2011高考数学一轮复习48不等式的证明(二)

合集下载

高考数学一轮总复习 第十三章 13.2 第2课时 不等式的证明

高考数学一轮总复习 第十三章 13.2 第2课时 不等式的证明

解 由f(x)<3-|2x+1|,得|x-1|+|2x+1|<3,
即 x≤-12, 1-x-2x-1<3
或-12<x<1, 1-x+2x+1<3
x≥1, 或
x-1+2x+1<3
解得-1<x≤-12或-12<x<1,
∴集合A={x|-1<x<1}.
(2)已知a,b∈A,求证:f(ab)>f(a)-f(b). 证明 ∵a,b∈A,∴-1<ab<1, ∴f(ab)=|ab-1|=1-ab,f(a)=|a-1|=1-a, f(b)=|b-1|=1-b, ∵f(ab)-(f(a)-f(b))=1-ab-1+a+1-b =(1+a)(1-b)>0, ∴f(ab)>f(a)-f(b).
3
≥3
x-y2·x-1y2=3(当且仅当 x-y=1 时,等号成立),

所以 2x+ 1 ≥2y+3.
(2)设 a,b,c>0 且 ab+bc+ca=1,求证:a+b+c≥ 3.
证明 因为a,b,c>0,
所以要证 a+b+c≥ 3, 只需证明(a+b+c)2≥3. 即证a2+b2+c2+2(ab+bc+ca)≥3, 而ab+bc+ca=1, 故需证明a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca), 即证a2+b2+c2≥ab+bc+ca.
所以不等式f(x)>2|x|的解集为(-∞,1)∪(2,+∞).
(2)若 f(x)≥a2+2b2+3c2(a>0,b>0,c>0)对任意 x∈R 恒成立,
技能提升练
5.(2018·上饶模拟)已知函数f(x)=|2x+1|. (1)求不等式f(x)≤8-|x-3|的解集;

高考数学一轮专项复习讲义-基本不等式(北师大版)

高考数学一轮专项复习讲义-基本不等式(北师大版)

§1.4基本不等式课标要求1.了解基本不等式的推导过程.2.会用基本不等式解决简单的最值问题.知识梳理1.基本不等式:a +b2≥ab (1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时,等号成立.(3)其中a +b2称为a ,b 的算术平均值,ab 称为a ,b 的几何平均值.2.利用基本不等式求最值(1)若x +y =s (s 为定值),则当且仅当x =y 时,xy 取得最大值s 24;(2)若xy =p (p 为定值),则当且仅当x =y 时,x +y 取得最小值2p .注意:利用不等式求最值应满足三个条件“一正、二定、三相等”.常用结论几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +ab ≥2(a ,b 同号).(3)ab (a ,b ∈R ).(4)a 2+b 22≥(a ,b ∈R ).以上不等式等号成立的条件均为a =b .自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)不等式ab 与ab ≤a +b2等号成立的条件是相同的.(×)(2)y =x +1x的最小值是2.(×)(3)若x >0,y >0且x +y =xy ,则xy 的最小值为4.(√)(4)函数y =sin x +4sin x,x 4.(×)2.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于()A .1+2B .1+3C .3D .4答案C解析当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时,取等号,即当f (x )取得最小值时x =3,即a =3.3.已知0<x <1,则x (1-x )的最大值为()A.14B.18C.116D .1答案A解析因为0<x <1,所以1-x >0,所以x (1-x )=14,当且仅当x =1-x ,即x =12时,等号成立,故x (1-x )的最大值为14.4.(2023·重庆模拟)已知x >0,y >0,x +y =1,则1x +1y 的最小值为________.答案4解析由x +y =1得1x +1y =x +y )=2+y x +xy≥2+2y x ·xy=4,当且仅当x =y =12时,等号成立,即1x +1y的最小值为4.题型一基本不等式的理解及常见变形例1(1)若0<a <b ,则下列不等式一定成立的是()A .b >a +b2>a >abB .b >ab >a +b2>aC .b >a +b 2>ab >aD .b >a >a +b2>ab答案C解析∵0<a <b ,∴2b >a +b ,∴b >a +b 2>ab .∵b >a >0,∴ab >a 2,∴ab >a .故b >a +b 2>ab >a .(2)《几何原本》中的几何代数法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC =a ,BC =b ,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于点D ,连接OD ,AD ,BD ,过点C 作OD 的垂线,垂足为点E ,则该图形可以完成的无字证明为()A.a +b2≤ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0)C.ab ≥21a +1b(a >0,b >0)D.a 2+b 22≥a +b 2(a >0,b >0)答案C解析根据图形,利用射影定理得CD 2=DE ·OD ,又OD =12AB =12(a +b ),CD 2=AC ·CB =ab ,所以DE =CD 2OD=ab a +b 2,由于OD ≥CD ,所以a +b2≥ab (a >0,b >0).由于CD ≥DE ,所以ab ≥2aba +b =21a +1b (a >0,b >0).思维升华基本不等式的常见变形(1)ab ≤a 2+b 22.(2)21a +1b ≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).跟踪训练1(1)已知p :a >b >0,q :a 2+b 22>,则p 是q 成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析∵a >b >0,则a 2+b 2>2ab ,∴2(a 2+b 2)>a 2+b 2+2ab ,∴2(a 2+b 2)>(a +b )2,∴a 2+b 22>,∴由p 可推出q ;当a <0,b <0时,q 也成立,如a =-1,b =-3时,a 2+b 22==4,∴由q 推不出p ,∴p 是q 成立的充分不必要条件.(2)(多选)已知a ,b ∈R ,则下列不等式成立的是()A.a +b 2≥abB.a +b 2≤a 2+b 22C.2ab a +b ≤a +b 2D .ab ≤a 2+b 22答案BD解析A 选项,由选项可知a 与b 同号,当a >0且b >0时,由基本不等式可知a +b2≥ab 恒成立,当a <0且b <0时,a +b2<0,ab >0,该不等式不成立,故A 选项错误;B 选项,当a +b >0时,a +b2>0,则=a 2+b 2+2ab -2a 2-2b 24=-(a -b )24≤0恒成立,即a +b2≤a 2+b 22恒成立,当a +b ≤0时,原不等式恒成立,故B 选项正确;C 选项,当a +b >0时,2ab -(a +b )22=-(a -b )22≤0,即2ab ≤(a +b )22,2ab a +b ≤a +b2恒成立,当a +b <0时,2ab -(a +b )22=-(a -b )22≤0,即2ab ≤(a +b )22,2ab a +b ≥a +b2,故C 选项错误;D 选项,由重要不等式可知,a ,b ∈R ,ab ≤a 2+b 22恒成立,故D 选项正确.题型二利用基本不等式求最值命题点1直接法例2(1)(多选)下列代数式中最小值为2的是()A .x -1x B .2x +2-xC .x 2+1x 2D.x 2+2+1x 2+2答案BC解析选项A 中,当x <0时,函数y =x -1x单调递增,无最小值,不符合题意;选项B 中,2x +2-x ≥22x ·2-x =2,当且仅当x =0时,等号成立,满足题意;选项C 中,x 2+1x 2≥2x 2·1x 2=2,当且仅当x =±1时,等号成立,满足题意;选项D 中,x 2+2+1x 2+2≥2x 2+2·1x 2+2=2,当且仅当x 2+2=1x 2+2时,等号成立,但此方程无实数解,不符合题意.(2)已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________.答案3解析由已知,得12=4x +3y ≥24x ·3y ,即12≥24x ·3y ,解得xy ≤3(当且仅当4x =3y 时取等号).命题点2配凑法例3(1)(2023·许昌模拟)已知a ,b 为正数,4a 2+b 2=7,则a 1+b 2的最大值为()A.7B.3C .22D .2答案D解析因为4a 2+b 2=7,则a 1+b 2=12×2a ×1+b 2=124a 2(1+b 2)≤12×4a 2+1+b 22=2,当且仅当4a 2=1+b 2,即a =1,b =3时,等号成立.(2)已知x >1,则x 2+3x -1的最小值为()A .6B .8C .10D .12答案A解析因为x >1,所以x -1>0,x 2+3x -1=(x -1)2+2(x -1)+4x -1=x -1+2+4x -1≥2+2(x -1)·4x -1=6,当且仅当x -1=4x -1,即x =3时,等号成立.与基本不等式模型结构相似的对勾函数模型如图,对于函数f (x )=x +kx,k >0,x ∈[a ,b ],[a ,b ]⊆(0,+∞).(1)当k ∈[a ,b ]时,f (x )=x +kx ≥2k ,f (x )min =f (k )=k +k k =2k ;(2)当k <a 时,f (x )=x +k x 在区间[a ,b ]上单调递增,f (x )min =f (a )=a +ka ;(3)当k >b 时,f (x )=x +k x 在区间[a ,b ]上单调递减,f (x )min =f (b )=b +kb.因此,只有当k ∈[a ,b ]时,才能使用基本不等式求最值,而当k ∉[a ,b ]时只能利用对勾函数的单调性求最值.典例函数f (x )=x 2+3x 2+2的最小值是______.答案32解析由f (x )=x 2+3x 2+2=x 2+2+3x 2+2-2,令x 2+2=t (t ≥2),则有f (t )=t +3t-2,由对勾函数的性质知,f (t )在[2,+∞)上单调递增,所以当t =2时,f (t )min =32,即当x =0时,f (x )min =32.命题点3代换法例4(1)已知正数a ,b 满足8b +4a =1,则8a +b 的最小值为()A .54B .56C .72D .81答案C解析8a +b =(8a +b =64a b +4ba+40≥264a b ·4ba+40=72,当且仅当64a b =4ba,即a =6,b =24时取等号.延伸探究已知正数a ,b 满足8a +4b =ab ,则8a +b 的最小值为________.答案72解析∵8a +4b =ab ,a >0,b >0,∴8b +4a=1,∴8a +b =(8a +b =64a b +4ba+40≥264a b ·4ba+40=72,当且仅当64a b =4ba,即a =6,b =24时取等号.(2)已知正数a ,b 满足a +2b =3恒成立,则1a +1+2b 的最小值为()A.32B.94C .2D .3答案B解析由a +2b =3得(a +1)+2b =4,于是1a +1+2b =·(a +1)+2b 4=141+4+2(a +1)b +2ba +1≥145+22(a +1)b ×2ba +1=94,当且仅当2(a +1)b=2b a +1,且a >0,b >0,即a =13,b =43时,等号成立.所以1a +1+2b的最小值为94.命题点4消元法例5已知正数a ,b 满足a 2-2ab +4=0,则b -a4的最小值为()A .1 B.2C .2D .22答案B解析∵a >0,b >0,a 2-2ab +4=0,则b =a 2+2a ,∴b -a 4=a 2+2a -a 4=a 4+2a ≥2a 4·2a=2,当且仅当a 4=2a ,即a =22时,等号成立,此时b =322.命题点5构造不等式法例6若a >0,b >0,且ab =a +b +3,则ab 的最小值为()A .9B .6C .3D .12答案A解析因为a >0,b >0,所以a +b ≥2ab ,当且仅当a =b 时,等号成立.又ab =a +b +3,所以ab =a +b +3≥2ab +3,整理可得ab -2ab -3≥0,解得ab ≥3或ab ≤-1(舍去).所以ab ≥3,所以ab ≥9.所以当a =b =3时,ab 的最小值为9.思维升华(1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.跟踪训练2(1)(多选)下列四个函数中,最小值为2的是()A .y =sin x xB .y =2-x -4x (x <0)C .y =x 2+6x 2+5D .y =4x +4-x答案AD解析对于A ,因为0<x ≤π2,所以0<sin x ≤1,则y =sin x +1sin x ≥2,当且仅当sin x =1sin x,即sin x =1时取等号,符合题意;对于B ,因为x <0,所以-x >0,-x =4,当且仅当-x =-4x ,即x =-2时等号成立,所以y =2-x -4x ≥2+4=6,即y =2-x -4x (x <0)的最小值为6,不符合题意;对于C ,y =x 2+6x 2+5=x 2+5+1x 2+5,设t =x 2+5,则t ≥5,则y ≥5+15=655,其最小值不是2,不符合题意;对于D ,y =4x +4-x =4x +14x≥24x ·14x =2,当且仅当x =0时取等号,故y =4x +4-x 的最小值为2,符合题意.(2)(多选)已知正实数a ,b 满足ab +a +b =8,下列说法正确的是()A .ab 的最大值为2B .a +b 的最小值为4C .a +2b 的最小值为62-3D.1a (b +1)+1b的最小值为12答案BCD解析对于A ,因为ab +a +b =8≥ab +2ab ,即(ab )2+2ab -8≤0,解得-4≤ab ≤2,又因为a >0,b >0,所以0<ab ≤2,则ab ≤4,当且仅当a =b =2时取等号,故A 错误;对于B ,ab +a +b =8≤(a +b )24+(a +b ),即(a +b )2+4(a +b )-32≥0,解得a +b ≤-8(舍)或a +b ≥4,当且仅当a =b =2时取等号,故B 正确;对于C ,由题意可得b (a +1)=8-a ,所以b =8-aa +1>0,解得0<a <8,所以a +2b =a +2×8-a a +1=a +18a +1-2=a +1+18a +1-3≥2(a +1)·18a +1-3=62-3,当且仅当a +1=18a +1,即a =32-1时取等号,故C 正确;对于D,1a(b+1)+1b=181a(b+1)+1b[a(b+1)+b]=182+ba(b+1)+a(b+1)b≥18×(2+2)=12,当且仅当ba(b+1)=a(b+1)b,即b=4,a=45时取等号,故D正确.课时精练一、单项选择题1.已知m>0,n>0,mn=81,则m+n的最小值是() A.9B.18C.93D.27答案B解析因为m>0,n>0,由基本不等式m+n≥2mn得,m+n≥18,当且仅当m=n=9时,等号成立,所以m+n的最小值是18.2.已知a>0,b>0,且1a+1b=1,则4a+9b的最小值是() A.23B.26C.22D.25答案D解析由题意得a>0,b>0,1a+1b=1,故4a+9ba+9b)=9ba+4ab+13≥29ba·4ab+13=25,当且仅当9ba=4ab,即a=52,b=53时取等号,故4a+9b的最小值是25.3.若正数x,y满足x+3y=5xy,则3x+4y的最小值是() A.2B.3C.4D.5答案D解析对原条件式转化得3x+1y=5,则3x+4yx+4y)+4+12yx++5,当且仅当12yx=3xy且x+3y=5xy,即x =1,y =12时取等号.故3x +4y 的最小值为5.4.“∀x ∈(1,4],不等式x 2-mx +m >0恒成立”的充分不必要条件是()A .m >4B .m <163C .m <4D .m <2答案D解析已知∀x ∈(1,4],由不等式x 2-mx +m >0恒成立,得x 2x -1>m 恒成立,因为x 2x -1=(x -1)2+2(x -1)+1x -1=x -1+1x -1+2≥2(x -1)·1x -1+2=4,当且仅当x -1=1x -1,即x =2时取等号,所以m <4,所以m <2是m <4的充分不必要条件.5.若x >0,y >0,x +3y =1,则xy3x +y的最大值为()A.19B.112C.116D.120答案C解析因为x >0,y >0,x +3y =1,则3x +y xy=3y +1xx +3y )=3x y +3yx +10≥23x y ·3yx+10=16,当且仅当3x y =3yx ,即x =y =14时,等号成立,所以0<xy 3x +y ≤116,即xy 3x +y的最大值为116.6.已知x >y >0且4x +3y =1,则12x -y +2x +2y的最小值为()A .10B .9C .8D .7答案B解析由x >y >0得2x -y >0,x +2y >0,令a =2x -y ,b =x +2y ,则a +2b =4x +3y ,由4x +3y =1得a +2b =1,故12x -y +2x +2y=a +2b )=5+2b a +2ab ≥5+22b a ·2ab=9,当且仅当2b a =2ab,且a +2b =1,即a =b =13时取等号,也即2x -y =13,x +2y =13,即x =15,y =115时,等号成立,故12x -y +2x +2y的最小值为9.二、多项选择题7.已知x ,y 是正数,且x +y =2,则()A .x (x +2y )的最大值为4B .log 2x +log 2y 的最大值为0C .2x +2y 的最小值为4D.1x +2y 的最小值为32+2答案BCD解析由x ,y 是正数,且x +y =2,可得0<x <2,0<y <2,x (x +2y )=(x +y -y )(x +y +y )=(x +y )2-y 2=4-y 2,由0<y 2<4可得0<4-y 2<4,所以x (x +2y )无最大值,故A 错误;由x +y =2≥2xy ,得0<xy ≤1,当且仅当x =y =1时,等号成立,所以log 2x +log 2y =log 2xy ≤log 21=0,故B 正确;由基本不等式可得2x +2y ≥22x ·2y =22x +y =4,当且仅当x =y =1时取等号,故C 正确;1x +2y =x +y )+y x ++=32+2,当且仅当x =22-2,y =4-22时取等号,故D 正确.8.(2022·新高考全国Ⅱ)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1答案BC解析因为ab ≤a 2+b 22(a ,b ∈R ),由x 2+y 2-xy =1可变形为(x +y )2-1=3xy ≤,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为(x 2+y 2)-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1可变形为+34y 2=1,设x -y 2=cos θ,32y =sin θ,所以x =cos θ+33sin θ,y =233sin θ,因此x 2+y 2=cos 2θ+53sin 2θ+233sin θcos θ=1+33sin 2θ-13cos 2θ+13=43+23sin θ∈23,2,所以D 错误.三、填空题9.若x <2,则x +9x -2的最大值为________.答案-4解析x +9x -2=x -2+9x -2+2,由于x <2,所以2-x >0,故2-x +92-x ≥6,当且仅当2-x =92-x,即x =-1时,等号成立,所以x -2+9x -2=--x -6,故x +9x -2=x -2+9x -2+2≤-4,所以x +9x -2的最大值为-4.10.函数f (x )=3x -32x 2-x +1在(1,+∞)上的最大值为________.答案37解析因为f (x )=3x -32x 2-x +1x ∈(1,+∞),令x -1=t ,则t >0,则f (t )=3t 2(t +1)2-(t +1)+1=3t2t 2+3t +2=32t +3+2t ≤322t ·2t+3=37,当且仅当2t =2t ,t =1,即x =2时,等号成立.故f (x )在(1,+∞)上的最大值为37.11.已知a >1,b >2,a +b =5,则1a -1+4b -2的最小值为________.答案92解析因为a >1,b >2,所以a -1>0,b -2>0,又a +b =5,所以(a -1)+(b -2)=2,即12[(a -1)+(b -2)]=1,所以1a -1+4b -2=12[(a -1)+(b -2)]·=121+b -2a -1+4(a -1)b -2+4≥125+2b -2a -1·4(a -1)b -2=12×(5+4)=92,当且仅当b-2a-1=4(a-1)b-2,即a=53,b=103时取等号,所以1a-1+4b-2的最小值为92.12.已知正数a,b满足(a+5b)(2a+b)=36,则a+2b的最小值为________.答案4解析因为a>0,b>0,所以36=(a+5b)(2a+b)≤(a+5b)+(2a+b)22=94(a+2b)2,所以a+2b≥4+5b=2a+b,a+5b)(2a+b)=36,即a=83,b=23时,等号成立,所以a+2b的最小值为4.四、解答题13.已知x>0,y>0,x+2y+xy=30,求:(1)xy的最大值;(2)2x+y的最小值.解(1)因为x>0,y>0,根据基本不等式,30=x+2y+xy≥22xy+xy(当且仅当x=2y=6时取等号),令xy=t(t>0),则t2+22t-30≤0,解得-52≤t≤32,又t>0,所以0<t≤32,即0<xy≤32,所以0<xy≤18,故xy的最大值为18.(2)由x+2y+xy=30可知,y=30-x2+x >0,0<x<30,2x+y=2x+30-x2+x=2(x+2)+322+x-5≥22(x+2)·322+x-5=11,当且仅当2(x+2)=322+x,即x=2时取等号,所以2x+y的最小值为11.14.中欧班列是推进“一带一路”沿线国家道路联通、贸易畅通的重要举措,作为中欧铁路在东北地区的始发站,沈阳某火车站正在不断建设,目前车站准备在某仓库外,利用其一侧原有墙体,建造一面高为3米,底面积为12平方米,且背面靠墙的长方体形状的保管员室,由于保管员室的后背靠墙,无需建造费用,因此甲工程队给出的报价如下:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体的报价为每平方米150元,屋顶和地面以及其他报价共计7200元,设屋子的左右两面墙的长度均为x米(2≤x≤6).(1)当左右两面墙的长度为多少米时,甲工程队的报价最低?(2)现有乙工程队也参与此保管员室建造竞标,其给出的整体报价为900a (1+x )x 元(a >5),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,求实数a 的取值范围.解(1)设甲工程队的总报价为y 元,依题意,左右两面墙的长度均为x 米(2≤x ≤6),则屋子前面新建墙体长为12x米,则y =×2x +4007200=7200≥900×2x ·16x+7200=14400,当且仅当x =16x,即x =4时,等号成立,故当左右两面墙的长度为4米时,甲工程队的报价最低为14400元.(2)由题意可知,7200>900a (1+x )x对任意的x ∈[2,6]恒成立,即(x +4)2x >a (1+x )x ,所以(x +4)2x +1>a ,即a <(x +4)2x +1min ,(x +4)2x +1=x +1+9x +1+6≥2(x +1)·9x +1+6=12,当且仅当x +1=9x +1,即x =2时,等号成立,则(x +4)2x +1的最小值为12,即0<a <12,又a >5,所以a 的取值范围是(5,12).15.已知x ,y 为正实数,则y x +16x2x +y 的最小值为()A .4B .5C .6D .8答案C解析由题得y x +16x 2x +y =y x +162+yx,设yx=t (t >0),则f (t )=t +162+t =t +2+162+t-2≥2(t +2)·162+t-2=8-2=6,当且仅当t +2=162+t,即t =2,即y =2x 时取等号.所以y x +16x 2x +y的最小值为6.16.设a >b >0,则a 2+1ab +1a (a -b )的最小值是________.答案4解析∵a >b >0,∴a -b >0,∴a (a -b )>0,a 2+1ab +1a (a -b )=a 2+ab -ab +1ab +1a (a -b )=a 2-ab +1a (a -b )+ab +1ab =a (a -b )+1a (a -b )+ab +1ab ≥2+2=4,(a -b )=1a (a -b ),=1ab,即a =2,b =22时,等号成立.∴a 2+1ab +1a (a -b )的最小值是4.。

高考数学真题分类解析总复习资料考点18 不等式的证明

高考数学真题分类解析总复习资料考点18  不等式的证明

- 1 - 温馨提示:
此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。

考点18 不等式的证明
选择题
1.(2011·全国高考理科·T3)下面四个条件中,使a b >成立的充分而不必要的条件是( )
(A )1a b >+ (B )1a b >- (C )22a b > (D )33a b >
【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b ,而由a>b 推不出的选项.
【精讲精析】选A.即寻找条件p 使p ,a b a b ⇒>>⇒p ,逐项验证可知选A.
2.(2011·全国高考文科·T5)下面四个条件中,使a b >成立的充分而不必要的条件是( )
(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >
【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b ,而由a>b 推不出的选项.
【精讲精析】选A.即寻找条件p 使p ,a b a b ⇒>>⇒p ,逐项验证可知选A.
关闭Word 文档返回原板块。

高中数学一轮复习(含答案) 14.2 不等式的证明

高中数学一轮复习(含答案)  14.2 不等式的证明

第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.(2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b .(2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2)=p 2x 2+q 2y 2+2pqxy -(px 2+qy 2)=p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p .所以(px +qy )2-(px 2+qy 2)=-pq (x 2+y 2-2xy )=-pq (x -y )2.因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b(ab )+2a b =⎝⎛⎭⎫a b -2a b,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b >1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b ≥(ab ) +2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4. (2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34, ∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd .由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2.因此 a +b >c +d . 2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy .解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0,∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy ≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y≥16,即x +y ≥16xy .考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2),即证(1-a 2b 2)(1-c 2)>0, 由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立.综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.(2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明:由a >b >c 且a +b +c =0,知a >0,c <0.要证b 2-ac <3a ,只需证b 2-ac <3a 2. ∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2,即证2a 2-ab -b 2>0,即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立, 故原不等式成立. 2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1,①当x ≤-1时,不等式可化为-x -1<-2x -2,解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2,此时不等式无解;③当x ≥-12时,不等式可化为x +1<2x ,解得x >1.综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ),只需证|ab +1|>|a +b |,即证|ab +1|2>|a +b |2, 即证a 2b 2+2ab +1>a 2+2ab +b 2,即证a 2b 2-a 2-b 2+1>0,即证(a 2-1)(b 2-1)>0. 因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立. [课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角.证明:要证∠B 为锐角,只需证cos B >0,所以只需证a 2+c 2-b 2>0,即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2,由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立.所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以-4<x <-3; 当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立,所以-3≤x <-1; 当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}.(2)证明:因为4(a -b )2-(ab +2a +2b )2=-(a 2b 2+4a 2b +4ab 2+16ab )=-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2,所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1,解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1,解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14,则函数g (x )在(-∞,0]上是增函数,∴g (x )≤g (0)=0.故x [f (x )]2-x 2f (x )≤0. 5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1, 即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞).t 2+1-3t -3t =t 3-3t 2+t -3t =(t -3)(t 2+1)t ,∵t ∈M ,∴t -3≥0,t 2+1>0,∴(t -3)(t 2+1)t≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115.(2)证明:由图象可知f (x )的最小值为1,由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81,即证a 2b 2-9a 2-9b 2+81>0,即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0,所以(a 2-9)(b 2-9)>0,所以3|a +b |<|ab +9|. 8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c=m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0,即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号.。

高考数学总复习 不等式的证明

高考数学总复习 不等式的证明

高考数学总复习 不等式的证明一.证明的基础和依据:1、 不等式的定义:a-b>0⇔a>b.2、 不等式性质:(见知识要点25).3、 基本不等式:(1) 02≥a . (2)222a b ab +≥ (,a b R ∈) (当且仅当a =b 时取“=”号).(3)平均值不等式:2a b +≥,a b R +∈ )(当且仅当a =b 时取“=”号). 注意:利用它求最值时需满足条件:“一正二定三相等”.(5)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (6)b a b a b a +≤+≤-.二.证明不等式的常用方法:1、 比较法:(1)作差比较:三步骤为:作差,变形,结论。

(2)作商比较:三步骤为:作差,变形,结论。

2.分析法:执果索因,其格式为“要证什么,只需证什么,即证什么”等。

3.综合法:由因导果,将分析得到的结论,一步步写出来。

4.反证法:三步骤为:反设,归谬,结论。

5.放缩法:要证B A ≥,可通过适当的放大或缩小,借助于一个或几个中间量,使得 B B n B B B B B B ≤≤≤≤,...,,,32211或B A A A A A n ≥≥≥ (211),,再利用传递性证之。

6.基本不等式法:使用时要注意条件是否满足,以及等号何时取到。

7.函数单调性法:8.三角代换法:如:若122=+y x ,求证:2222≤--y xy x 。

9.几何意义法:如:已知a,b ∈R,且a+b+1=0,求证:18)3()2(22≥-+-b a .注:常用的放缩技巧:(1)21111111(2)1(1)(1)1n n n n n n n n n n -==-≥++--(2<<=。

不等式及其解法课件—高三数学一轮复习

不等式及其解法课件—高三数学一轮复习


f f
(0) 5x 3 (1) (x2
2x2 0, 7) 5x
3
2x2
0,
化简得
2 x
x
2
2 5x 3 0, 5x 4 0,
解得
x x
1 或x 3, 2 1或x 4,
故x≤-4或x≥
1 2
.故选A.
答案 A
例2 (2021江苏连云港测试,14)设函数f(x)=mx2-mx-1.若对于x∈[1,3],f(x)< -m+5恒成立,求m的取值范围.
注意 可逆 同向
可逆 c的 符号 可逆 同向
同向同正 可乘性 可乘方性 可开方性
a>b>0,c>d>0⇒ac>bd
a>b>0,n∈N*⇒an>bn a>b>0⇒ n a > n b (n∈N,n≥2)
同向 同正 同正 同正
2.不等式的倒数和分数性质
1)倒数性质:a>b,ab>0⇒ 1< 1;
ab
考向一 解一元二次不等式
1.(2023届山东潍坊临朐实验中学月考,6)若关于x的不等式(a2-4)x2+(a+2)x -1≥0的解集不为空集,则实数a的取值范围为 ( )
A.
2,
6 5
B.
2,
6 5
C.(-∞,-2)∪
6 5
,
D.(-∞,-2]∪
6 5
,
答案 C
2.(多选)(2023届山西长治质量检测,10)已知函数y=x2+ax+b(a>0)有且只有 一个零点,则 ( ) A.a2-b2≤4
1 n
x

高考数学一轮复习 不等式选讲 第2课时 不等式的证明与柯西不等式课件 理(选修45)


(2)放缩法的注意事项:
①舍去或加上一些项,如(a+12)2+34>(a+12)2;
②将分子或分母放大(缩小),如
1 k2
<
1 kk-1

1 k2
>
1 kk+1

1 k<
2 k+
k-1

1 k>
k+2 k+1 (k∈N*,k>1)
等.
③放大或缩小时注意要适当,必须目标明确,合情合
理,恰到好处,且不可放缩过大或过小,谨慎地添或减是放
则M,N的大小关系是( )
A.M<N
B.M>N
C.M=N • 答案 B
D.不确定
解析 由已知得0<ab<1, 故M-N=1+1 a+1+1 b-1+a a-1+b b =11- +aa+11- +bb=12+1a-1a+bb>0. 故M>N.
3.已知a,b,c是正实数,且a+b+c=1,则
题型二 三个正数的算术——几何平均不等式问题
• 例2 已知x∈R+,求函数y=x(1-x2)的最大值.
【思路】
利用平均值不等式abc≤(
a+b+c 3
)3(a>0,
b>0,c>0)求解.
【解析】 ∵y=x(1-x2),
∴y2=x2(1-x2)2=2x2(1-x2)(1-x2)·12. ∵2x2+(1-x2)+(1-x2)=2, ∴y2≤12(2x2+1-3x2+1-x2)3=247.
5.(2013·湖北)设x,y,z∈R,且满足:x2+y2+z2=1, x+2y+3z= 14,则x+y+z=________.
答案
3 14 7
解析 由柯西不等式,得(x2+y2+z2)(12+22+32)≥(x+

2011届高考数学一轮复习百大经典例题之不等式解法(新课标)

典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x x x x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

高考数学一轮总复习 2不等式证明的基本方法课件(选修4-5)


放缩法等.
A
9
对点自测
知识点一
基本不等式
1.若 0<a<b<1,则 a+b,2 ab,a2+b2,2ab 中最大的一个是 ________.
A
10
解析 ∵a+b>2 ab,a2+b2>2ab. 又(a2+b2)-(a+b)=a(a-1)+b(b-1). ∵0<a<1,0<b<1,∴a(a-1)+b(b-1)<0. ∴a2+b2<a+b.
由平均不等式可得a13+b13+c13≥3 3 a13·b13·c13, 即a13+b13+c13≥a3bc. 所以a13+b13+c13+abc≥a3bc+abc.
而a3bc+abc≥2 a3bc·abc=2 3.
所以a13+b13+c13+abc≥2 3.
A
16
R 热点命题·深度剖析
研考点 知规律 通法悟道
答案 a+b
A
11
2.已知 x,y∈R,且 xy=1, 则1+1x1+1y的最小值为 ________.
解析 1+1x1+1y≥1+ 1xy2=4. 答案 4
A
12
知识点二
柯西不等式
3.已知 x,y,z 为正数,且 x+y+z=1,则 x2+y2+z2 的最小
值是__________.
解析 x2+y2+z2=(12+12+12)(x2+y2+z2)×13≥(1·x+1·y+ 1·z)2×13=13.
A
19
(2)反证法必须从否定结论进行推理,且必须根据这一条件进 行论证,否则,仅否定结论,不从结论的反面出发进行论证,就 不是反证法.
(3)推导出来的矛盾可能多种多样,有的与已知矛盾,有的与 假设矛盾,有的与定理、公理相违背等等,但推导出的矛盾必须 是明显的.

高考数学复习《不等式》知识点

不等式考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法.(5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │§06. 不 等 式 知识要点1. 不等式的基本概念(1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a <⇔<-=⇔=->⇔>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式.(4) 同解不等式与不等式的同解变形. 2.不等式的基本性质(1)a b b a <⇔>(对称性)(2)c a c b b a >⇒>>,(传递性)(3)c b c a b a +>+⇒>(加法单调性)(4)d b c a d c b a +>+⇒>>,(同向不等式相加) (5)d b c a d c b a ->-⇒<>,(异向不等式相减) (6)bc ac c b a >⇒>>0,.(7)bc ac c b a <⇒<>0,(乘法单调性)(8)bd ac d c b a >⇒>>>>0,0(同向不等式相乘)(9)0,0a b a b c d c d>><<⇒>(异向不等式相除) 11(10),0a b ab a b>>⇒<(倒数关系) (11))1,(0>∈>⇒>>n Z n b a b a n n 且(平方法则)(12))1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式(1)0,0||,2≥≥∈a a R a 则若(2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么.2a b +(当仅当a=b 时取等号)极值定理:若,,,,x y R x y S xy P +∈+==则:○1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.,3a b c a b c R +++∈(4)若、、则a=b=c 时取等号) 0,2b aab a b>+≥(5)若则(当仅当a=b 时取等号)2222(6)0||;||a x a x a x a x a x a x a a x a >>⇔>⇔<-><⇔<⇔-<<时,或(7)||||||||||||,b a b a b a R b a +≤±≤-∈则、若 4.几个著名不等式(1)平均不等式: 如果a ,b 都是正数,那么2112a ba b+≤+(当仅当a=b时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数): 特别地,222()22a b a b ab ++≤≤(当a = b 时,222()22a b a b ab ++==)),,,(332222时取等c b a R c b a c b a c b a ==∈⎪⎭⎫ ⎝⎛+++≥++ ⇒幂平均不等式:22122221)...(1...n n a a a na a a +++≥+++ 注:例如:22222()()()ac bd a b c d +≤++.常用不等式的放缩法:①21111111(2)1(1)(1)1n n n n n n n n n n -==-≥++--p p1)n ==≥pp(2)柯西不等式: 时取等号当且仅当(则若nn n n n n n n b a b a b a b a b b b b a a a a b a b a b a b a R b b b b R a a a a ====+++++++≤++++∈∈ΛΛΛΛΛΛ332211223222122322212332211321321))(();,,,,,,,,(3)琴生不等式(特例)与凸函数、凹函数若定义在某区间上的函数f(x),对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.5.不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法.6.不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论;②一元二次不等式ax 2+bx +c >0(a ≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩ (3)无理不等式:转化为有理不等式求解1()0()0()()f x g x f x g x ⎧≥⎫⇒⎪⎬≥⎨⎭⎪>⎩定义域○2⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ○3⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f (4).指数不等式:转化为代数不等式()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>(5)对数不等式:转化为代数不等式()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩(6)含绝对值不等式○1应用分类讨论思想去绝对值; ○2应用数形思想; ○3应用化归思想等价转化 ⎩⎨⎧>-<>≤⇔>⎩⎨⎧<<->⇔<)()()()(0)()0)(),((0)()(|)(|)()()(0)()(|)(|x g x f x g x f x g x g x f x g x g x f x g x f x g x g x g x f 或或不同时为注:常用不等式的解法举例(x 为正数): ①231124(1)2(1)(1)()22327x x x x x -=⋅--≤=②2222232(1)(1)124(1)()22327x x x y x x y y --=-⇒=≤=⇒≤类似于22sin cos sin (1sin )y x x x x ==-,③111||||||()2x x x x x x+=+≥与同号,故取等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第48课时:第六章 不等式——不等式的证明(二)
课题:不等式的证明(二)
一.复习目标:
1.了解用反证法、换元法、放缩法等方法证明简单的不等式.
二.知识要点:
1.反证法的一般步骤:反设——推理——导出矛盾(得出结论);
2.换元法:一般由代数式的整体换元、三角换元,换元时要注意等价性;
3.放缩法:要注意放缩的适度,常用的方法是:①舍去或加上一些项;②将分子或分母放大(或缩小).
三.课前预习:
1.设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是 ( )
()
A 1,)+∞ ()
B (1]-∞ ()
C 1,)+∞ ()
D (1]-∞
2
.1A =+++
)n N *∈的大小关系是 . 四.例题分析:
例1.已知332x y +=,求证:2x y +≤.
例2.设正有理数1a 是3的一个近似值,令21
211a a =+
+, (1
)证明:介于1a 与2a 之间;
(2)证明:2a 比1a 更接近于3;
(3
)分析研分上述结论,提出一种求
例3.在数列{}n a 中,23sin sin 2sin 3sin 2222n n n a αααα=
++++ ,对正整数,m n 且m n >,求证:12m n n a a -<.
例4.设1a b c ++=,2221a b c ++=,a b c >>,求证:103
c -<<.
五.课后作业:
1.下列三个式子22a c -,22b a -,22(,,)c b a b c R -∈中 ( )
()A 至少有一式小于1- ()B 都小于1-
()C 都大于等于1- ()D 至少有一式大于等于1- 2设0,0,,111x y x y x y A B x y x y +>>==+++++,则,A B 的大小关系是 . 3.,,x x y R x y y
∈=-,则x 的取值范围是 .
4.已知221x y +=,求证:y ax -≤
5.证明:2221111223n +
+++< .
6.设,,a b c 为三角形的三边,求证:3a b c b c a a c b a b c
++≥+-+-+-.
7.已知22,,4a b R a b ∈+≤,求证22|383|20a ab b --≤.。

相关文档
最新文档