《微积分(下)》第2章多元函数微分学--练习题

合集下载

华中科技大学微积分下复习笔记—多元函数微分学

华中科技大学微积分下复习笔记—多元函数微分学

文档说明:本文档为作者自己整理的微积分(下)有关多元函数微分学的复习笔记,包含三部分——反例总结(基于自己的做题经验)、基本公式(基于华中科技大学微积分课本)和题型汇总(基于华中科技大学微积分学习辅导),请勿用作商用,若文中有打错的字还请多多包涵。

反例总结1.在(0,0)不连续,但fx和fy都存在且为0,所以用它可以组很多反例。

,在(0,0)。

满足以下命题:1)一元函数f(x,y0)与f(x0,y)分别在x0与y0连续,但f(x,y)在(x0,y0)不连续。

2)偏导数存在但原函数不连续。

3)偏导数存在但不可微。

4)偏导数存在,但除了沿坐标轴的正负方向,其余方向导数均不存在。

2.f(x,y)=|x+y|在(0,0)连续,但是偏导数不存在。

可以满足以下命题:1)原函数连续但偏导不存在。

2)沿任意方向的方向导数均存在,但偏导数不存在。

3.其他反例:1)f(x,y)在(x0,y0)连续,则一元函数f(x,y0)与f(x0,y)分别在x0与y0连续,但反过来不成立。

,在(0,0)点不成立。

2)可微推不出偏导数连续。

复杂式子比较记1.在f(x0,y0)连续f(x0,y0)- f(x0,y0)=02.偏导数f x(x0,y0)===3.验证在定点可微, - f(x0,y0)4.复合函数相关公式1)求导链式法则:全导数;比如z=(x,y),y=(x),2)微分的链规则:df(u1,u2 … u n)=…;比如z=f(u1(x,y),u2(x,y)),dz=z x dx+z y dy=z u1du1+z u2du25.方向导数和梯度1)方向导数a.几何意义:指的是函数在n方向上切线的斜率,即描述了在n方向上函数的增长速度。

b.条件:f在P。

点可微c.公式:其中,此事梯度指向函数值增长最快的方向,也指向法矢的方向。

d.定义公式:e.特殊地,梯度方向的方向导数是2)梯度a.几何意义:本质是一个向量,在这个方向上方向导数取最大,即梯度指向函数增长最快的方向,也即法矢。

(完整版)多元函数微分学测试题及答案

(完整版)多元函数微分学测试题及答案

第8章 测试题1.),(y x f z =在点),(00y x 具有偏导数且在),(00y x 处有极值是 0),(00=y x f x 及0),(00=y x f y 的( )条件.A .充分B .充分必要C .必要D .非充分非必要2.函数(,)z f x y =的偏导数z x∂∂及z y ∂∂在点(,)x y 存在且连续是 (,)f x y 在该点可微分的( )条件.A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件3. 设(,)z f x y =的全微分dz xdx ydy =+,则点(0,0) 是( )A 不是(,)f x y 连续点B 不是(,)f x y 的极值点C 是(,)f x y 的极大值点D 是(,)f x y 的极小值点4. 函数22224422,0(,)0,0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)处( C )A 连续但不可微B 连续且偏导数存在C 偏导数存在但不可微D 既不连续,偏导数又不存在5.二元函数22((,)(0,0),(,)0,(,)(0,0)⎧+≠⎪=⎨⎪=⎩x y x yf x y x y 在点(0,0)处( A). A .可微,偏导数存在 B .可微,偏导数不存在C .不可微,偏导数存在D .不可微,偏导数不存在6.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数. 则=∂∂22y z( ). (A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂; (B)22y vv f∂∂⋅∂∂;(C)22222)(y v v fy v v f ∂∂⋅∂∂+∂∂∂∂; (D)2222y v v f y v v f ∂∂⋅∂∂+∂∂⋅∂∂.7.二元函数33)(3y x y x z --+=的极值点是( ).(A) (1,2); (B) (1.-2); (C) (-1,2); (D) (-1,-1). 8.已知函数(,)f x y 在点(0,0)的某个邻域内连续,且223(,)(0,0)(,)lim 1()x y f x y xy x y →-=+,则下述四个选项中正确的是( ).A .点(0,0)是(,)f x y 的极大值点B .点(0,0)是(,)f x y 的极小值点C .点(0,0)不是(,)f x y 的极值点D .根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点10.设函数(,)z z x y =由方程z y z x e -+=所确定,求2z y x ∂∂∂ 11.设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫= ⎪⎝⎭,求 z z x y x y ∂∂-∂∂ 12.设222x y z u e ++=,而2sin z x y =,求u x ∂∂11.设(,,)z f x y x y xy =+-,其中f 具有二阶连续偏导数,求 2,z dz x y ∂∂∂.13.求二元函数22(,)(2)ln f x y x y y y =++的极值14.22在椭圆x +4y =4上求一点,使其到直线2360x y +-=的距离最短.第8章测试题答案1.A2.A3.D4.C5.A6.C7.D8.C 8. ()()3(1)z y z y e e ---9. 2122z z x y x y f f x y y x∂∂-=-∂∂ 10.2222(12sin )x y z u xe z y x++∂=+∂11.123123231113223233 ()(),()()dz f f yf dx f f xf dyzf f x y f f x y f xyf x y=+++-+∂=+++-+-+∂∂12.极小值11(0,)f ee-=-13. r h==14. 83(,)55。

多元微积分

多元微积分

多元微积分多元微积分是数学的一个分支,旨在研究多元空间内的微积分。

在多元微积分中,我们将会学习多元函数的概念及其性质、偏导数和导数矩阵的定义、多元微分学中的极值问题及拉格朗日乘数法、多元积分学及其应用等。

首先,我们来了解一下多元函数的概念。

在单变量微积分中,我们研究的是只有一个自变量的函数,而在多元微积分中,函数可能有多个自变量。

例如,$z=f(x,y)$ 就是一个双变量函数,$f(x,y,z)$ 就是一个三元函数。

在多元函数中,我们可以用等高线图来表示函数在平面上的变化情况。

等高线上的任意一点表示函数在该点的取值相同,等高线间的高度差就代表着函数值的变化。

接下来,我们可以学习偏导数和导数矩阵的概念。

在单变量函数中,导数表示函数在某个点上的瞬时变化率。

在多元函数中,每个自变量都可以影响函数的取值,所以我们需要从每个自变量方向上来研究函数的变化,而这就是偏导数的概念。

偏导数描述了函数在某个点沿某一方向的变化速率。

导数矩阵是由多个偏导数组成的矩阵,表示函数在所有方向上的变化情况。

导数矩阵在多元函数的极值问题中起着重要的作用。

接下来,我们将学习多元微分学中的极值问题以及拉格朗日乘数法。

在单变量函数中,我们用导数来判断函数的极值,而在多元函数中,我们将使用导数矩阵和二次型矩阵来判断函数的极值。

二次型矩阵描述了函数取得极值的形状。

如果二次型矩阵为正定或负定,那么函数的极值就是极小值或极大值;如果二次型矩阵是一个不定矩阵,那么我们无法得出该函数的极值。

当我们需要研究函数的极值时,常常需要引入拉格朗日乘数法。

拉格朗日乘数法通过引入一个限制条件来确定函数的极值,这个限制条件可以是在某个区域内的限制性条件,例如体积、表面积等。

最后,我们将学习多元积分学和它的应用。

多元积分学是研究多元空间内面积、体积、质心等问题的数学学科。

在多元积分学中,我们将学习三种类型的积分:二重积分、三重积分和曲线积分。

二重积分用于计算一个平面区域内的面积;三重积分用于计算三维空间内的体积;曲线积分则用于计算空间内曲线的长度、质心等。

微积分练习题

微积分练习题

一、单项选择题(1)函数()f x 在0x x =处连续是()f x 在0x x =处可微的( )条件.A.充分B.必要C.充分必要D.无关的 (2)当0x →时,()21x e -是关于x 的( )A.同阶无穷小B.低阶无穷小C.高阶无穷小D.等价无穷小(3)2x =是函数()222x xf x x -=-的( ).A.连续点B.可去间断点C.跳跃间断点D.无穷间断点 (4)函数()2f x x=及其图形在区间()1,+∞上( ). A.单调减少上凹 B.单调增加上凹 C.单调减少上凸 D.单调增加上凸(5)设函数()2; 1;1x x f x ax b x ⎧≤=⎨+>⎩在1x =处可导,则( )A. 0,1a b ==B. 2,1a b ==-C. 3,2a b ==-D.1,2a b =-=(6)设()f x 为可微函数,则在点x 处,当0x ∆→时,y dy ∆-是关于x ∆的( )A. 同阶无穷小B. 低阶无穷小C. 高阶无穷小D. 等价无穷小 (7)设()1;012;12x x f x x x -<≤⎧=⎨-<≤⎩在1x =处为( )A. 连续点B. 可去型间断点C. 跳跃型间断点D. 无穷型间断点 二、填空题(1)()12lim 1sin x x →+=(2)已知xy xe =,n 为自然数,则()n y=(3)曲线ln y x =上经过点(1,0)的切线方程是:y =(4)2x f dx ⎛⎫'= ⎪⎝⎭⎰(5)已知()2xt G x e dt -=⎰,则()0G '=(6)曲线22sin y x x =+上点(0,0)处的法线方程为 (7)已知()32f '=,则()()33lim2x f x f x→--=(8)()=+∞→1!sin lim 32n n n n (9)已知()f x 的一个原函数为cos x ,则()f x '=(10)() 122 1sin 5x x x dx -+=⎰三、计算题1. 011lim 1x x x e →⎛⎫- ⎪-⎝⎭2. 231lim 2x x x x +→∞+⎛⎫⎪+⎝⎭3. 设ln tan 2x y ⎛⎫= ⎪⎝⎭,求dy 4. 设()()sin ln xy y x x +-=确定y 是x 的函数,求0x y ='5. ()sin y f x =,其中f 具有二阶导数,求22d ydx6. 23225x dx x x --+⎰7. 18.22ππ-⎰9.1 ln eex x dx ⎰10. ()011lim ln 1x x x →⎡⎤-⎢⎥+⎣⎦11. arctan x xdx ⎰12.13.4⎰14.求0,8y x y ===所围成的图形分别绕y 轴及直线4x =旋转所得的旋转体体积.15. 222x y a +=绕直线x a =旋转的旋转体的体积.四、应用题(1)已知销售量Q 与价格P 的函数关系Q = 10000-P ,求销售量Q 关于价格P 的弹性函数. (2)设某工厂生产某产品的产量为Q 件时的总成本()21500081000C Q Q Q =+-元,产品销售后的收益()2120500R Q Q Q =-元,国家对每件产品征税2元,问该工厂生产该产品的产量为多少件时才能获得最大利润?最大利润是多少? 五、证明题1.设()f x 在区间[0,1]上可微,且满足条件()()1212f xf x dx =⎰,试证:存在()0,1ξ∈,使得()()0f f ξξξ'+=§8.1向量及其线性运算(1)、(2)、(3)、(4)一、设2,2u a b c v a b c =-+=++,试用,,a b c 表示24u v -.二、,,a b c 为三个模为1的单位向量,且有0a b c ++=成立,证明:,,a b c 可构成一个等边三角形.三、把△ABC 的BC 边四等分,设分点依次为123D D D 、、,再把各分点与点A 连接,试以AB c BC a ==、表示向量12D A D A 、和3D A .四、已知两点()11,2,3M 和()21,2,1M --,试用坐标表示式表示向量12M M 及123M M -.五、在空间直角坐标系中,指出下列各点在哪个卦限?并画出前两个:()1,1,1A ,()2,1,1B -,()2,3,4C ---,()3,4,5D --.六、指出下列各点的位置,观察其所具有的特征,并总结出一般规律:)0,4,3(A ,)3,0,4(B ,)0,0,1(-C ,)0,8,0(D .七、求点(),,x y z 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.§8.1向量及其线性运算(5) §8.2数量积 向量积一、 试证明以三点()()()10,1,64,1,92,4,3A B C -、、为顶点的三角形是等腰直角三角形.二、设已知两点()()124,0,3M M 和,计算向量12M M 的模、方向余弦和方向角,并求与12M M 方向一致的单位向量.三、 设234,4223m i j k n i j k p i j k =++=-+=-++及,求232a m n p =+-在x 轴上的投影及在z 轴上的分向量. 四、 已知,,a b c 为三个模为1的单位向量,且0a b c ++=,求a b b c c a ++之值.五、已知23,a i j k b i j k c i j =++=--=+和,计算:()()()1a b c a c b -; ()()()2a b b c +⨯+; ()()3a b c ⨯.六、 设()()2,1,3,1,2,1a b =-=--,问λμ和满足何关系时,可使a b λμ+与z 轴垂直?七、 已知()1,2,3OA =,()2,1,1OB =-,求△AOB 的面积.§8.3曲面及其方程一、 一动点与两定点()()1,2,33,0,7和等距离,求这动点的轨迹方程.二、 方程2222460x y z x y z ++-+-=表示什么曲面?三、 将xoz 平面上的双曲线224936x z -=分别绕x 轴及z 轴旋转一周,求所生成的旋转曲面的方程.四、 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形? 1.24y x =+; 222.326x y -=.五、 说明下列旋转曲面是怎样形成的?2221.226x y z ++=; ()2222.z a x y +=+.六、指出下列方程所表示的曲面:2221.22x y z+-=;2222.33x y z--=;223.345x y z+=.§8.4空间曲线及其方程 §8.5平面及其方程(1)一、填空题:1.曲面22x y +-209z =与平面3z =的交线圆的方程是 ,其圆心坐标是 ,圆的半径为 .2.曲线222221(1)(1)1x y x y z ⎧+=⎪⎨+-+-=⎪⎩在yoz 面上的投影曲线为 . 3.螺旋线cos x a θ=,sin y a θ=,z b θ=在yoz 面上的投影曲线为 .4.上半锥面z =(01z ≤≤)在xoy 面上的投影为 ,在xoz 面上的投影为 ,在面上的投影为 .二、选择题:1.方程22149x y y z ⎧+=⎪⎨⎪=⎩在空间解析几何中表示 . (A)、椭圆柱面 (B)、椭圆曲线 (C)、两个平行平面 (D)、两条平行直线2.参数方程cos sin x a y a z b θθθ=⎧⎪=⎨⎪=⎩的一般方程是 .(A)、222x y a += (B)、cos z x a b = (C)、sin z y a b = (D)、cos sin z x a b zy a b ⎧=⎪⎪⎨⎪=⎪⎩3.平面20x z -=的位置是 . (A)、平行xoz 坐标面。

(完整版)高等数学(同济版)多元函数微分学练习题册.doc

(完整版)高等数学(同济版)多元函数微分学练习题册.doc

(完整版)高等数学(同济版)多元函数微分学练习题册.doc第八章多元函数微分法及其应用第一作一、填空:1. 函数 z ln(1 2 )y x23x y 的定义域为x12. 函数 f (x, y, z) arccosz的定义域为y 2x 23. 设 f ( x, y) x 2 y 2 , (x) cos x, ( x) sin x, 则f [ (x), (x)].sin xy .4. lim xx 0二、(): 1. 函数1的所有断点是 :sin x sin y(A) x=y=2n π( n=1,2,3,?);(B) x=y=n π (n=1,2,3, ?) ; (C) x=y=m π (m=0, ±1,± 2,? );(D) x=n π ,y=m π (n=0, ± 1,± 2,?,m=0,± 1,± 2,? )。

答:()sin 2( x 2 y 2 , x 2y 22. 函数 f (x, y)x 2 y 2在点( 0, 0):2 ,x 2 y 2( A )无定;(B )无极限;( C )有极限但不;( D )。

答:()三、求 lim2xy 4 .x 0 xyya四、明极限 limx 2 y 22 不存在。

2 2xx y ( x y)y 0第二节作业一、填空题:1 sin( x2 y), xy 01. 设 f ( x, y)xy ,则 f x (0,1) .x 2 ,xy2. 设 f (x, y)x ( y 1) arcsinx, 则 f x ( x,1).y二、选择题(单选):设 z 2x y 2 , 则 z y 等于 :( A) y 2 x y 2 ln 4; (B) (x y 2 ) 2 y ln 4; (C ) 2 y( x y 2 ) e x y 2 ;(D ) 2 y 4 x y 2 .答:()三、试解下列各题:1. 设 z ln tan x , 求 z, z .2. 设 z arctan y, 求2z .y x yxx y四、验证 rx 2 y 2 z 2 满足2r2r2r 2 .x 2 y 2 z 2r第三节作业一、填空题:1. 函数 zy 当x 2, y时的全增量z全微分值x 1, x 0.1, y0.2dz.y2. 设z e x , 则dz.二、选择题(单选):1. 函数 z=f(x,y) 在点 P 0( x 0,y 0)两偏导数存在是函数在该点全微分存在的:( A )充分条件;( B )充要条件;( C )必要条件;( D )无关条件。

《微积分》(上下册) 教学课件 02.第2章 导数与微分 高等数学第一章第3-5节

《微积分》(上下册) 教学课件 02.第2章 导数与微分 高等数学第一章第3-5节

1
记作
f
(
x),
y,
d2y dx2

d
2 f (x) dx2
.
二阶导数的导数称为三阶导数,记作
f ( x),
y,
d3y dx3 .
三阶导数的导数称为四阶导数, 记作
f (4)(x),
y(4) ,
d4y dx4 .
一般地, 函数f ( x)的n 1阶导数的导数称为
函数f ( x)的n阶导数, 记作
f (n)(x),
10
一、微分的概念
实例 半径为 x的0 金属圆板受热后面积的改变量.
设半径由x0变到x0 x,
圆板的面积 A x02,
A (x0 x)2 x02
2x0 x (x)2.
(1)
(2)
(1) x的线性函数,且为A的主要部分;
(2) x的高阶无穷小,当x 很小时可忽略.
11
再例如
设函数 y x3在点 x0处的改变量为x时, 求函数的 改变量 y.
§2.3 高阶导数
问题 变速直线运动的加速度.
设 s s(t), 则瞬时速度为v(t) s(t);
因为加速度a是速度v对时间t的变化率,所以
a(t) v(t) s(t).
定义 如果f (x)的导函数f (x)在点x处可导,即
( f (x)) lim f (x x) f (x)
x0
x
存在,则称( f (x))为f (x)在点x处的二阶导数.
dt dx
3a sin2 t cost 3a cos2 t(sint
)
tan t,
dt
d2y dx2
d (dy) dx dx
d ( tan t ) dx

多元函数的微分学


z
M
尔 滨
上式分母同除以 t,
T
工 程 大 学
x x0 y y0 z z0 ,
x
y
z
x
t
t
t
M
o
y
微 当M M , 即t 0时 ,
积 分
曲线在M处的切线方程
x x0 y y0 z z0 . x(t0 ) y(t0 ) z(t0 )
分 Fx ( x0 , y0 , z0 )( x x0 ) Fy ( x0 , y0 , z0 )( y y0 ) Fz ( x0 , y0 , z0 )( z z0 ) 0
x x0 y y0 z z0 Fx ( x0 , y0 , z0 ) Fy ( x0 , y0 , z0 ) Fz ( x0 , y0 , z0 )

法平面方程为
( x x0 ) y(t0 )( y y0 ) z(t0 )( z z0 ) 0
-理学院工科数学教学中心-
2.曲线由一般方程给出的情形
哈 尔 滨
设空间曲线方程为L:
F ( x, G( x,
y, z) y, z)

0 0
M(x0, y0, z0)为
T { x(t0 ), y(t0 ), z(t0 )}
n
T
M
-理学院工科数学教学中心-
F ( x(t ), y(t ), z(t )) 0 为什

哈 尔
将上式两端对 t 在M 0点求导有
滨 工
Fx ( x0 , y0 , z0 ) x(t0 ) Fy ( x0 , y0 , z0 ) y(t0 ) Fz ( x0 , y0 , z0 )z(t0 ) 0

多元函数微分学习题

第七章 多元函数微分学【内容提要】1.空间解析几何基础知识三条相互垂直的坐标轴Ox 、Oy 、Oz 组成了一个空间直角坐标系。

空间直角坐标系下两点间的距离公式为: 平面方程:0Ax By Cz D +++=二次曲面方程:2220Ax By Cz Dxy Eyz Fzx Gx Hy Iz K +++++++++= 球面方程:()()()2202020Rz z y y x x =-+-+-圆柱面方程:222R y x =+椭球面方程:()2222221,,0x y z a b c a b c ++=>,椭圆抛物面方程:2222,(,0)x y z a b a b+=>双曲抛物面方程:2222,(,0)x y z a b a b-=>单叶双曲面图方程:1222222=-+cz b y a x (a ,b ,c >0)双叶双曲面方程:2222221,(,,0)x y z a b c a b c +-=->椭圆锥面方程:2222220,(,,0)x y z a b c a b c+-=>2.多元函数与极限多元函数的定义:在某一过程中,若对变化范围D 的每一对值(,)x y ,在变域M 中存在z 值,按一定对应法则f 进行对应,有唯一确定的值,则称f 为集合D 上的二元函数,记为,x y 称为自变量,D 称为定义域,z 称为因变量。

(,)x y 的对应值记为(,)f x y ,称为函数值,函数值的集合称为值域。

多元函数的极限:设函数(,)f x y 在开区间(或闭区间)D 内有定义,000(,)P x y 是D 的内点或边界点。

如果对于任意给定的正数e ,总存在正数d ,使得对于适合不等式 的一切点(,)P x y D Î,都有成立,则称常数A 为函数(,)f x y 当00,xx y y 时的极限,记作多元函数的连续性:设函数(,)z f x y =在区域D 内有定义,点000(,)P x y 是D 的内点或边界点且0P D Î。

微积分

一、函数1.经济函数:成本函数C=ax+b, 总收入函数R=px, 总利润函数=C-R, 需求函数Q=a-bp, 供给函数Q=dp-c;2.函数定义域,不管求什么都要算一下;3.反三角函数值域arcsin [-π/2, π/2],arccos [0,π],arctan (-π/2, π/2),arccot(-π/2,0)U(0,π/2)二、极限与连续1.X—>Xo时的极限,E>0, |X-Xo|<Δ, |f(x)-A|<E;X—>∞时的极限, E>0, |x|>X, |f(x)-A|<E. f(x)极限存在且等于A<=>左极限=右极限=A2.极限等于A <=> 极限为A+o(无穷小量)3.有限个无穷小量和/差/积仍是无穷小量;无穷小除以极限不为零的变量仍是无穷小;无穷小乘以有界变量仍是无穷小;无穷小的导数是无穷大。

4.高阶无穷小-(极限的比值)极限是0,等价无穷小-比值的极限是1,同阶无穷小- 比值是非零常数;5.极限的保号性6.极限四则运算与幂运算【有限个函数;函数都有极限;分母不为0】;【!若函数是一个分式多项式P(x)/Q(x), P(x)=aX^n+......, Q(x)=bX^m,则:当n<m, 极限为0;当n=m, 极限为a/b;当n>m, 极限为∞】7.夹逼定理,两个重要极限sinx/x(x—>0)=1,(1+1/x)^x=e【本质上是0/0和(1+∞)^x】8.函数连续:Δy=0,函数在Xo连续<=>左连续=右连续;【在Xo点连续一定要有定义】!9.第一类间断点(左右极限都存在):可去间断点-左右极限相等,跳跃间断点- 左右极限不相等;第二类间断点(做右极限至少有一个不存在):无穷间断点、非无穷间断点;10.复合函数与反函数连续性和单调性、初等函数在定义区间内连续;11.闭区间上的连续函数:最值定理、介值定理、零值定理—【条件是函数在[a,b]上连续】;三、导数与微分1.导数概念:(瞬时速度/曲线斜率)导数是一个极限(ΔY/ΔX),极限存在即可导.(df/dx);【极限是∞不可导】;导函数- f '(x) - 函数在区间内处处可导,且有唯一导数值对应切线方程- 特殊点(Xo,Yo), k=f '(Xo); 法线方程- k=-1/f '(Xo)2.求导法则【根据定义求导】:第一步计算ΔY=f(x+Δx)-f(x);第二步计算ΔY/ΔX;第三步求极限(Δx→0)时的比值,即得导数。

考研数学二(多元函数微分学)模拟试卷33(题后含答案及解析)

考研数学二(多元函数微分学)模拟试卷33(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设则f(x,y)在(0,0)处()。

A.连续但不可偏导B.可偏导但不连续C.可微D.一阶连续可偏导正确答案:C解析:知识模块:多元函数微分学2.对二元函数z=f(x,y),下列结论正确的是()。

A.z=f(x,y)可微的充分必要条件是z=f(x,y)有一阶连续的偏导数B.若z=f(x,y)可微,则z=f(x,y)的偏导数连续C.若z=f(x,y)偏导数连续,则z=f(x,y)一定可微D.若z=f(x,y)偏导数不连续,则z=f(x,y)一定不可微正确答案:C解析:因为若函数f(x,y)一阶连续可偏导,则f(x,y)一定可微,反之则不对,所以若函数f(x,y)偏导数不连续不一定不可微,选C. 知识模块:多元函数微分学3.设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,,则()。

A.f(x,y)的最大值点和最小值点都在D内B.f(x,y)的最大值点和最小值点都在D的边界上C.f(x,y)的最小值点在D内,最大值点在D的边界上D.f(x,y)的最大值点在D内,最小值点在D的边界上正确答案:B解析:若f(x,y)的最大点在D内,不妨设其为M0,则有,因为M0为最大值点,所以AC-B2非负,而在D内有,即AC-B2<0,所以最大值点不可能在D内,同理最小值点也不可能在D内,正确答案为B. 知识模块:多元函数微分学填空题4.设z=xf(x+y)+g(xy,x2+y2),其中f,g分别二阶连续可导和二阶连续可偏导,则=_______.正确答案:f’+xf”+xy-1g’1+yxy-1lnxg’1+yx2y-1lnxg”11+2y2xy-1g”12+2xy+1lnxg”21+4xyg”22 解析:由z=xf(x+y)+g(xy,x2+y2),得=f(x+y)+xf’(x+y)+yxx-1g’1(xy,x2+y2)+2xg’2(xy,x2+y2)=f’+xf”+xy-1g’1+yxy-1lnx g’1+yx2y-1lnxg”11+2y2xy-1g”12+2xy+1lnxg”21+4xyg”22. 知识模块:多元函数微分学5.设f(u,v)一阶连续可偏导,f(tx,ty)=t3f(x,y),且,则f(1,2)=________.正确答案:3解析:f(tx,ty)=t3f(x,y)两边对t求导得xf’1(tx,ty)+yf’2(tx,ty)=3t2f(x,y),取t=1,x=1,y=2得f’1(1,2)+2f’2(1,2)=3f(1,2),故f(1,2)=3. 知识模块:多元函数微分学6.设z=f(x,y)二阶可偏导,,且f(x,0)=1,f’y(x,0)=x,则f(x,y)=_________.正确答案:z=y2+xy+1解析:,因为f’y(x,0)=x,所以Φ(x)=x,即,z=y2+xy+C,因为f(x,0)=1,所以C=1,于是z=y2+xy+1. 知识模块:多元函数微分学7.设u=u(x,y)二阶连续可偏导,且,若u(x,3x)=x,u’x(x,3x)=x3,则u”xy(x,3x)=________.正确答案:解析:u(x,3x)=x两边对x求导得u’x(x,3x)+3u’y(x,3x)=1,再对x求导,得u”xx(x,3x)+6u”xy(x,3x)+9u”yy(x,3x)=0.由[*],得10u”xx(x,3x)+6u”xy(x,3x)=0,u’x(x,3x)=x3两边对x求导得,u”xx(x,3x)+3u”xy(x,3x)=3x2,解得u”xy(x,3x)=[*]6. 知识模块:多元函数微分学8.设(ay-2xy2)dx+(bx2y+4x+3)dy为某个二元函数的全微分,则a=_______,b=_______.正确答案:a=4,b=-2解析:令P(x,y)=ay-2xy2,Q(x,y)=bx2y+4x+3,因为(ay-2xy2)dx+(bx2y+4x+3)dy 为某个二元函数的全微分,所以,于是a=4,b=-2. 知识模块:多元函数微分学解答题解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 多元函数微分学
一、二元函数的极限专题练习:
1.求下列二元函数的极限:

(1) 211(,)2,2lim2;yxyxyxy (2) 2222(,),3limsin;xyxyxy

(3) (,)0,1sinlim;xyxyx (4) (,)0,0lim;11xyxyxy
2.证明:当(,)0,0xy时,44344(,)xyfxyxy的极限不存在。
二、填空题
3. 若 22(,)fxyyxy,则 (,)fxy ;

4. 函数2222(,)4ln(1)fxyxyxy的定义域是D ;
5. 已知 2(,)xyfxye ,则 '(,)xfxy ;
6. 当 23(,)5fxyxy,则 '(0,1)xf ;
7. 若 2xyZeyx,则 Zy ;
8. 设 (,)ln()2yfxyxx,则 '(1,0)yf;
9.
xy
ZxeZ二元函数全微分d

10.
arctan()Zxy设,
则dz= .

11.
1,0xyxyZeZ
二元函数全微分d
三、选择题
12.设函数 ln()Zxy,则 Zx ( )

A 1y B xy C 1x D yx
13.设 2sin(),Zxy 则 Zx ( )
A2cos()xyxy B2cos()xyxy C22cos()yxy D22cos()yxy
14.设 3xyZ,则 Zx ( )
A 3xyy B 3ln3xy C 13xyxy D 3ln3xyy
四、计算与应用题
15. (1) 22exyz, 求(0,1),(1,0)xyzz; (2) arctanyzx, 求(1,1),(1,1)xyzz;

16.2(,),(,)(,)xyxyfxyeyxfxyfxy已知求和
17.已知 2242(3),xyZZZxyxy设求和
18.
22

e
xy
zxy

,求yxzz;。

19.设函数 2ln()Zxy,求 dZ
20.222ln(),,ZZZxxyxxy设求
21.计算下列函数的二阶偏导数:
(1) 22xzxy; (2) (cossin)exyzxyx;

22.求复合函数的偏导数或导数:
(1) 222ln,,yzuvuvxyx,求,zzxy;

(2) 22e,ln,arctanuvyzuxyvx,求,zzxy;
23.求下列方程所确定的隐函数的导数:
(1) sin()0xyxy; (2) 2221xy;

(3) yxxy; (4) 22sin()xyxyxy.
24.设 (,)ZZxy 由方程 2ln0ZexyZ 确定,求 dZ
25.求下列函数的极值,并确定其性质
(1) 333zxyxy; (2) 222ln2lnzxyxy; (3) 122exzxy;

26.求下列函数的条件极值:
(1) ,2zxyxy; (2) 1,(1)(1)1,0,0zxyxyxy;

(3) 11,1,0,0zxyxyxy;
27.求下列函数的最值:
(1) 32242,14,11zxxxyyxy;

(2) 2222,1zxyxyxy;
(3) 22,3,0,0zxyxyxyxyxy;

相关文档
最新文档