MBR污水处理工艺方案设计(DOC)

合集下载

MBR污水处理工艺

MBR污水处理工艺

MBR污水处理工艺MBR污水处理工艺是一种高效的污水处理技术,它采用膜过滤器和生物反应器的结合,能够同时实现固液分离和有机物降解,有效去除废水中的悬浮物、有机物和微生物。

以下是对MBR污水处理工艺的详细介绍。

一、MBR污水处理工艺的原理和优势MBR污水处理工艺是通过膜过滤器将废水中的固体颗粒和微生物截留在反应器内,实现固液分离。

同时,反应器内的生物反应器可以降解废水中的有机物,使废水达到排放标准。

MBR污水处理工艺相比传统的活性污泥法和二级生物处理工艺具有以下优势:1. 占地面积小:MBR工艺采用膜过滤器替代沉淀池,可以大大减小处理设备的占地面积。

2. 出水水质稳定:MBR工艺通过膜过滤器的截留作用,可以有效去除废水中的悬浮物和微生物,确保出水水质稳定。

3. 处理效果好:MBR工艺能够同时实现固液分离和有机物降解,处理效果较好,出水水质达到国家排放标准。

4. 操作维护简单:MBR工艺采用自动化控制系统,操作维护简单方便,减少人工干预。

二、MBR污水处理工艺的工程应用MBR污水处理工艺广泛应用于城市污水处理厂、工业废水处理厂、农村生活污水处理等领域。

以下是MBR污水处理工艺在城市污水处理厂中的应用示例。

1. 工艺流程:(1)进水:将城市污水通过进水管道引入MBR生物反应器。

(2)生物反应:污水在生物反应器中与微生物接触,微生物降解废水中的有机物。

(3)膜过滤:经过生物反应后的废水进入膜过滤器,固体颗粒和微生物被截留在膜上,惟独清澈的水通过膜孔排出。

(4)出水:经过膜过滤后的清澈水达到国家排放标准,可直接排放或者进一步处理后再利用。

2. 工程案例:某城市污水处理厂采用MBR污水处理工艺进行废水处理,处理能力为每天5000立方米。

该工艺采用了膜过滤器和生物反应器的组合,能够高效去除废水中的悬浮物和有机物,出水水质稳定,符合国家排放标准。

三、MBR污水处理工艺的运维与维护MBR污水处理工艺的运维与维护对于保持处理效果和设备寿命至关重要。

MBR污水处理工艺

MBR污水处理工艺

MBR污水处理工艺引言概述:MBR污水处理工艺是一种先进的污水处理技术,通过结合膜分离和生物降解的原理,能够高效地去除污水中的有机物和悬浮物,达到排放标准。

本文将从工艺原理、工艺特点、应用领域、优缺点和发展前景五个方面详细介绍MBR污水处理工艺。

一、工艺原理:1.1 膜分离原理:MBR工艺采用微孔膜作为固液分离的核心,通过膜的筛选作用,将悬浮物和微生物截留在膜表面,使清水通过,实现固液分离。

1.2 生物降解原理:MBR工艺中的生物反应器通过微生物的降解作用,将污水中的有机物分解为无机物,从而达到去除有机污染物的目的。

1.3 混合液循环原理:MBR工艺中的混合液通过循环流动,保持膜表面的通透性,防止膜堵塞,提高处理效果。

二、工艺特点:2.1 高效去除污染物:MBR工艺能够高效地去除污水中的悬浮物、有机物和微生物,使处理后的水质稳定可靠,符合排放标准。

2.2 占地面积小:由于MBR工艺中的生物反应器可以实现高浓度的微生物降解,因此相比传统工艺,MBR工艺所需的反应器体积更小,占地面积更小。

2.3 运行稳定可靠:MBR工艺中的膜分离技术能够有效阻止微生物的流失,保持系统的稳定运行,同时膜的自洁作用也能够减少维护和清洗频率。

三、应用领域:3.1 市区污水处理:MBR工艺适用于城市污水处理厂,可以高效处理大量的生活污水,减少对自然环境的污染。

3.2 工业废水处理:MBR工艺在工业废水处理中也有广泛应用,能够有效去除工业废水中的有机物和悬浮物,达到排放标准。

3.3 农村污水处理:MBR工艺由于占地面积小、运行稳定可靠的特点,适用于农村地区的小型污水处理设施,解决农村污水处理难题。

四、优缺点:4.1 优点:4.1.1 高效去除污染物,水质稳定可靠;4.1.2 占地面积小,适用于空间有限的场所;4.1.3 运行稳定可靠,维护成本低。

4.2 缺点:4.2.1 技术要求高,操作难度较大;4.2.2 膜的成本较高,对设备投资较大;4.2.3 对进水水质要求较高,容易受到水质波动的影响。

300吨天MBR设计方案

300吨天MBR设计方案

300吨天MBR设计方案MBR(膜生物反应器)是一种结合了传统生物反应器和膜技术的污水处理工艺,它采用了超滤膜或微滤膜来分离并去除污水中的悬浮物、胶体和微生物等物质,能够获得高质量的出水。

针对300吨/天的MBR设计方案,以下是一个可能的设计方案,并对其进行详细介绍。

设计原则:1.处理能力:根据每天处理300吨的水量,需要确保MBR系统的处理能力能够满足这一要求。

2.出水质量:出水水质需要符合相关的标准,如国家排放标准或再利用标准。

3.能源消耗:MBR系统的能源消耗应尽可能低,以提高系统的经济效益。

4.运行维护:MBR系统应具备良好的运行稳定性和易维护性,以减少运行成本和维修成本。

MBR系统设计步骤:1.汇水与预处理:首先,将污水通过预处理单元进行初步处理,去除大颗粒物和固体悬浮物。

2.生物反应器:在生物反应器中,采用生物脱氮、生物脱磷和有机物降解等工艺,通过悬浮的生物污泥来分解有机物和去除氮、磷等营养物质。

3.膜分离单元:将生物反应器中的混合液通过超滤膜或微滤膜进行膜分离,去除残留的悬浮物、胶体和微生物。

膜分离单元分为压力型和引流型两种,根据具体情况选择。

4.气提系统:在膜分离单元中,采用气提系统以保持膜面通透性,避免膜面阻塞和污染。

5.清洗系统:为了保持膜面的通透性,需要定期对膜进行清洗。

清洗系统可根据实际需要选用化学清洗、水力清洗或气体清洗等方法。

6.出水处理:出水可以直接排放或经进一步处理后再利用。

具体处理工艺可以根据实际需要,如消毒、深度处理等。

设计要点和建议:1.MBR系统的设计应综合考虑处理能力、水质要求和能源消耗等指标,进行合理平衡。

2.生物反应器的设计要充分考虑生物脱氮和脱磷的效果,通过调整反应器的配置和操作控制,以获得良好的处理效果。

3.膜分离单元的选型应根据处理水质要求和预算来确定,同时还要考虑膜的寿命和维护成本等因素。

4.定期维护和清洗膜是保持系统长期稳定运行的关键,因此在设计中要考虑便捷的清洗系统和操作。

MBR污水处理工艺

MBR污水处理工艺

MBR污水处理工艺引言概述:MBR污水处理工艺是一种先进的污水处理技术,它结合了传统的活性污泥法和膜分离技术,能够高效地去除污水中的悬浮物和有机物质。

本文将详细介绍MBR污水处理工艺的原理、优势、应用领域、操作维护以及未来发展方向。

一、原理:1.1 膜分离技术:MBR污水处理工艺采用微孔膜作为固液分离的介质,通过膜的微孔尺寸来阻止污水中的悬浮物和微生物进入清水区,实现固液分离。

1.2 活性污泥法:MBR污水处理工艺中的活性污泥具有良好的生物降解能力,能够有效降解污水中的有机物质,并将其转化为污泥。

1.3 气体曝气系统:MBR污水处理工艺通过气体曝气系统向反应器中供氧,提供适宜的环境条件,促进活性污泥的生长和降解污水中的有机物。

二、优势:2.1 高效去除悬浮物:MBR污水处理工艺中的微孔膜能够有效过滤污水中的悬浮物,使出水悬浮物浓度低于国家排放标准。

2.2 出水水质稳定:MBR污水处理工艺能够稳定地去除污水中的有机物质,出水水质稳定,适用于要求较高的排放标准。

2.3 占地面积小:MBR污水处理工艺中的反应器可以实现高浓度的活性污泥处理,减小了处理系统的体积,降低了占地面积。

三、应用领域:3.1 城市污水处理:MBR污水处理工艺适用于城市污水处理厂,能够高效地处理大量的污水,保证城市环境的卫生和水资源的可持续利用。

3.2 工业废水处理:MBR污水处理工艺对于工业废水中的有机物质和重金属离子有较好的去除效果,适用于各类工业废水处理。

3.3 农村污水处理:MBR污水处理工艺可以根据农村污水的特点进行调整,适用于农村地区的污水处理,解决农村环境污染问题。

四、操作维护:4.1 膜清洗:MBR污水处理工艺中的膜需要定期进行清洗,以去除附着在膜表面的污染物,保证处理效果。

4.2 活性污泥管理:MBR污水处理工艺中的活性污泥需要定期管理,包括污泥的搅拌、曝气、浓缩和回流等操作,以保证处理效果和系统稳定运行。

4.3 操作监控:MBR污水处理工艺需要进行实时的操作监控,包括进水水质、出水水质、膜通量、气体曝气量等参数的监测,及时发现和解决问题。

2500吨每天MBR生活污水处理实施方案设计

2500吨每天MBR生活污水处理实施方案设计

适用标准2500 吨/ 天生活污水办理设计方案2500t/d 生活污水 MBR 设计方案宁波市宣溢水办理设备有限公司日期:2015年8月15日目录一、工程概略 (2)二、设计标准及规范 (2)三、设计原则 (3)四、设计范围 (4)五、设计条件 (4)5.1 进水水量、水质 (4)5.2 出水水量、水质 (4)六、工艺流程及说明 (5)6.1 工艺流程图 (5)6.2 工艺流程说明 (5)6.3 技术(设备)特色 (5)七、各办理单元功能及技术参数 ........................................................................................................................................................ 1 22500t/d 生活污水 MBR 设计方案格栅及格栅井 (12)机械格栅 (13)调理池 (13)缺氧池 (15)MBR 膜池 (16)消毒池 (21)污泥池 (24)设备房 (24)八、运转花费 ......................................................................................................... 2 5电力耗费 (25)运转成本剖析 (26)九、控制系统 ......................................................................................................... 2 7十、工程估算 ......................................................................................................... 2 7土建结构物 (27)设备清单 (28)十一、办理成效、效益剖析.................................................................................... 2 9办理成效剖析 (29)环境效益和影响剖析 (30)十二、售后服务 ..................................................................................................... 3 0一、工程概略污水主要根源于卫生间、食堂等生活用水。

mbr技术方案

mbr技术方案

mbr技术方案MBR技术(膜生物反应器技术)是一种高级的水处理技术,在各种污水处理场景中得到广泛应用。

本文将详细介绍MBR技术的原理、工艺流程以及其在环境保护领域的应用。

一、MBR技术的原理MBR技术采用了物理隔膜(半透膜)和生物活性污泥相结合的处理方式,以实现高效的水体净化和废水处理。

其原理主要包括以下三个方面:1. 生物反应器:通过将生物活性污泥引入反应器中,利用微生物的生物降解能力将废水中的有机物质分解为无机物质。

2. 膜分离:膜的作用类似于过滤器,可以阻止生物污泥和固体颗粒通过,从而实现废水的固液分离和水的净化。

3. 气提效应:通过向反应器注入微小的气泡,既能提供微生物所需的氧气,又能诱发液体的搅动,促进生物活性污泥的生长和代谢,提高废水的处理效果。

二、MBR技术的工艺流程MBR技术的工艺流程主要包括预处理、生物反应器和膜系统三个环节。

1. 预处理:首先,废水经过预处理,去除较大的杂质和固体颗粒,避免对后续的处理设备造成损害。

2. 生物反应器:废水进入生物反应器,生物活性污泥分解有机物质,同时通过气提效应提供充足的氧气,促进微生物代谢,达到高效的废水处理效果。

3. 膜系统:最后,经过生物反应器处理后的废水进入膜系统,通过膜的过滤和分离作用,实现废水中的悬浮固体、微生物和颗粒物质与水的彻底分离,从而得到高质量的净水。

三、MBR技术在环境保护领域的应用MBR技术由于其高效、稳定的污水处理效果,被广泛应用于多个领域,其中包括以下几个方面:1. 城市污水处理:MBR技术可以有效地处理城市污水,去除其中的有机物质、重金属离子等有害物质,使排放水质达到国家标准要求,实现城市水环境的健康保护。

2. 工业废水处理:许多工业生产过程中会产生大量的废水,其中含有有机物质、高浓度的重金属等污染物。

MBR技术能够有效处理这些废水,降低对环境的影响,提高生产过程的可持续性。

3. 农村污水治理:MBR技术适用于农村地区的污水处理,可以解决农村生活废水和农田排水的处理问题,显著改善农村水环境,促进农村可持续发展。

MBR污水处理工艺

MBR污水处理工艺MBR污水处理工艺是一种先进的膜生物反应器技术,用于处理各种类型的污水。

它结合了传统的生物处理工艺和膜分离技术,能够高效地去除污水中的悬浮物、有机物和微生物等。

一、工艺原理MBR污水处理工艺主要由生物反应器和膜分离系统两部份组成。

生物反应器中的微生物通过降解有机物来净化污水,而膜分离系统则用于分离净化后的水和污泥。

1. 生物反应器生物反应器是MBR污水处理工艺的核心部份。

在生物反应器中,微生物通过吸附和降解的方式将有机物转化为无机物,并将污水中的悬浮物和微生物固定在生物膜上。

这些微生物能够有效地降解有机物,从而实现对污水的净化。

2. 膜分离系统膜分离系统是MBR污水处理工艺的关键组成部份。

它采用微孔膜或者超滤膜作为过滤介质,通过物理隔离的方式将净化后的水和污泥分离。

膜分离系统具有高效过滤、占地面积小和操作简单等优点,能够有效地提高污水处理的效率和水质的稳定性。

二、工艺特点MBR污水处理工艺具有以下几个显著的特点:1. 高效净化能力MBR工艺能够高效地去除污水中的悬浮物、有机物和微生物等,使处理后的水质达到国家排放标准。

相比传统的污水处理工艺,MBR工艺的净化效果更好,能够处理高浓度和高难度的污水。

2. 占地面积小MBR工艺采用膜分离系统,相比传统的沉淀池和过滤器等设备,占地面积更小。

这对于场地有限的污水处理厂来说是非常有优势的。

3. 操作维护简单MBR工艺的操作和维护相对简单。

膜分离系统具有自动清洗和自动控制功能,能够减少人工干预和维护成本。

4. 减少污泥产生MBR工艺能够将微生物固定在生物膜上,减少污泥的产生。

相比传统的活性污泥法,MBR工艺产生的污泥更少,减少了处理和处置的成本。

5. 适合范围广MBR工艺适合于各种类型的污水处理,包括城市生活污水、工业废水和农村污水等。

它能够适应不同水质和处理量的要求,具有很高的灵便性。

三、应用领域MBR污水处理工艺已广泛应用于各种领域,包括城市污水处理厂、工业废水处理厂、农村污水处理站和景区等。

mbr污水处理工艺

MBR污水处理工艺简介一、工艺简介在污水处理,水资源再利用领域,MBR又称膜生物反应器Membrane Bio-Reactor,是一种由活性污泥法与MBR膜图片膜分离技术相结合的新型水处理技术;膜的种类繁多,按分离机理进行分类,有反应膜、离子交换膜、渗透膜等;按膜的性质分类,有天然膜生物膜和合成膜有机膜和无机膜;按膜的结构型式分类,有平板型、管型、螺旋型及中空纤维型等;二、工艺的组成膜- 生物反应器主要由膜分离组件及生物反应器两部分组成;通常提到的膜- 生物反应器实际上是三类反应器的总称: ①曝气膜- 生物反应器Aeration Membrane Bioreactor, AMBR ; ②萃取膜- 生物反应器ExtractiveMembrane Bioreactor, EMBR ; ③固液分离型膜- 生物反应器Solid/Liquid SeparationMembrane Bioreactor, SLSMBR, 简称MBR ;1、曝气膜-生物反应器曝气膜-生物反应器最早见于Cote.P 等1988年报道,采用透气性致密膜如硅橡胶膜或微孔膜如疏水性聚合膜,以板式或中空纤维式组件,在保持气体分压低于泡点Bubble Point情况下,可实现向生物反应器的无泡曝气;该工艺的特点是提高了接触时间和传氧效率,有利于曝气工艺的控制,不受传统曝气中气泡大小和停留时间的因素的影响;如图1 所示;2、折叠萃取膜-生物反应器萃取膜- 生物反应器又称为EMBR Extractive Membrane Bioreactor;因为高酸碱度或对生物有毒物质的存在,某些工业废水不宜采用与微生物直接接触的方法处理;当废水中含挥发性有毒物质时,若采用传统的好氧生物处理过程,污染物容易随曝气气流挥发,发生气提现象,不仅处理效果很不稳定,还会造成大气污染;为了解决这些技术难题,英国学者Livingston研究开发了EMB ;废水与活性污泥被膜隔开来,废水在膜内流动,而含某种专性细菌的活性污泥在膜外流动,废水与微生物不直接接触,有机污染物可以选择性透过膜被另一侧的微生物降解;由于萃取膜两侧的生物反应器单元和废水循环单元是各自独立,各单元水流相互影响不大,生物反应器中营养物质和微生物生存条件不受废水水质的影响,使水处理效果稳定;系统的运行条件如HRT 和SRT 可分别控制在最优的范围,维持最大的污染物降解速率;3、折叠固液分离型膜-生物反应器固液分离型膜- 生物反应器是在水处理领域中研究得最为广泛深入的一类膜-生物反应器,是一种用膜分离过程取代传统活性污泥法中二次沉淀池的水处理技术;在传统的废水生物处理技术中,泥水分离是在二沉池中靠重力作用完成的,其分离效率依赖于活性污泥的沉降性能,沉降性越好,泥水分离效率越高;而污泥的沉降性取决于曝气池的运行状况,改善污泥沉降性必须严格控制曝气池的操作条件,这限制了该方法的适用范围;由于二沉池固液分离的要求,曝气池的污泥不能维持较高浓度,一般在1.5~3.5g/L左右,从而限制了生化反应速率;水力停留时间HRT 与污泥龄SRT相互依赖,提高容积负荷与降低污泥负荷往往形成矛盾;系统在运行过程中还产生了大量的剩余污泥,其处置费用占污水处理厂运行费用的25% ~40% ;传统活性污泥处理系统还容易出现污泥膨胀现象,出水中含有悬浮固体,出水水质恶化;针对上述问题, MBR将膜分离技术与传统生物处理技术有机结合,MBR实现污泥停留时间和水力停留时间的分离,大大提高了固液分离效率,并且由于曝气池中活性污泥浓度的增大和污泥中特效菌特别是优势菌群的出现,提高了生化反应速率;同时,通过降低F/M比减少剩余污泥产生量甚至为零,从而基本解决了传统活性污泥法存在的许多突出问题;三、MBR工艺类型以下讨论的均为固液分离型膜- 生物反应器; 根据膜组件和生物反应器的组合方式,可将膜- 生物反应器分为分置式、一体式以及复合式三种基本类型;分置式膜- 生物反应器把膜组件和生物反应器分开设置,如图3所示;生物反应器中的混合液经循环泵增压后打至膜组件的过滤端,在压力作用下混合液中的液体透过膜,成为系统处理水;固形物、大分子物质等则被膜截留,随浓缩液回流到生物反应器内;分置式膜-生物反应器的特点是运行稳定可靠,易于膜的清洗、更换及增设;而且膜通量普遍较大;但一般条件下为减少污染物在膜表面的沉积,延长膜的清洗周期,需要用循环泵提供较高的膜面错流流速,水流循环量大、动力费用高Yamamoto, 1989,并且泵的高速旋转产生的剪切力会使某些微生物菌体产生失活现象Brockmann and Seyfried, 1997 ;一体式膜- 生物反应器是把膜组件置于生物反应器内部,如图4 所示;进水进入膜-生物反应器,其中的大部分污染物被混合液中的活性污泥去除,再在外压作用下由膜过滤出水;这种形式的膜-生物反应器由于省去了混合液循环系统,并且靠抽吸出水,能耗相对较低;占地较分置式更为紧凑,近年来在水处理领域受到了特别关注;但是一般膜通量相对较低,容易发生膜污染,膜污染后不容易清洗和更换;复合式膜- 生物反应器在形式上也属于一体式膜- 生物反应器,所不同的是在生物反应器内加装填料,从而形成复合式膜- 生物反应器,改变了反应器的某些性状,如图5 所示:四、MBR处理工艺的特点与许多传统的生物水处理工艺相比, MBR 具有以下主要特点:1、出水水质优质稳定由于膜的高效分离作用,分离效果远好于传统沉淀池,处理出水极其清澈, 悬浮物和浊度接近于零,细菌和病毒被大幅去除,出水水质优于建设部颁发的生活杂用水水质标准CJ25.1-89 ,可以直接作为非饮用市政杂用水进行回用;同时,膜分离也使微生物被完全被截流在生物反应器内, 使得系统内能够维持较高的微生物浓度,不但提高了反应装置对污染物的整体去除效率,保证了良好的出水水质,同时反应器对进水负荷水质及水量的各种变化具有很好的适应性,耐冲击负荷,能够稳定获得优质的出水水质;2、剩余污泥产量少该工艺可以在高容积负荷、低污泥负荷下运行,剩余污泥产量低理论上可以实现零污泥排放,降低了污泥处理费用;3、占地面积小,不受设置场合限制生物反应器内能维持高浓度的微生物量,处理装置容积负荷高,占地面积大大节省; 该工艺流程简单、结构紧凑、占地面积省,不受设置场所限制,适合于任何场合,可做成地面式、半地下式和地下式;4、可去除氨氮及难降解有机物由于微生物被完全截流在生物反应器内,从而有利于增殖缓慢的微生物如硝化细菌的截留生长,系统硝化效率得以提高;同时,可增长一些难降解的有机物在系统中的水力停留时间,有利于难降解有机物降解效率的提高;5、操作管理方便,易于实现自动控制该工艺实现了水力停留时间HRT 与污泥停留时间SRT 的完全分离,运行控制更加灵活稳定,是污水处理中容易实现装备化的新技术,可实现微机自动控制,从而使操作管理更为方便;6、易于从传统工艺进行改造该工艺可以作为传统污水处理工艺的深度处理单元,在城市二级污水处理厂出水深度处理从而实现城市污水的大量回用等领域有着广阔的应用前景;膜- 生物反应器也存在一些不足;主要表现在以下几个方面:o 膜造价高,使膜- 生物反应器的基建投资高于传统污水处理工艺;o 膜污染容易出现,给操作管理带来不便;o 能耗高:首先MBR 泥水分离过程必须保持一定的膜驱动压力,其次是MBR 池中MLSS 浓度非常高,要保持足够的传氧速率,必须加大曝气强度,还有为了加大膜通量、减轻膜污染,必须增大流速,冲刷膜表面,造成MBR 的能耗要比传统的生物处理工艺高;五、MBR处理工艺用膜膜可以由很多种材料制备,可以是液相、固相甚至是气相的;目前使用的分离膜绝大多数是固相膜;根据孔径不同可分为:微滤膜、超滤膜、纳滤膜和反渗透膜;根据材料不同,可分为无机膜和有机膜,无机膜主要是微滤级别膜;膜可以是均质或非均质的,可以是荷电的或电中性的;广泛用于废水处理的膜主要是由有机高分子材料制备的固相非对称膜;膜的分类依据及分类:1、MBR 膜材质1、高分子有机膜材料: 聚烯烃类、聚乙烯类、聚丙烯腈、聚砜类、芳香族聚酰胺、含氟聚合物等;有机膜成本相对较低,造价便宜,膜的制造工艺较为成熟,膜孔径和形式也较为多样,应用广泛,但运行过程易污染、强度低、使用寿命短;2、无机膜:是固态膜的一种,是由无机材料,如金属、金属氧化物、陶瓷、多孔玻璃、沸石、无机高分子材料等制成的半透膜;目前在MBR 中使用的无机膜多为陶瓷膜,优点是:它可以在pH = 0~14 、压力P<10MPa 、温度<350 ℃的环境中使用,其通量高、能耗相对较低,在高浓度工业废水处理中具有很大竞争力;缺点是:造价昂贵、不耐碱、弹性小、膜的加工制备有一定困难;2、MBR 膜孔径MBR 工艺中用膜一般为微滤膜MF 和超滤膜UF ,大都采用0.1 ~ 0.4 μ m 膜孔径,这对于固液分离型的膜反应器来说已经足够;微滤膜常用的聚合物材料有:聚碳酸酯、纤维素酯、聚偏二氟乙烯、聚砜、聚四氟乙烯、聚氯乙烯、聚醚酰亚胺、聚丙烯、聚醚醚酮、聚酰胺等;超滤常用聚合物材料有:聚砜、聚醚砜、聚酰胺、聚丙烯腈PAN 、聚偏氟乙烯、纤维素酯、聚醚醚酮、聚亚酰胺、聚醚酰胺等;3、MBR 膜组件为了便于工业化生产和安装,提高膜的工作效率,在单位体积内实现最大的膜面积,通常将膜以某种形式组装在一个基本单元设备内,在一定的驱动力下,完成混合液中各组分的分离,这类装置称为膜组件Module ;工业上常用的膜组件形式有五种:板框式Plate and Frame Module 、螺旋卷式Spiral Wound Module 、圆管式TubularModule 、中空纤维式Hollow Fiber Module 和毛细管式Capillary Module;前两种使用平板膜,后三者使用管式膜;圆管式膜直径>10mm; 毛细管式- 0.5~10.0mm ;中空纤维式<0.5mm> ;MBR 工艺中常用的膜组件形式有:板框式、圆管式、中空纤维式; 板框式:是MBR 工艺最早应用的一种膜组件形式,外形类似于普通的板框式压滤机;优点是:制造组装简单,操作方便,易于维护、清洗、更换;缺点是:密封较复杂,压力损失大,装填密度小;圆管式:是由膜和膜的支撑体构成,有内压型和外压型两种运行方式;实际中多采用内压型,即进水从管内流入,渗透液从管外流出;膜直径在6~24mm 之间;圆管式膜优点是:料液可以控制湍流流动,不易堵塞,易清洗,压力损失小;缺点是:装填密度小;中空纤维式:外径一般为40 ~ 250 μm ,内径为25 ~ 42μm ;优点是:耐压强度高,不易变形;在MBR 中,常把组件直接放入反应器中,不需耐压容器,构成浸没式膜-生物反应器;一般为外压式膜组件;优点是:装填密度高;造价相对较低;寿命较长,可以采用物化性能稳定,透水率低的尼龙中空纤维膜;膜耐压性能好,不需支撑材料;缺点是:对堵塞敏感,污染和浓差极化对膜的分离性能有很大影响;MBR 膜组件设计的一般要求:o 对膜提供足够的机械支撑,流道通畅,没有流动死角和静水区;o 能耗较低,尽量减少浓差极化,提高分离效率,减轻膜污染;o 尽可能高的装填密度,安装,清洗、更换方便;o 具有足够的机械强度、化学和热稳定性;膜组件的选用要综合考虑其成本,装填密度、应用场合、系统流程、膜污染及清洗、使用寿命等;六、MBR处理工艺的应用领域进入90 年代中后期,膜- 生物反应器在国外已进入了实际应用阶段;加拿大 Zenon公司首先推出了超滤管式膜-生物反应器,并将其应用于城市污水处理;为了节约能耗,该公司又开发了浸入式中空纤维膜组件,其开发出的膜-生物反应器已应用于美国、德国、法国和埃及等十多个地方,规模从380m 3 /d 至7600m 3 /d;日本三菱人造丝公司也是世界上浸入式中空纤维膜的知名提供商,其在MBR 的应用方面也积累了多年的经验,在日本以及其他国家建有多项实际MBR工程;日本Kubota 公司是另一个在膜-生物反应器实际应用中具有竞争力的公司,它所生产的板式膜具有流通量大、耐污染和工艺简单等特点;国内一些研究者及企业也在MBR实用化方面进行着尝试;现在,膜- 生物反应器已应用于以下领域:1、城市污水处理及建筑中水回用1967年第一个采用MBR 工艺的废水处理厂由美国的Dorr-Oliver 公司建成,这个处理厂处理14m 3 /d 废水; 1977年,一套污水回用系统在日本的一幢高层建筑中得到实际应用; 1980 年,日本建成了两座处理能力分别为10m 3 /d 和50m 3 /d的MBR 处理厂; 90 年代中期,日本就有39 座这样的厂在运行,最大处理能力可达500m 3 /d ,并且有100 多处的高楼采用MBR 将污水处理后回用于中水道; 1997 年,英国Wessex 公司在英国Porlock 建立了当时世界上最大的MBR系统,日处理量达2 , 000 m 3 , 1999 年又在Dorset 的Swanage 建成了13 , 000m 3 /d 的MBR 工厂14 ;1998 年5 月,清华大学进行的一体式膜- 生物反应器中试系统通过了国家鉴定; 2000年初,清华大学在北京市海淀乡医院建起了一套实用的MBR 系统,用以处理医院废水,该工程于2000 年6 月建成并投入使用,目前运转正常;2000 年9 月,天津大学杨造燕教授及其领导的科研小组在天津新技术产业园区普辰大厦建成了一个MBR 示范工程,该系统日处理污水25吨,处理后的污水全部用于卫生间的冲洗及绿地浇洒,占地面积为10 平方米,处理每吨污水的能耗为0.7kW · h ;2、工业废水处理90年代以来, MBR 的处理对象不断拓宽,除中水回用、粪便污水处理以外, MBR在工业废水处理中的应用也得到了广泛关注,如处理食品工业废水、水产加工废水、养殖废水、化妆品生产废水、染料废水、石油化工废水,均获得了良好的处理效果; 90 年代初,美国在Ohio 建造了一套用于处理某汽车制造厂的工业废水的MBR 系统,处理规模为151m 3 /d,该系统的有机负荷达6.3kgCOD/m 3 · d , COD 去除率为94%,绝大部分的油与油脂被降解;在荷兰,一脂肪提取加工厂采用传统的氧化沟污水处理技术处理其生产废水,由于生产规模的扩大,结果导致污泥膨胀,污泥难以分离,最后采用Zenon 的膜组件代替沉淀池,运行效果良好;3、微污染饮用水净化随着氮肥与杀虫剂在农业中的广泛应用,饮用水也不同程度受到污染; LyonnaisedesEaux 公司在90 年代中期开发出同时具有生物脱氮、吸附杀虫剂、去除浊度功能的MBR工艺, 1995 年该公司在法国的Douchy 建成了日产饮用水400m 3 的工厂;出水中氮浓度低于0.1mgNO 2 /L,杀虫剂浓度低于0.02 μ g/L ;4、粪便污水处理粪便污水中有机物含量很高,传统的反硝化处理方法要求有很高污泥浓度,固液分离不稳定,影响了三级处理效果; MBR 的出现很好地解决了这一问题,并且使粪便污水不经稀释而直接处理成为可能;日本已开发出被称之为NS 系统的屎尿处理技术,最核心部分是平板膜装置与好氧高浓度活性污泥生物反应器组合的系统; NS 系统于1985年在日本琦玉县越谷市建成,生产规模为10kL/d , 1989 年又先后在长崎县、熊本县建成新的屎尿处理设施; NS 系统中的平板膜每组约0.4m 2 共几十组并列安装,做成能自动打开的框架装置,并能自动冲洗;膜材料为截流分子量20000 的聚砜超滤膜;反应器内污泥浓度保持在15000~18000mg/L 范围内;到1994 年,日本已有1200 多套MBR 系统用于处理4000 多万人的粪便污水;5、土地填埋场/ 堆肥渗滤液处理土地填埋场/ 堆肥渗滤液含有高浓度的污染物,其水质和水量随气候条件与操作运行条件的变化而变化; MBR 技术在1994年前就被多家污水处理厂用于该种污水的处理;通过MBR 与RO 技术的结合,不仅能去除SS、有机物和氮,而且能有效去除盐类与重金属;最近美国Envirogen 公司开发出一种MBR用于土地填埋场渗滤液的处理,并在新泽西建成一个日处理能力为40 万加仑约1500m 3 /d 的装置,在2000年底投入运行;该种MBR使用一种自然存在的混合菌来分解渗滤液中的烃和氯代化合物,其处理污染物的浓度为常规废水处理装置的50 ~ 100倍;能达到这一处理效果的原因是, MBR 能够保留高效细菌并使细菌浓度达到50 , 000g/L ;在现场中试中,进液COD 为几百至40 , 000mg/L ,污染物的去除率达90% 以上;国内外MBR 主要应用领域及相应百分比率:污水类型所占百分比率% 污水类型所占百分比率%工业污水27 城市污水12建筑污水24 垃圾9家庭污水27七、MBR处理工艺发展前瞻1、MBR应用的重点领域和方向o现有城市污水处理厂的更新升级,特别是出水水质难以达标或处理流量剧增而占地面积无法扩大的水厂;o 无排水管网系统的小区,如居民点、旅游度假区、风景区等;o 有污水回用需求的地区或场所,如宾馆、洗车业、客机、流动厕所等充分发挥MBR 占地面积小、设备紧凑、自动控制、灵活方便的特点;o 高浓度、有毒、难降解工业废水处理;如造纸、制糖、酒精、皮革、合成脂肪酸等行业,是一种普遍的点源污染; MBR 可以对这些常规处理工艺无法达标的废水进行有效的处理,并实现回用;o 垃圾填埋厂渗滤液的处理及回用;o 小规模污水厂站的应用;膜技术的特点十分适合处理小规模污水;2、MBR 未来的研究重点如下o 膜污染的机理及防治;o MBR 工艺流程形式及运行条件的优化;o MBR 污泥产率与运行条件的关系,以合理减少污泥产量,降低污泥处理费用;o MBR 生物反应器内微生物的代谢特性及其对出水水质、污泥活性等的影响,从而确定适宜的微生物生长及代谢条件;o MBR 工艺经济性研究;在目前国内经济发展水平、膜产品供应状况和规范设计要求的条件下, MBR 用于污水处理的最大经济流量的确定;o 以节能、处理特殊水质对象、兼具脱氮除磷、操作维护简便、可以长期稳定运行等为目标,开发新型的膜生物反应器;。

5000t污水处理厂设计方案A2O+MBR工艺(完整)

海兴农场污水处理站技术方案2019年10月27日目录一、方案论证 (1)1.1污水处理工艺方案 (1)1.1.1污水处理工艺选择原则 (1)1.1.2水质特性分析 (1)1.1.3污水处理程度确实 (4)1.1.4处理重点及难点分析 (5)1.1.5污水处理方案论述 (6)1.2污泥处理方案 (22)1.2.1污泥处理的目的 (22)1.2.2污泥处理设计原则 (23)1.2.3污泥处理工艺 (23)1.2.4污泥处置 (30)1.3污水消毒工艺方案 (31)1.4臭气处理工艺方案 (35)1.5工艺流程 (37)1.6建造方式 (38)二、设计方案 (39)2.1设计原则 (39)2.2主要设计参数 (39)2.3 主要构筑物工艺设计 (40)2.3.1粗格栅及提升泵房 (40)2.3.2细格栅及旋流沉砂池、膜格栅 (42)2.3.3调节池 (46)2.3.4组合生化池 (46)2.3.5消毒渠及巴氏计量槽 (51)2.3.6污泥浓缩池 (52)2.3.7污泥调质池 (53)2.3.8除臭间 (53)2.3.9污泥脱水机房 (55)2.3.10综合工房 (57)2.3.11工作站 (58)2.3.12门卫 (58)2.4污水管网铺设方案 (58)2.4.1管道布置方案 (58)2.4.2管道水力计算 (58)2.4.3污水管道管材选择 (59)2.4.4管道施工方法及基础 (61)2.5总图及建筑设计 (61)2.5.1总平面设计 (61)2.5.2总平面布置 (62)2.5.3竖向布置及道路 (62)2.5.4厂区绿化 (63)2.5.5建筑设计 (63)2.6.结构设计 (65)2.6.1设计依据 (65)2.7.电气设计 (73)2.7.1设计依据 (73)2.7.2设计范围 (73)2.7.3负荷等级 (74)2.7.4供电电源 (74)2.7.5负荷计算及变压器容量选择 (74)2.7.6供电电压等级 (80)2.7.7电能计量及无功补偿 (80)2.7.8主要设备选型 (80)2.7.9继电保护 (80)2.7.10电气控制 (81)2.7.11配电 (81)2.7.12照明 (81)2.7.13防雷与接地系统 (82)2.7.14电气安全 (82)2.7.15节能措施节电措施 (83)2.7.16电信 (83)2.7.17电话配线系统 (83)2.7.18计算机网络布线系统 (84)2.7.19室内外线路 (84)2.8.自控系统及仪表设计 (84)2.8.1设计依据 (84)2.8.2设计范围 (85)2.8.3自动控制系统构成 (85)2.8.4中央控制系统设置及功能 (86)2.8.5 PLC现场控制单元设置及功能 (87)2.8.6设备的操作控制方式 (88)2.8.7检测仪表的设置 (88)2.8.8设计选型 (89)2.8.9过电压保护装置 (89)2.8.10系统的供电 (90)2.8.11接地 (90)2.8.12工业电视监控系统 (90)2.9暖通设计 (90)2.9.1采暖空调设计 (90)2.9.2通风 (93)2.10 化验室设计 (93)2.10.1化验室面积与功能区划分 (94)2.10.2仪器设备配置 (94)2.11. 厂区给排水 (94)2.11.1给水 (95)2.11.2排水 (95)2.11.3管道管材 (96)2.12 防腐设计 (96)2.12.1 防腐工作的重要性 (96)2.12.2 建(构)筑物防腐 (96)2.12.4 设备防腐 (97)附件:总投资估算表附图:附图1:河北省国营海兴农场污水处理项目地理位置图附图2:河北省国营海兴农场污水处理项目平面布置图附图3:河北省国营海兴农场污水处理项目工艺流程图一、方案论证1.1污水处理工艺方案1.1.1污水处理工艺选择原则污水处理工艺方案的优化选择是确保污水处理厂运行性能、确保出水水质、降低费用的关键,需要根据确定的污水处理水质标准和一般原则,从整体优化的观念出发,结合设计规模、污水水质特性以及当地的实际条件和要求,选择切实可行的处理工艺方案。

500吨每天MBR城市污水处理方案

500吨每天MBR城市污水处理方案城市污水处理是现代城市建设中不可或缺的一部分,其处理效果直接关系到城市环境的卫生和公共卫生。

本文提出了一种可行的500吨每天MBR城市污水处理方案。

方案介绍本方案采用MBR膜生物反应器作为主要处理设备,利用膜思想与生物反应思想结合进行处理。

该膜具有高过滤速率、膜通量大、过滤效果好等显著的优点,可以高效地去除污水中的有机物、氮、磷等含有营养成分和污染物。

同时,还可避免二次污染和细菌的异味散发,达到生态环保的目的。

该工艺流程主要包括进水池、调节池、MBR反应器和回收池四个部分。

具体流程如下:1. 进水池:对城市污水进行初步过滤,去除较大的杂物和泥沙等物质。

2. 调节池:对水中的COD、BOD、体积等进行调节,调节后的水质更好。

3. MBR反应器:对经过调节后的污水实行高效生化处理,采用MBR膜技术,进一步去除污水中的沉淀物和悬浮物等有机污染物。

4. 回收池:处理好的水进入回收池经过三次过滤,消毒处理可达到出水要求。

设计要求方案的设计要求如下:1. 处理规模为500吨/天,保证连续运行24小时不中断。

2. 处理后出水符合国家及地方污水排放标准,并且水质稳定可靠。

3. 设备运行稳定可靠,操作维护简单,自动化程度高,提高生产效率。

实施效果该方案经过试验和估算,其实施效果如下:1. 处理能力:500吨/天。

2. 处理效果:CODcr<=60mg/l,BOD5<=20 mg/l,NH3-N≤5mg/l,TP≤0.5mg/l。

3. 设备稳定运行时间:大于20年。

结论本文提出的500吨每天MBR城市污水处理方案是一种简单可行的解决方案,其采用膜技术与生化技术的结合设计思想,能够保证污水的有效处理和水质的稳定性。

该方案可为城市污水处理提供一种可行的参考方案,实施效果良好,值得推广。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MBR污水处理工艺设计一、课程设计题目度假村污水处理工程设计二、课程设计的原始资料1、污水水量、水质(1)设计规模某度假村管理人员共有200人,另有大量外来人员和游客,由于旅游区污水水量季节性变化大,初步统计高峰期水量约为300m3/d,旅游淡季水量低于70m3/d,常年水量为100—150m3/d,自行确定设计水量。

(2)进水水质处理的对象为餐饮废水和居民区生活污水。

进水水质:2、污水处理要求污水处理后水质应优于《城市污水再生利用景观环境用水水质》(GB18921-2002)3、处理工艺污水拟采用MBR工艺处理4、气象资料常年主导风向为西南风5、污水排水接纳河流资料该污水处理设施的出水需要回用于度假村内景观湖泊,最高水位为103米,常年水位为100米,枯水位为98米6、厂址及场地现状进入该污水处理设施污水管端点的地面标高为109米三、工艺流程图图1 工艺流程图四、参考资料1.《水污染控制工程》教材2. 《城市污水再生利用景观环境用水水质》(GB18921-2002)3.《给排水设计手册》4、《给水排水快速设计手册》5.《给水排水工程结构设计规范》(GB50069-2002)6.《MBR设计手册》7.《膜生物反应器——在污水处理中的研究和应用》顾国维、何义亮编著8.《简明管道工手册》第2版五、细格栅的工艺设计1.细格栅设计参数(1)栅前水深h=0.1m;(2)过栅流速v=0.6m/s;(3)格栅间隙b 细=0.005m;(4)栅条宽度s=0.01m;(5)格栅安装倾角α=60︒。

2.细格栅的设计计算本设计选用两细格栅,一用一备1)栅条间隙数:bhvQ n αsin max =(取n=11)式中:n ——细格栅间隙数; Qmax ——最大设计流量,0.0035m³/s b ——栅条间隙,0.005; h ——栅前水深,取0.1m v ——过栅流速,取0.6/s ;α——格栅倾角,取60︒;2)栅槽宽度: B=s(n -1)+bn式中:B ——栅槽宽度,m ; S ——格条宽度,取0.01m 。

B=0.01×(11-1)+0.005×11=0.155m ;(取B=0.2m ) 3)过栅水头损失: K 取3β=1.67(选用迎水、背水面均为半圆形的矩形)6)栅前槽总高度: 取栅前渠道超高 h 1=0.3m 栅前槽高H 1=h+h 1=0.1+0.3=0.4 7)栅后槽总高度:8)栅槽总长度:细格栅的栅前进水渠道渐宽部分长度L 1:若进水渠宽 B 1=0.18m 渐宽部分展开角α1 =20︒,则此进水渠道内的流速 v 1=0.6m/s,则:, 9 .10. 6. 0 1 . 0 005 . 0 60 sin 0035 . 0 0细 ≈ ⨯ ⨯ = n m g v b s k h 2 . 0 60 sin 62 . 19 6 . 0 005 . 0 01 . 0 67 . 1 3 sin 2 ) ( 0 23 4 2 3 4 = ⨯⨯ ⨯ = = ) ( 2 α β mh h h H 6 . 0 2 . 0 3 . 0 1 . 0 1 = + + = + + = 24)细格栅与出水渠道连接处的渐窄部位的长度L 2:9)每日栅渣量: Kz=1.5故采用人工清渣六、初沉池设计(1)沉淀区的表面积A : A=Q max /q A=12.5/2=6.25m 2 式中:A ——沉淀区表面积,m 2; Q max ——最大设计流量,m 3/h ; q ——表面水力负荷,m 3/(m 2·h);取q=2 (2)沉淀区有效水深h 2: h 2=q·t h 2=2*1.0=2.0m 式中:h 2——沉淀区有效水深,m ;t ——沉淀时间,初沉池一般取0.5~2.0 h ;二沉池一般取1.5~4.0 h 。

沉淀区的有效水深h 2通常取2.0~4.0 m 。

取t=1.0h (3)沉淀区有效容积V : V=A·h 2V=6.25*2.0=12.5 m 3m B B L 03 . 0 20 tan 2 18. 0 2 . 0 20 tan 2 0 0 1 1 = - = - =L L 015. 0 2 03. 0 2 1 2 = = = m 8 . 1 60tan 4 . 0 0 . 1 5 . 0 015 . 0 03 . 0 tan60 0 . 1 5 . 0 0 0 1 2 1 = + + + + = ++ + + = H L L L 3 3 3 3 3 3 0 10 10 .0 , 10 01 . 0 - 1 . 0 w m m m m 细格栅取 一般为 d m < d m Qw 33 0 2 . 0 02 . 0 1000*1.5 10 . 0 300 1000*Kz w = ⨯ = =式中:V——沉淀池有效容积,m3。

(4)沉淀池长度L:L=3.6v·tL=3.6*4.5*1.0=16.2m式中:L——沉淀池长度,m;V——最大设计流量时的水平流速,mm/s,一般不大于5mm/s。

取v=4.5mm/s(5)沉淀池的总宽度B:B=A/LB=6.25/16.2=0.4m式中:B——沉淀区的总宽度,m。

(6)沉淀池的数量n:n=B/b式中:n——沉淀池数量或分格数;此例设计n=1单斗排泥校核:L/B=16.2/0.4=40.5>4(符合)L/h2=16.2/2=8.1>8(符合)(7)污泥区的容积V w:对于已知污水悬浮固体浓度与去除率,污泥区的容积可按下式计算:V w=Q max·24·c0·η·100·T/[1000r(100-p0)]式中:c0——沉淀池进水悬浮物浓度,mg/Lη——悬浮固体的去除率,取η=50%T——两次排泥的时间间隔,d,初沉池按2d考虑r——污泥容重,Kg/m3,含水率在95%以上时,可取1000 Kg/m3p0——污泥含水率,%;取p0=96V w=12.5*24*240*50%*100*2/[1000*1000(100-96)]=1.8 m3(8)贮泥斗得容积V1:V1=(1/3)·h4'[S1+S2+(S1·S2)0.5]V1=(1/3)·2.8[1.44+0.16+(1.44·0.16)0.5]=1.94m3式中:V1——贮泥斗得容积,m3;S1,S2——贮泥斗得上下口面积,m2。

设计S1=3.6*0.4=1.44m2S2=0.4*0.4=0.16m2h4'=(3.6-0.4)*tan60︒/2=2.8mh4"=(16.2+0.3-3.6)*0.01=0.129m(9)沉淀池的总高度H:H=h1+h2+h3+h4'+h4"H=0.3+2+0.5+2.8+0.129=5.729m式中:H——沉淀池总高度,m;h1——淀池超高,m,一般取0.3 m;h2——沉淀区的有效水深,m;h3——缓冲层高度,m,无机械刮泥设备时为0.5m,有机械刮泥设备时,其上缘应高出刮板0.3m;h4'——贮泥斗高度,m;h4"——梯形部分的高度,m。

(10)贮泥斗以上梯形部分的污泥容积V2:V2=0.5*(L1+L2)·h4"·bV2=0.5*(17+3.6)*0.129*0.4=0.53m3式中:L1=16.2+0.3+0.5=17mL2=3.6mb=0.4m污泥斗和梯形部分污泥容积V1+V2=1.94+0.53=2.47m3七、调节池的设计由于本例是旅游区,污水量季节性变化大,淡季时水量低于70m3/d,高峰期又能达到300 m3/d,设计连续高峰水量的时长为2d。

该MBR工艺设备取用设计流量为200 m3/d。

当出现连续高峰水量时,调节池可用来蓄水。

但当出现淡季水量时,调节池中的水又过少。

所以为了保证污水处理设施在最高水量或最低水量的情况下都能正常运行。

拟设计总体积为210m 3的调节池,分三格,每格设计体积为70m 3。

当水量小于设计流量时,调节池单格运行,当水量大于设计流量时,可采用双格运行或三格运行起到蓄水作用。

1.单格调节池设计设计流量Q=8.4 m 3/h ,停留时间T=7.0 h ,采用穿孔管空气搅拌,气水比为4:1 (1)单格调节池有效容积 V=QT=8.4⨯7.0=58.8 m 3 (2)单格调节池尺寸调节池平面形状为矩形,其有效水深采用h 2=3.0m ,调节池面积为: F=V/ h 2=58.8/3.0=19.6 m 2 池宽B 取4.0 m ,则池长为 L=F/B=19.6/4.0=4.9 m 取L=5.0m 保护高h 1=0.5m 池总高H=0.5+3.0=3.5m则单格调节池的尺寸为5.0*4.0*3.5=70 m 3 2.空气管计算在调节池内布置曝气管,气水比为4:1,空气量为Q s =8.4⨯4=0.0094 m 3/s 。

利用气体的搅拌作用使来水均匀混合,同时达到预曝气的作用。

空气总管D 1取30mm ,管内流速V 1为 V 1=214D Q S π=203.014.30094.04⨯⨯=13.3m/s V 1在10~15m/s 范围内,满足规范要求空气支管D 2:共设4根支管,每根支管的空气流量q 为:q=s Q 41=0094.041⨯=0.00235m 3/s支管内空气流速V 2应在5~10m/s 范围内,选V 2=8m/s,则支管管径D 2为 D 2=24v q π=800235.04⨯⨯π=0.0193m=19.3mm 取D 2=20mm,则V 2=2020.000235.04⨯⨯π=7.48m/s穿孔径D 3:每根支管连接两根穿孔管,则每根穿孔管的空气流量为 q 1=0.001175m 3/s,取V 3=7m/s D 3=7001175.04⨯⨯π=0.0146m.取D 3=15mm.则V 3为V 3=2015.0001175.04⨯⨯π=6.65m/s 3.孔眼计算孔眼开于穿孔管底部与垂直中心线成45º处,并交错排列,孔眼间距b=100mm,孔径Ф=2mm,穿孔管长一般为4m ,孔眼数m=74个,则孔眼流速v 为 V=m q 214φπ=74002.0785.0001175.02⨯⨯=5.06m/s 八、MBR 池设计数量:1座构筑物:钢砼结构 池容积:4.3×4.3×3.5m 水力停留时间:5h(1)膜组件 数量:1 组 规格:2.8×0.51×2 m清洗:3~6个月清洗一次 (2)曝气系统 数量:1 套组成:罗茨风机(2台,一用一备)、曝气器、管路阀门等 膜组件有效容积计算设计参数:a.MBR 进水BOD 5 S 0 =114 mg/Lb.设计处理水流量Q d =200 m 3/dc. MBR 对BOD 5的去除率达到95%~98%,出水BOD 5S e ≤5.7 mg/L 1.膜组件选型本设计的膜选用日本久保田(Kubota )公司生产的液中膜,膜技术参数表如下:序号名称特性参数1 材质聚氯乙烯2 膜孔直径0.4μm3 过滤方式重力过滤/吸引过滤4 最大过滤压力重力过滤:12kpa/吸引过滤:20kpa5 耐化学药品性耐酸耐碱性强(PH值2~12)宽×高×厚:490mm×1000mm×6mm6 膜支架尺寸510型7 膜支架有效面0.8 m2 /张积8 膜通量0.4~0.8 m3/m2.d1.膜支架张数计算(按每天24小时运行计算)n = Q d÷η÷t/24÷0.8= 200÷0.4÷24/24÷0.8= 625张式中:n——膜支架张数,张;η——膜通量,一般取0.4~0.8 m3/m2.d;t——每天运行时间,h;0.8——膜支架有效面积,m2 /张同一膜生物反映器内应选同型号的膜组件,膜组件分为AS型、FF型、ES 型三种:AS形适用于大型市政排水处理FF型适用于地埋式小型污水处理ES型适用于生活污水、工业废水,是常用膜组件,尤其推荐作为中水回用处理工艺。

相关文档
最新文档