016年全国I 高考)已知函数

有两个零点.

(I )求a 的取值范围; (II )设x 1,x 2是

的两个零点,证明:+x 2<2.

解:⑴ 由已知得:()()()()()

'12112x x f x x e a x x e a =-+-=-+

① 若0a =,那么()()0202x f x x e x =?-=?=,()f x 只有唯一的零点2x =,不合题意; ② 若0a >,那么20x x e a e +>>,

所以当1x >时,()'0f x >,()f x 单调递增 当1x <时,()'0f x <,()f x 单调递减 即:

x

(),1-∞

1

()1,+∞

()'f x -

+

()f x

↓ 极小值

故()f x 在()1,+∞上至多一个零点,在(),1-∞上至多一个零点 由于()20f a =>,()10f e =-<,则()()210f f <, 根据零点存在性定理,()f x 在()1,2上有且仅有一个零点. 而当1x <时,x e e <,210x -<-<,

故()()()()()()()222

212111x f x x e a x e x a x a x e x e =-+->-+-=-+--

则()0f x =的两根11t =

+,21t =+, 12t t <,因为0a >,故当1x t <或2x t >时,()()2

110a x e x e -+--> 因此,当1x <且1x t <时,()0f x >

又()10f e =-<,根据零点存在性定理,()f x 在(),1-∞有且只有一个零点. 此时,()f x 在R 上有且只有两个零点,满足题意.

③ 若02

e

a -<<,则()ln 2ln 1a e -<=,

当()ln 2x a <-时,()1ln 210x a -<--<,()

ln 2220a x e a e a -+<+=,

即()()()

'120x f x x e a =-+>,()f x 单调递增; 当()ln 21a x -<<时,10x -<,()

ln 2220a x e a e

a -+>+=,即()()()'120x f x x e a =-+<,

()f x 单调递减;

当1x >时,10x ->,()

ln 2220a x e a e a -+>+=,即()'0f x >,()f x 单调递增.

即:

而极大值

()()()(){

}

2

2

ln 22ln 22ln 21ln 2210f a a a a a a a -=---+--=--+

故当1x ≤时,()f x 在()ln 2x a =-处取到最大值()ln 2f a -????,那么()()ln 20f x f a -

而当1x >时,()f x 单调递增,至多一个零点 此时()f x 在R 上至多一个零点,不合题意.

④ 若2

e

a =-,那么()ln 21a -=

当()1ln 2x a <=-时,10x -<,()

ln 2220a x e a e

a -+<+=,即()'0f x >,

()f x 单调递增

当()1ln 2x a >=-时,10x ->,()

ln 2220a x e a e

a -+>+=,即()'0f x >,

()f x 单调递增

又()f x 在1x =处有意义,故()f x 在R 上单调递增,此时至多一个零点,不合题意.

⑤ 若2

e

a <-,则()ln 21a ->

当1x <时,10x -<,()

ln 212220a x e a e a e

a -+<+<+=,即()'0f x >,

()f x 单调递增

当()1ln 2x a <<-时,10x ->,()

ln 2220a x e a e

a -+<+=,即()'0f x <,

()f x 单调递减

当()ln 2x a >-时,()1ln 210x a ->-->,()

ln 2220a x e a e

a -+>+=,即()'0f x >,

()f x 单调递增 即:

故当()ln 2x a -≤时,()f x 在1x =处取到最大值()1f e =-,那么()0f x e -<≤恒成立,即()0f x =无解

当()ln 2x a >-时,()f x 单调递增,至多一个零点 此时()f x 在R 上至多一个零点,不合题意.

综上所述,当且仅当0a >时符合题意,即a 的取值范围为()0,+∞.

⑵ 由已知得:()()120f x f x ==,不难发现11x ≠,21x ≠,

故可整理得:()()

()()

1

2

1222

122211x x x e x e a x x ---==--

设()()()

2

21x

x e g x x -=-,则()()12g x g x = 那么()()()

2

3

21'1x x g x e x -+=-,当1x <时,()'0g x <,()g x 单调递减;当1x >时,()'0g x >,

()g x 单调递增. 设0m >,构造代数式:

()()111222*********m m m m m m m m g m g m e e e e m m m m +-----+-??

+--=-=+ ?+??

设()2111

m

m h m e m -=++,0m > 则()()

2

22

2'01m m h m e m =

>+,故()h m 单调递增,有()()00h m h >=.

因此,对于任意的0m >,()()11g m g m +>-.

由()()12g x g x =可知1x 、2x 不可能在()g x 的同一个单调区间上,不妨设12x x <,则必有

121x x <<

令110m x =->,则有()()()()()1111211112g x g x g x g x g x +->--?->=???????? 而121x ->,21x >,()g x 在()1,+∞上单调递增,因此:()()121222g x g x x x ->?-> 整理得:122x x +<.

6、(2016年全国II 高考)

(Ⅰ)讨论函数x

x 2f (x)x 2

-=

+e 的单调性,并证明当0x >时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2

x =(0)x e ax a g x x

-->()有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.

【解析】⑴证明:()2e 2

x

x f x x -=

+ ()()()22224e e 222x

x

x x f x x x x ??-' ?=+= ?+++??

∵当x ∈()()22,-∞--+∞,时,()0f x '>

∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,

()2e 0=12

x

x f x ->-+ ∴()2e 20x x x -++>

⑵ ()

()()

24

e 2e x

x a x x ax a g x x ----'=

()

4

e 2e 2x x x x ax a x -++=

()322e 2x x x a x x

-??

+?+

?+??=

[)01a ∈,

由(1)知,当0x >时,()2e 2

x

x f x x -=?+的值域为()1-+∞,,只有一解. 使得

2e 2

t

t a t -?=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增

()()

()

2

22e 1e

e 1e 22

t t

t

t t t a t t h a t t t -++?-++=

=

=

+ 记()e 2t

k t t =+,在(]0,2t ∈时,()()()2

e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ??

=∈ ???

,.

7、(2016年全国III 高考)设函数()cos 2(1)(cos 1)f x a x a x =+-+,其中0a >,记|()|f x 的最

大值为A . (Ⅰ)求()f x '; (Ⅱ)求A ;

(Ⅲ)证明|()|2f x A '≤.

解析:(Ⅰ)'

()2sin 2(1)sin f x a x a x =---. (Ⅱ)当1a ≥时,

'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =

因此,32A a =-. ………4分

当01a <<时,将()f x 变形为2

()2cos (1)cos 1f x a x a x =+--.

令2

()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且

当14a

t a

-=时,()g t 取得极小值,极小值为221(1)61()1488a a a a g a a a --++=--=-. 令1114a a --<

<,解得13a <-(舍去),1

5

a >.

8、(2016年浙江高考)已知3a ≥,函数F (x )=min{2|x ?1|,x 2?2ax +4a ?2}, 其中min{p ,q }=,>p p q q p q.≤???

,,

(I )求使得等式F (x )=x 2?2ax +4a ?2成立的x 的取值范围; (II )(i )求F (x )的最小值m (a );

(ii )求F (x )在区间[0,6]上的最大值M (a )

.

(II )(i )设函数()21f x x =-,()2

242g x x ax a =-+-,则

()()min 10f x f ==,()()2min 42g x g a a a ==-+-,

所以,由()F x 的定义知()()(){}

min 1,m a f g a =,即

()20,322

42,22

a m a a a a ?≤≤?=?-+->+??

(ii )当02x ≤≤时,

()()()(){}()F max 0,22F 2x f x f f ≤≤==,

当26x ≤≤时,

()()()(){}{}()(){}F max 2,6max 2,348max F 2,F 6x g x g g a ≤≤=-=.

所以,

()348,34

2,4

a a a a -≤

≥?. 9、(2016江苏)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠. (1) 设a =2,b =

12

. ① 求方程()f x =2的根;

②若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值; (2)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值. 解:(1)因为12,2

a b ==

,所以()22x x f x -=+. ①方程()2f x =,即22

2x

x

-+=,亦即2(2)2210x x -?+=,

所以2

(21)0x -=,于是21x =,解得0x =. ②由条件知2222(2)2

2(22)2(())2x

x x x f x f x --=+=+-=-.

因为(2)()6f x mf x ≥-对于x R ∈恒成立,且()0f x >,

所以2(())4

()

f x m f x +≤对于x R ∈恒成立.

而2(())44()4()()f x f x f x f x +=+≥=,且

2((0))44(0)f f +=, 所以4m ≤,故实数m 的最大值为4.

(2)因为函数()()2g x f x =-只有1个零点,而00

(0)(0)220g f a b =-=+-=, 所以0是函数()g x 的唯一零点.

因为'()ln ln x x

g x a a b b =+,又由01,1a b <<>知ln 0,ln 0a b <>, 所以'

()0g x =有唯一解0ln log ()ln b a

a

x b

=-

. 令'()()h x g x =,则''

2

2

()(ln ln )(ln )(ln )x

x

x

x

h x a a b b a a b b =+=+,

从而对任意x R ∈,'

()0h x >,所以'

()()g x h x =是(,)-∞+∞上的单调增函数, 于是当0(,)x x ∈-∞,''0()()0g x g x <=;当0(,)x x ∈+∞时,''0()()0g x g x >=. 因而函数()g x 在0(,)x -∞上是单调减函数,在0(,)x +∞上是单调增函数. 下证00x =. 若00x <,则0002x x <<,于是0()(0)02

x

g g <=, 又log 2

log 2log 2(log 2)220a a a a g a

b a =+->-=,且函数()g x 在以

2

x 和log 2a 为端点的闭区间上的图象不间断,所以在0

2

x 和log 2a 之间存在()g x 的零点,记为1x . 因为01a <<,所以log 20a <,又

02

x <,所以10x <与“0是函数()g x 的唯一零点”矛盾. 若00x >,同理可得,在02

x

和log 2a 之间存在()g x 的非0的零点,矛盾.

因此,00x =.

于是ln 1ln a

b

-=,故ln ln 0a b +=,所以1ab =.

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

最新-2017新课标高考数学导数分类汇编(文)

2011-2017新课标(文科)导数压轴题分类汇编 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )> ln x x -1 【解析】 (1)22 1 ( ln ) '()(1)x x b x f x x x α+-= -+ 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 1 1ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h -- =---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(l n ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

2017至2018年北京高三模拟分类汇编之导数大题

2017至2018年北京高三模拟分类汇编之导数大题,20创新题 精心校对版 △注意事项: 1.本系列试题包含2017年-2018年北京高考一模和二模真题的分类汇编。 2.本系列文档有相关的试题分类汇编,具体见封面。 3.本系列文档为北京双高教育精心校对版本 4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 一 、解答题(本大题共22小题,共0分) 1.(2017北京东城区高三一模数学(文))设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由. 2.(2017北京丰台区高三一模数学(文)) 已知函数1()e x x f x +=,A 1()x m ,,B 2()x m ,是曲线()y f x =上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围; (Ⅱ)证明:120x x +>. 3.(2017北京丰台区高三二模数学(文)) 已知函数ln ()x f x ax =(0)a >. (Ⅰ)当1a =时,求曲线()y f x =在点(1(1)),f 处的切线方程; 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封------------ --线------ --------内------ ------- -请------- -------不-------------- 要--------------答--------------题-------------------------●

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y = C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- , , C .(1)(1)-∞-+∞ ,, D .(10)(01)- , , 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A . B . C . D .

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时 a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

(完整word版)北京高考导数大题分类.doc

导数大题分类 一、含参数单调区间的求解步骤: ① 确定定义域(易错点) ②求导函数 f ' (x) ③对 f ' ( x) 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理 . ④ f ' ( x) 中 x 的最高次系数是否为 0,为 0 时求出单调区间 . 例 1: f ( x) a x 3 a 1 x 2 x ,则 f ' ( x) (ax 1)( x 1) 要首先讨论 a 0 情况 3 2 ⑤ f ' ( ) 最高次系数不为 0,讨论参数取某范围的值时, 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递增; x 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递减 . 例 2: f (x) a x 2 ln x ,则 f ' ( x) = ax 2 1 , ( x 0) ,显然 a 0时 f ' ( x) 0 ,此时 f (x) 的 2 x 单调区间为 (0, ) . ⑥ f ' ( ) 最高次系数不为 0,且参数取某范围的值时,不会出现 f ' (x) 0 或者 f ' ( x) 0 的情况 x 求出 f ' ( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根是否都在定义域内 . 如果只有一根在定义域 内,那么单调区间只有两段 . 若两根都在定义域内且一根为常数,一根含参数 . 则通过比较两根大小分三种情况讨论单调区间, 即 x 1 x 2 , x 1 x 2 , x 1 x 2 . 例 3: 若 f ( x) a x 2 (a 1)x ln x, (a 0) ,则 f ' ( x) ( ax 1)( x 1) , (x 0) 解方程 f ' ( x) 2 1 x 0 得 x 1 1, x 2 a a 0时,只有 x 1 1 在定义域内 . a 0 时 , 比较两根要分三种情况: a 1,0 a 1, a 1 用所得的根将定义域分成几个不同的子区间,讨论 f ' ( x) 在每个子区间内的正负,求得 f (x) 的单调区间。

高考导数大题30道(2020年整理).doc

导数大题 1 .已知函数()b ax x x f ++=2 3的图象在点P (1,0)处的切线与直线03=+y x 平行? (1)求常数a 、b 的值; (2)求函数()x f 在区间[]t ,0上的最小值和最大值(0>t )? 2 .已知函数R a ax x x f ∈+-=,)( 3 (1)若)(x f 在),1[+∞上为单调减函数,求实数a 取值范围; (2)若,12=a 求)(x f 在[-3,0]上的最大值和最小值? 3 .设函数x e x x f 22 1)(=. (1)求函数)(x f 的单调区间; (2)若当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围. 4 .已知函数.),2,1()(3)(3 l P P x f y x x x f 作直线过点上一点及-=-= (1)求使直线)(x f y l =和相切且以P 为切点的直线方程; (2)求使直线)(x f y l =和相切且切点异于P 的直线方程)(x g y =?

()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极大值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围? 7 .已知函数2 ()ln f x a x bx =-图象上一点(2,(2))P f 处的切线方程为22ln 23++-=x y . (Ⅰ)求b a ,的值; (Ⅱ)若方程()f x m +=m 的取值范围(其中e 为自然对数的底数); 8 .已知函数21 2 ()()ln f x a x x =-+.(R a ∈) (1)当a =1时,求()f x 在区间[1,e ]上的最大值和最小值; (2)若在区间(1,+∞)上,函数()f x 的图象恒在直线2y ax =下方,求a 的取值范围。 10.已知函数2 ()sin 2(),()()2f x x b x b R F x f x =+-∈=+,且对于任意实数x ,恒有(5)(5)F x F x -=-? ⑴求函数)(x f 的解析式; ⑵已知函数()()2(1)ln g x f x x a x =+++在区间(0,1)上单调,求实数a 的取值范围; ⑶讨论函数21()ln(1)()2 h x x f x k =+- -零点的个数?

2019年高考数学理科数学 导数及其应用分类汇编

2019年高考数学理科数学 导数及其应用 1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 2.【2019年高考天津理数】已知a ∈R ,设函数222,1, ()ln , 1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()0 f x ≥在R 上恒成立,则a 的取值范围为 A .[] 0,1 B .[] 0,2 C .[]0,e D .[] 1,e 【答案】C 【解析】当1x =时,(1)12210f a a =-+=>恒成立; 当1x <时,2 2 ()22021 x f x x ax a a x =-+≥?≥-恒成立, 令2 ()1 x g x x =-, 则222(11)(1)2(1)1 ()111x x x x g x x x x -----+=-=-=- --- 11122(1)2011x x x x ???? =--+-≤--?= ? ? ?--???? , 当1 11x x -= -,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.

当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立, 令()ln x h x x = ,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=, 综上可知,a 的取值范围是[0,e]. 故选C. 3.(2019浙江)已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b , 2(1)y x a x =+-', 当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点. 根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点?函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:

2018年全国卷理科数学十年真题分类汇编 导数

导数 一.基础题组 1. 【2010新课标,理3】曲线y = 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 【答案】A 2. 【2008全国1,理6】若函数的图像与函数的图像关于直线 对称,则( ) A . B . C . D . 【答案】B. 【解析】由. 3. 【2012全国,理21】已知函数f (x )满足f (x )=f ′(1)e x -1 -f (0)x + x 2 . (1)求f (x )的解析式及单调区间; (2)若f (x )≥ x 2 +ax +b ,求(a +1)b 的最大值. 【解析】(1)由已知得f ′(x )=f ′(1)e x -1 -f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1 ,所以f ′(1)=e. 从而f (x )=e x -x + x 2 . 2 x + x (1)y f x = -1y =y x =()f x =21 x e -2x e 21 x e +22 x e +() ()()()212121,1,y x x y x e f x e f x e --=?=-==12 12 12

由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .① (ⅰ)若a +1<0,则对任意常数b ,当x <0,且时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0. 所以f (x )≥ x 2 +ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2 -(a +1)2 ln(a +1). 设h (a )=(a +1)2 -(a +1)2 ln(a +1), 则h ′(a )=(a +1)(1-2ln(a +1)). 所以h (a )在(-1,)上单调递增,在(,+∞)上单调递减, 故h (a )在处取得最大值. 从而,即(a +1)b ≤. 当,时,②式成立, 11 b x a -< +12 12 e 1-12 e 1-12 =e 1a -e ()2h a ≤ e 2 1 2 =e 1a -12 e 2 b =

高考文科数学导数真题汇编(带答案)

高考数学文科导数真题汇编答案 一、客观题组 4 5. 7.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是

8设函数f (x )= 2 x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=1 2为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 9、函数y= 12 x 2 -㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 11(2018年高考1卷) 12(2019年高考1卷) 一、 客观题答案1B ; 2.D; 3.y=x+1; 4.A . 5.y=2x-2 6D ,7C; 8D; 9B; 10.C 11.D; 12.y=3x 二、大题组 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )>ln x x -1 【解析】

(1)22 1 ( ln ) '()(1)x x b x f x x x α+-= - + 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1 x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈. 当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>. 所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2 【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

2017年北京高三模拟题分类汇编之导数大题

2017年北京高三模拟题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2017北京市各城区一模二模真题。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共12小题,共0分)1.(2017北京东城区高三一模数学(文))设函数ax x x x f 232131)(,R a .(Ⅰ)若2x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性;(Ⅱ)已知函数3221)()(2ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围;(Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由.2.(2017北京丰台区高三一模数学(文))已知函数1()e x x f x ,A 1()x m ,,B 2()x m ,是曲线()y f x 上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围;(Ⅱ)证明:120x x . 3.(2017北京丰台区高三二模数学(文))已知函数ln ()x f x ax (0)a . (Ⅰ)当1a 时,求曲线()y f x 在点(1(1)),f 处的切线方程;姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

高考题汇编2010-2017年全国高考数学真题--第21题导数

2010-2017年全国高考数学真题--第21题导数 2010年:设函数2 ()1x f x e x ax =---。 (1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围 2011年:已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. 2012年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值.

2013: 一卷:已知函数()f x =2 x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲 线()y g x =都过点P (0,2),且在点P 处有相同的切线42y x =+ (Ⅰ)求a ,b ,c ,d 的值; (Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围. 2014一卷:设函数1 ()ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ ,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数{}()min (),()(0)=>h x f x g x x ,讨论()h x 零点的个数.

高考导数大题大全理科答案

一、解答题 1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'11 2()e ln e e e .x x x x a b b f x a x x x x --=+-+ 由题意可得' (1)2,(1) e.f f ==故1,2a b ==. (Ⅱ)由(Ⅰ)知1 2e ()e ln ,x x f x x x -=+ 从而()1f x >等价于2 ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1 (0,)e x ∈时,' ()0g x <; 当1 (,)e x ∈+∞时,' ()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e +∞单调递增, 从而()g x 在(0,)+∞的最小值为1 1().e e g =-. 设函数2 ()e e x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,' ()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e h =- . 综上,当0x >时,()()g x h x >,即()1f x >. 2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)2/ 22 2(2)24(1) ()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/ ()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/ ()0f x = 得1 x = (2x =-舍去). 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/ ()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,()f x 在区间(0, 上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/ ()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x 的极值点只可能是1 x = 和2x =-,且由定义可知,1 x a >- 且2x ≠- ,所以1a ->- 且2-≠-,解得1 2 a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令21a x -=,则01a <<且12a ≠-知:当102 a <<时,10x -<<;当112a <<时,01x <<. 记2 2 ()ln 2g x x x =+-, (Ⅰ)当10x -< <时,2()2ln()2g x x x =-+-,所以/22 2222 ()0x g x x x x -=-=< 因此,()g x 在区间(1,0)-上单调递减,从而()(1)40g x g <-=-<,故当1 02 a << 时, 12()()0f x f x +<. (Ⅱ)当01x <<时,2()2ln 2g x x x =+ -,所以/222222 ()0x g x x x x -=-=< 因此,()g x 在区间(0,1)上单调递减,从而()(1)0g x g >=,故当时 1 12 a <<,12()()0f x f x +>. 综上所述,满足条件的a 的取值范围为1 (,1)2. 3. (1)证明:因为对任意x ∈R ,都有() ()e e e e ()x x x x f x f x -----=+=+=,所以f (x )是R 上的偶函数. (2)解:由条件知(e e 1)e 1x x x m --+-≤-在(0,+∞)上恒成立. 令t = e x (x >0),则t >1,所以m ≤211 11111 t t t t t -- =--+-++-对于任意t >1成立. 因为11111t t -+ +≥- = 3,所以1113111 t t - ≥--++-, 当且仅当t = 2,即x = ln2时等号成立.

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

高考文科数学试题分类汇编导数

2012高考文科试题解析分类汇编:导数 1.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是 【答案】C 【解析】:由函数()f x 在2x =-处取得极小值可知2x <-,()0f x '<,则 ()0xf x '>;2x >-,()0f x '>则20x -<<时()0xf x '<,0x >时()0xf x '> 【考点定位】本题考查函数的图象,函数单调性及导数的关系,属于基础题. 2.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数 A. 若e a +2a=e b +3b ,则a >b B. 若e a +2a=e b +3b ,则a <b C. 若e a -2a=e b -3b ,则a >b D. 若e a -2a=e b -3b ,则a <b 【答案】A 【命题意图】本题主要考查了函数复合单调性的综合应用,通过构造法技巧性方法确定函数的单调性. 【解析】若23a b e a e b +=+,必有22a b e a e b +>+.构造函数:()2x f x e x =+,

则()20x f x e '=+>恒成立,故有函数()2x f x e x =+在x >0上单调递增,即 a > b 成立.其余选项用同样方法排除. 3.【2012高考陕西文9】设函数f (x )=2x +lnx 则 ( ) A .x=1 2 为f(x)的极大值点 B .x=12 为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 【答案】D. 【解析】()22212 'x f x x x x -=- +=,令()'0f x =,则2x =. 当2x <时,()22212 '0x f x x x x -=-+=<; 当2x >时,()22212 '0x f x x x x -=-+=>. 即当2x <时,()f x 是单调递减的;当2x >时,()f x 是单调递增的. 所以2x =是()f x 的极小值点.故选D . 4.【2012高考辽宁文8】函数y=12 x 2-㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 【答案】B 【命题意图】本题主要考查利导数公式以及用导数求函数的单调区间,属于中档题。 【解析】21 1ln ,,00,02 y x x y x y x x x x ''=-∴=->∴<由≤,解得-1≤≤1,又≤1,

相关文档
最新文档