确定信号的盲分离
数字信号处理中的盲信号分离算法研究

数字信号处理中的盲信号分离算法研究随着数字信号处理技术的不断发展,越来越多的应用场景需要进行信号分离操作,例如在语音识别、音频处理、图像处理等领域。
然而,很多情况下信号的混合是未知的,传统的信号分离算法无法完成任务。
因此,盲信号分离算法开始受到越来越多的关注。
本文将介绍数字信号处理中的盲信号分离算法研究。
1. 盲信号分离算法的定义盲信号分离算法是指在未知信号混合的情况下,通过不依赖于混合信号模型的方法,将混合信号分离为原始信号的过程。
盲信号分离算法常用于音频处理和图像处理,在这些应用中常常存在混合信号的情况。
例如,在鸟类识别中,鸟鸣声会和环境噪声混合在一起,通过盲信号分离算法可以将鸟鸣声和噪声分离开来,从而提高识别的准确度。
2. 盲信号分离算法的分类盲信号分离算法主要分为线性盲源分离算法和非线性盲源分离算法两种。
①线性盲源分离算法线性盲源分离算法是指在混合信号中存在线性关系的情况下,通过矩阵分解、独立成分分析等方法将混合信号分离为原始信号的过程。
矩阵分解法是其中最基础的方法之一,其基本思路是将混合信号视为是原始信号矩阵与混合矩阵的乘积,通过对混合矩阵的分解,将混合信号分离为原始信号。
独立成分分析算法是常用的线性盲源分离算法之一,它基于统计学原理,通过对混合信号的统计分析,估计各个原始信号的概率密度函数并分离出来。
②非线性盲源分离算法非线性盲源分离算法是指在混合信号中存在非线性关系的情况下,通过神经网络、遗传算法等方法将混合信号分离为原始信号的过程。
神经网络算法是常用的非线性盲源分离算法之一,其基本思路是通过训练神经网络来寻找混合信号和原始信号之间的映射关系,从而将混合信号分离为原始信号。
遗传算法是一种优化搜索算法,通过模拟生物进化的过程,不断迭代寻找最优解。
在盲信号分离中,遗传算法被用于优化分离算法的参数,从而提高分离效果。
3. 盲信号分离算法的应用盲信号分离算法被广泛应用于音频处理和图像处理领域。
盲源分离技术在语音信号处理中的应用研究

盲源分离技术在语音信号处理中的应用研究随着科技的不断发展,语音信号的处理也越来越受到人们的重视。
盲源分离技术是一种在语音信号处理中广泛应用的方法,可以有效地分离出多个信号中的不同源,提高语音信号处理的效果。
本文将从盲源分离技术的原理、应用场景以及未来发展等方面对其进行研究分析。
一、盲源分离技术的原理盲源分离技术是通过对源信号的统计特性进行分析和提取,从多个混合信号中将不同的信号源分离出来的机器学习技术。
例如:在一个房间里同时进行两个人的语音对话,我们可以将这两个人的声音进行分离。
但是,在实际语音信号处理中,有很多情况下无法获得各个源信号的准确信息,也就是盲源分离。
其基本思想是利用不同源之间的统计独立性进行盲分离,使各个源信号分离出来并恢复原有的信号。
盲源分离技术的方法主要分为以下两种:1. 基于独立分量分析 (ICA) 的盲源分离独立分量分析(ICA)是一种随着神经网络的兴起而出现的一种新的信号处理方式,也是盲源分离中较为经典的一种。
该方法是基于统计学的分析,利用确定性的盲源分离技术,将混合信号分离成多个相对独立的信号。
2. 基于时域盲源分离的方法时域盲源分离 (TDB) 技术是一种实时的语音信号处理技术,通过利用信号的时间序列特性,将源信号进行盲分离。
通过在时域中对信号进行处理,利用各个源信号本身的时间序列相关和独立性,将混合信号分离出来。
二、盲源分离技术的应用场景1. 语音识别当在噪音环境中识别单个人的语音信号时,盲源分离技术可以提高语音识别的准确度。
因为在噪音比较高的情况下,单纯使用语音识别算法并不能很好地区分出具体的语音信号。
2. 环境监测环境监测中,盲源分离技术可以用于分析大量混杂的信号,识别出需要监测的信号,然后对其进行分类、分析和处理。
因此,盲源分离在环境监测领域中具有广泛的应用前景。
3. 音频信号处理在音频信号处理领域中,盲源分离技术可以用于音乐和声音信号识别以及其它类型的音频信号分离和处理。
盲信号分离的原理及其关键问题的研究

盲信号分离的原理及其关键问题的研究盲源分离是上世纪80年代初在信号处理领域诞生的备受学术界关注的新生学科,在许多新兴领域都有着重要的应用。
盲分离按照其混叠方式的不同,可分为瞬时线性混叠和非线性混叠。
本文着重研究主要针对盲分离瞬时线性混叠模型的适定、欠定情形以及卷积混叠模型,具体的工作包括如下几个方面:1.针对适定线性混叠的情形,深入研究了如何把联合对角化技术应用于解决盲信号分离问题。
利用信号时序结构的二阶统计量方法通常需要解决一个联合对角化问题。
首先对一类特殊的矩阵束——良态矩阵束给出了一个新算法。
由于采用了共轭梯度算法优化目标函数,算法不仅收敛快,而且收敛性有保证。
然后,给出了可完美对角化的判别定理。
同时,还把对角化问题转化为含有R-正交约束的一类优化问题,给出了统一的优化框架。
2.在线性欠定混叠盲分离以及稀疏分量分析中,如果信号是非严格稀疏时,通常的两步法将失去作用,前人提出了源信号非严格稀疏下的k-SCA条件,并给出了在此条件下,混叠矩阵能被估计以及源信号可恢复的理论证明,但目前甚少相关的具体实现算法。
文中首先提出了一种针对k-SCA条件,利用超平面聚类转化为其法线聚类来估计混叠矩阵的有效算法,在源信号重建上,还提出了一种简化l1范数解的新算法,弥补了该领域研究的一个缺失。
3.同样是针对线性欠定混叠的情形,提出利用基于单源区间的盲分离算法。
采用Bofill的两步法,第一步估计混叠矩阵,第二步恢复源信号。
首次发现了暂时非混叠性这一混叠信号的物理性质,并定义了单源区间,提出了一个基于最小相关系数的统计稀疏分解准则(SSDP)。
并在此基础上,提出了非完全稀疏性的问题。
现有的最短路径法、l1范数解和SSDP算法仅适用于稀疏源而不适宜非完全稀疏源。
针对两个观测信号的情形,提出了统计非稀疏准则(SNSDP)。
该准则将信号分成若干区间,用源的相关性判断各区间是否非完全稀疏,并在非完全稀疏和稀疏的区间采取不同的源恢复策略。
盲源分离

盲源分离
盲源分离是指在信号的理论模型和源信号无法精确获知的情况下,如何从混迭信号(观测信号)中分离出各源信号的过程。
盲源分离和盲辨识是盲信号处理的两大类型。
盲源分离的目的是求得源信号的最佳估计,盲辨识的目的是求得传输通道混合矩阵。
1 引言
盲源分离主要分为线性混叠和非线性混叠两种。
非线性混叠的主要有通过对线性模型的扩展和用自组织特征映射的方法[8]。
对于振动信号的盲分离,从2000年才开始受到重视[9],并且研究的范围主要在旋转机械和故障诊断中。
2 盲源分离基本概念
盲源分离问题可用如下的混合方程来描述[4]:。
复数信号盲源分离matlab

复数信号盲源分离matlab摘要:1.引言2.复数信号盲源分离原理3.MATLAB实现方法4.仿真结果及分析5.结论正文:【引言】随着科技的发展,信号处理技术在各个领域得到了广泛的应用。
在实际应用中,常常遇到复数信号的盲源分离问题。
复数信号盲源分离是指在未知信号源的幅度、相位和频率等信息的情况下,仅通过观测到的复数信号来实现信号的分离。
MATLAB作为一种强大的数学软件,可以方便地实现复数信号的盲源分离。
本文将介绍复数信号盲源分离的MATLAB实现方法及仿真结果。
【复数信号盲源分离原理】复数信号盲源分离的核心是利用信号之间的相互关系和某种优化算法来达到分离目的。
常见的盲源分离算法有:独立成分分析(ICA)、非线性独立成分分析(NICA)、联合diagonalization(JADE)等。
这些算法在实数信号盲源分离领域取得了较好的效果,对于复数信号盲源分离,可以通过对实部与虚部进行独立成分分析来实现。
【MATLAB实现方法】在MATLAB中,可以使用现成的盲源分离工具箱(如BSSbox)来实现复数信号的盲源分离。
以下是一个简单的MATLAB实现步骤:1.导入所需库:如bssbox、plot等。
2.读取或生成复数信号数据。
3.对复数信号进行预处理,如白化、窗函数处理等。
4.选择合适的盲源分离算法,如ICA、NICA、JADE等。
5.使用盲源分离算法对预处理后的信号进行分离。
6.绘制分离后的信号,分析分离效果。
【仿真结果及分析】通过MATLAB仿真,可以得到复数信号盲源分离的结果。
分离效果可以通过比较分离后的信号与原始信号的相似度来评价。
在实际应用中,可以根据需求选择合适的分离算法和参数,以达到较好的分离效果。
【结论】本文介绍了复数信号盲源分离的MATLAB实现方法。
通过使用盲源分离工具箱和选择合适的算法,可以有效地实现复数信号的盲源分离。
仿真结果表明,所选算法在复数信号盲源分离问题上具有一定的可行性。
信号分离的原理

信号分离的原理
以下是信号分离的原理。
信号分离是指将复杂的混合信号分解成其组成部分或成分的过程。
在许多应用中,我们可能遇到具有多个来源或混合在一起的信号。
信号分离的目标是从中分离出原始信号或关注特定的信号成分。
常见的信号分离方法包括以下几种:
1. 基于频谱分析的方法:通过对混合信号的频谱进行分析,利用频
谱特征来识别不同的信号成分。
这可以使用傅里叶变换、小波变换或其他频谱分析技术来实现。
2. 盲源分离方法:在没有先验信息的情况下,通过对混合信号进行
统计分析和模型建立,推导出各个信号成分的特征参数,并利用这些参数进行信号分离。
盲源分离方法常用的技术包括独立成分分析(ICA)和主成分分析(PCA)等。
3. 时域分解方法:这种方法通常用于分离时间域中重叠的信号。
通
过对混合信号进行时间域滤波或窗函数处理,使得不同信号的成分在时间上分离出来。
4. 统计模型方法:通过对混合信号的统计特性建立模型,并利用该模型来估计原始信号和各个信号成分之间的关系。
最常用的统计模型方法是高斯混合模型(GMM)和隐马尔可夫模型(HMM)。
这些方法常常结合使用,根据具体的信号分离问题选择适当的方法或算法。
信号分离在许多领域中都有广泛的应用,如音频处理、图像处理、无线通信等,可以帮助提取有用的信息并改善系统性能。
盲信号总结
盲分离研究背景与数学模型简介:盲信号分离是当前信号处理领域最热门的技术之一。
由于其重要的理论价值和广泛的应用前景 ,盲信号分离在近 20 年引起了广泛的重视和研究。
盲信号分离起源于鸡尾酒会议问题 ,即在很多人同时说话的情况下(通常包含噪声),怎样从多个声音采集设备(如麦克风)采集到的声音信号中分离出所需要的各个说话者的声音?在这个过程中,各个信号源未知,信号混叠参数即传输信道的先验知识也未知,因此我们称这个过程是“盲”的。
目前,以盲信号分离为核心的盲信号处理技术已经成为重要的研究课题,并在许多领域,特别是在语音信号分离与识别、生物信号(如脑电图、心电图)处理、雷达、声纳、遥感、通信系统、噪声控制等领域,吸引了大量的研究和重视。
盲信号分离:是指在不知道源信号和传输信道特性的情况下,从一个传感器阵列的输出信号(也叫观测信号,混叠信号)中分离或估计出源信号的波形。
目标是如何最大化分离信号的独立性。
观测数据:是一组传感器的输出,其中每个传感器接收到的是源信号的不同混合。
源信号混合方式:有线性和非线性两种方式。
当混叠模型为非线性时,一般很难从混叠数据中恢复源信号,除非对信号和混叠模型有进一步的先验知识。
线性模型有三种:(1)线性瞬时混叠(2)延迟无回声混叠(3)回声混叠1,线性瞬时混叠模型:目前主要采用的工具是稀疏成分分析。
2,延迟无回声混叠模型:即每个传感器仅接收到每个源一次。
由于传输距离的远近及传输介质的影响,源信号到达每个传感器的时刻可能并不是同时的。
3,回声混叠:各个传感器不仅直接接收到每个源信号,而且还接收到每个源信号的回声信号。
根据混叠方式对盲信号分离进行分类:如果根据传感器个数M 和源信号个数N 来分类,则把M > N称为超定模型,M = N为适定模型,M < N称为欠定模型。
欠定模型比适定模型和超定模型更难求解。
对适定或者超定模型,只要能够估计出混叠矩阵,就能恢复源信号。
●按照未知信号源的混合形式,可以将盲处理分为线性混合和非线性混合两种类型,其中线性混合包括瞬时混合和卷积混合。
盲信号分离基础知识(推荐文档)
专业课程设计学习材料源信号分离Source Signal Separation第一部分 简单介绍一、 目标我们的目标就是学习源信号分离理论的基础知识和源信号分离时涉及的相关学科知识,最终从观测信号中将源信号分离开来。
注意:此时信号源和混合形式可能是未知的。
-1.5-1.0-0.50.00.51.01.5-1.5-1.0-0.50.00.51.01.500.050.10.150.20.250.30.350.40.45图1 源信号波形-2.0-1.5-1.0-0.50.00.51.01.52.000.050.10.150.20.250.30.350.40.45-2.0-1.00.01.02.000.050.10.150.20.250.30.350.40.45图2 混合信号波形-2.0-1.5-1.0-0.50.00.51.01.52.0-2.0-1.5-1.0-0.50.00.51.01.52.0图3 分离信号波形二、分离方法1、FFT 法;条件:不同源信号占有不同的频带2、自适应滤波方法;条件:已经信号的某些特征3、盲信号分离方法;条件:遵从某些统计假设条件三、盲分离的基本模型盲信号分离的基本模型如图(1)所示。
)(1t )(2t y )(t y m图1 盲信号分离的基本模型其中:)(1t s ,)(2t s ,……,)(t s n 为n 个源信号;)(1t x ,)(2t x ,……,)(t x m 为m 个观测信号;)(1t y ,)(2t y ,……,)(t y n 为待求解的n 个分离信号;)(1t n ,)(2t n ,……,)(t n m 为m 个噪声信号,T t ,,2,1 =。
将其分别写成矩阵形式为:T 21)](,),(),([)(t s t s t s t n =s (1)T 21)](,),(),([)(t x t x t x t m =xT 21)](,),(),([)(t y t y t y t n =yT 21)](,),(),([)(t n t n t n t m =n向量)(t s 、)(t x 、)(t y 、)(t n 分别称作源信号、观测信号、分离信号、噪声信号。
生物信号分析中的盲源分离算法研究
生物信号分析中的盲源分离算法研究一、引言生物信号分析是生物医学工程领域中的重要研究方向之一,其核心问题之一是如何提取信号中的有效信息。
生物信号如脑电信号、心电信号等通常包含多个信号源(比如肌肉电位、眼电信号等),这就给信号处理带来了巨大的挑战。
盲源分离算法(Blind Source Separation, BSS)是一种重要的信号处理方法,将成为本文的研究焦点。
二、盲源分离算法的基本原理盲源分离算法的基本原理是从混合信号中分离出原始信号,实现“盲”状态下的信号分离。
盲源分离算法是非常重要的生物信号分析方法,可应用于降噪、分离多模态数据、提取生物学信号的有效信息等领域。
在具体实现中,人们通常采用独立成分分析(Independent Component Analysis, ICA)作为盲源分离算法的方法。
在不同的领域,盲源分离算法的应用不同。
在语音信号分析中,盲源分离算法可以用于电话信号的分离和音频去混响;在图像处理领域,可以用于提取图像的先验信息和去除图像的噪声;在生物信号分析领域,可以用于提取脑电信号中的事件相关电位、心电信号中的Q波和P波等信号成分。
三、盲源分离算法的研究进展随着生物医学工程领域的发展,盲源分离算法的研究也在不断深入。
传统的ICA算法在实际应用中存在一些缺陷,比如局部收敛问题和易受噪声等因素影响。
因此,人们提出了多种改进算法来解决这些问题。
1、FastICA算法FastICA算法是最常用的ICA算法,它能够快速、有效地分离信号。
FastICA算法采用了基于极大似然估计的方法,可以处理非高斯型信号,包括经典的ICA问题。
该算法在信号处理中广泛应用,但它的局部收敛问题仍然是许多研究者关注的焦点。
2、SOBI算法Second Order Blind Identification(二阶盲辨识)算法,简称SOBI (Second-Order Blind Identification)。
该算法主要是针对二阶脑电信号进行盲源分离。
信号盲分离
目录摘要 (1)第一章分数傅立叶变换 (3)1.1 引言 (3)1.2 国内外的研究现状 (3)第二章分数傅立叶变换 (5)2.1分数傅立叶变换的定义 (5)2.2 分数傅立叶变换的性质 (7)2.2.1主要性质 (7)2.2.2 不确定性原理 (8)2.3 信号处理中的应用 (9)2.3.1 信号的检测和参数的估计 (9)2.3.2 神经网络............................................................................. 错误!未定义书签。
2.3.3 图像处理 (9)第三章盲信号分离 (10)3.1 盲分离的原理 (10)3.2 优化准则 (11)第四章基于分数傅立叶变换的信号盲分离 (12)4.1分析方法 (12)4.2分离效果的评价 (12)第五章仿真与实例分析 (14)第六章结论 (18)总结与展望 (19)参考文献 (20)论文翻译 (22)基于SHIBBS/SJAD 停止阈值算法,快速的信噪比盲源分离。
(22)摘要 (22)1 引言 (22)2 美白过程和累积量方法算法 (23)2.1 美白过程 (23)2.2累积量算法教学 (24)3 SHIBBS/SJAD 算法 (25)3.1 收敛停止规则 (25)4 实验对比 (27)5 结论 (30)摘要分数傅立叶变换是对经典傅立叶变换的推广。
最早由Namias 以数学形式提出,并且很快在光学领域得到了广泛应用。
而其在信号处理领域的潜力直到20世纪90年代中期才逐步得到发掘。
尽管分数傅立叶变换的定义直观上看仅是chirp基分解,而实际上分数傅立叶变换更具有时频旋转的特性,它是一种统一的时频变换,随着变换阶数从0连续增长到1而展示出信号从时域逐步变化到频域的所有特征。
从信号处理角度对分数傅立叶变换的研究进展作比较全面的总结和系统的归纳。
LFM信号在某个阶次的分数阶傅里叶域中具有能量聚集性,根据这一特性本文运用了基于分数阶傅里叶变换的多个未知任何先验参数的LFM 信号分离技术,通过在分数阶傅里叶域搜索峰值点来检测出并分离出LFM信号,并用相关系数对分离效果进行了评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计任务书学生姓名:华慧丰专业班级:通信1004班指导教师:张小梅工作单位:信息工程学院题目:确定信号的盲分离初始条件:Matlab软件平台要求完成的主要任务:根据盲信号分离原理,用matlab生成两个以上确定信号,选择合适的混合矩阵生成若干混合图像。
选取合适的盲信号分离算法(如独立成分分析ICA等)进行训练学习,求出分离矩阵和分离后的信号。
设计要求:(1)用matlab做出采样之后信号的时域和频域波形图(2)选择合适的混合矩阵,得到混合信号,并做出其时域波形和频谱图(3)采用混合信号进行训练学习,求出分离矩阵,编写出相应的确matlab代码。
(4)用求出的分离矩阵从混合信号中分离出原信号,并画出各分离信号的时域波形和频谱图。
(5)对结果进行对比分析。
时间安排:查阅资料2天仿真设计2天撰写报告1天指导教师签名:年月日系主任签名:年月日目录摘要 (I)ABSTRACT (II)1确知信号 (1)1.1确知信号的概念 (1)1.2确知信号的类型 (1)1.3常见的确知信号 (2)2盲分离原理 (3)2.1盲信号处理的基本概念 (3)2.2盲信号分离的分类 (3)2.3盲分离的目标准则 (4)2.4盲信号处理技术的研究应用 (5)3独立分量分析(ICA)基础 (6)3.1ICA理论的概念和模型 (6)3.2ICA数据分析问题中的约束条件 (8)3.3ICA算法的分类与基本原理 (9)3.4F AST ICA算法 (11)4MATLAB简介 (13)5确定信号盲分离仿真与分析 (15)5.1原始信号的产生 (15)5.2原始信号的频谱 (16)5.3信号的混合 (17)5.4ICA算法实现 (19)6小结体会 (25)参考文献 (26)附录1程序 (27)摘要盲信号分离指的是从多个观测到的混合信号中分析出没有观测的原始信号。
通常观测到的混合信号来自多个传感器的输出,并且传感器的输出信号具有独立性(线性不相关)。
盲信号的“盲”字强调了两点,一是原始信号并不知道,二是对于信号混合的方法也不知道。
独立分量分析(Independent Component-Analysis,简称ICA)是近年来由盲信元分解技术发展而来的多通道信号处理方法。
通过假定传感器阵列所采集到的信号是多个具有独立统计特性的内在信源信号的线性叠加,在采用某种特定的优化准则将所谓的独立分量一一分解出来。
本文重点研究了以确定信号为目标的盲处理方法,首先介绍了盲源分离的思想和数学模型,介绍了盲分离的几种准则。
然后对盲分离普遍采用的独立分量分析技术做了介绍,讨论了其多种算法,详细讨论了一种快速ICA算法,并在编程中利用这一算法对多路确定信号进行盲分离,根据结果对这一算法进行分析。
关键词:盲信号分离;独立分量分析;快速ICA算法;Matlab编程IAbstractBlind signal separation refers to analyze observations from multiple mixed-signal which was not observed in the original ually mixed signals observed from a plurality of sensor output and the sensor output signals have independent(linearly independent).The word'blind'emphasized two points.First we don't know the original signal.Second,we don't know the signal mixing method.Independent component analysis(Independent Component-Analysis,referred ICA)in recent years by blind signal decomposition technique developed from the multi-channel signal processing methods.By assuming that the sensor array signal collected is more than an independent statistical properties inherent linear superposition of the source signal,the adoption of a specific optimization criterion eleven so-called independent component decomposition.This paper focuses on the goal to determine the blind signal processing method, introduced the idea of blind source separation and mathematical models,introduced several blind separation criteria.Then the blind separation widely used independent component analysis techniques have been described,discussed its various algorithms discussed in detail a fast ICA algorithm,and use this in the programming algorithm to determine the multi-channel signal separation,according to the results of this algorithm for analysis.Key words:blind signal separation;Independent Component-Analysis;Fast ICA algorithm;Matlab programming.II11确知信号1.1确知信号的概念确知信号是指其取值在任何时间都是确定的和可预知的信号,通常可以用数学公式表示它在任何时间的取值。
1.2确知信号的类型1.2.1周期信号和非周期信号周期信号满足:+∞<<∞−+=t T t s t s ),()(0(式1)其中,0T 为此信号的周期,00/1T f =称为此信号的基频。
1.2.2能量信号和功率信号在通信理论中,常把信号功率定义为电流在单位电阻上消耗的功率(归一化功率)。
)(/2222W I V R I R V P ====(式2)若信号的能量是一个正的有限值,则称此信号为能量信号。
在实际的通信系统中,信号都具有有限的功率、有限的持续时间,因而具有有限的能量,为能量信号。
但是,若信号的持续时间非常长,则可以近似认为它具有无限长的持续时间。
此时,信号的平均功率是一个有限的正值,但其能量近似为无穷大。
这种信号称为功率信号。
周期信号属于功率信号。
21.3常见的确知信号1.单位冲击函数)()(t t s δ=(式3)2.单位阶跃函数⎩⎨⎧<>==0001)()(t t t u t s (式4)3.常数1)(=t s (式5)4.单边指数函数)()(t u e t s at −=(式6)5.三角脉冲⎪⎪⎪⎩⎪⎪⎪⎨⎧<<−<<−+=其他00)1(0)1()(ττττt t E t t E t s (式7)32盲分离原理2.1盲信号处理的基本概念盲信号处理(Blind Signal Processing )是现代数学信号处理、计算智能学近年来迅速发展的重要方向。
在电子信息、通信、生物医学、图像增强、雷达、地球物理信号处理等众多领域有广泛的应用前景。
盲信号处理利用系统(如无线信道、通信系统等)的输出观测数据,通过某种信号处理的手段,获得我们感兴趣的有关信息(如原来独立发射的信号等)。
盲信号的研究是当前学术界的一个研究热点,而盲信号分离则是盲信号研究中的一个重要的课题。
BSS 是指从观测到的混合信号中分离出未知的源信号。
盲信号中的“盲”意味着两个方面:第一,对源信号一无所知或只有少许的先验知识。
第二,混合本身是未知的。
这看似是一个不可能的任务,然而理论和实际都证实了只需要相当简单的假设,就可以得到该问题的解。
这一特点使得BSS 成为一种功能相当强大的信息处理方法。
如图1所示:图2.1盲信号处理原理框图2.2盲信号分离的分类源信号进过传输通道的混合方式而言,其处理方法可分为线性瞬时混合信号盲处理、线性卷积混合信号盲处理和非线性混合信号盲处理三类。
根据通道传输特性中是否含有噪声、噪声特性(白噪声、有色噪声等)、噪声混合形式,可分为有噪声、无噪声盲处理,含加性噪声和乘性噪声混合信号盲处理等。
按源信号和观测信号数目的不同可以将混合方式分为欠定、适定和超定情况;按源信号特性的不同分为:平稳、非平稳、超高斯、亚高斯、超高斯和亚高斯混合分离等。
2.3盲分离的目标准则盲源分离的实现方法有多种,他们的原理主要可以归纳为以下四种准则:(1)独立分量分析(Independent Component Analysis,ICA):当假设源信号各分量间彼此统计独立,且没有时间结构时,在某一分离准则下通过对神经网络权值的反馈调整,使得变换后信号的不同分量之间的相依性最小,也即输出达到尽可能的独立。
这种方法对多于一个高斯分布的源信号不适用(因为高斯信号的线性叠加仍是高斯信号),这是近年来盲源分离的主要解决方法。
(2)主分量分析(Principal Component Analysis,PCA)的方法:在尽可能保持原始变量更多信息的前提下,导出一组零均值随机变量相对少的不相关线性组合(主分量),并由此恢复出对源信号的估计。
(3)二阶非平稳性:即采用非平稳性和二阶统计量。
由于源信号随时间有不同的变化,所以可以考虑利用二阶非平稳性,应用简单的解相关技术实现盲源分离。
与其他方法相比,它能够分离具有相同功率谱形状的有色高斯源,然而却不能分离具有相同非平稳特性的源信号。
(4)运用信号的不同多样性,典型的是时域多样性、频域多样性或时频域多样性,更一般的,即联合空间-时间-频率多样性,如果源信号具有不同的时频域多样性,信号的时频域特征不完全重叠,那么可以通过屏蔽时频域的单个源信号或干扰信号,并从一个(或多个)传感器信号中提取源信号,然后再在时频域中合成,然而这些情况下,通常需要一些源信号的先验知识,所以这种分离只能是一种半盲分离。