随机过程关于平稳过程中的各态历经性的综述

随机过程关于平稳过程中的各态历经性的综述
随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述

首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当

12,,n t h t h t h T

+++∈…,时,n 维随机变量

(X(1t ),X(2t ),…,X(t n ))

和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。

在实际工作中,确定随机过程的均值函数和相关函数是很重要的。而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。

但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。

定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即

〈X (t )〉=1lim

()2T T

T X t dt

T

-→∞

?

存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。

定义 设X (t )是一均方连续平稳随机过程,且对于固定的τ,()X

t X t τ(+)也是连续平稳随机过程,〈()X

t X t τ(+)〉 代表()X t X t τ(+)沿整个时间轴的平均值,即

()X t X t τ(+)=1lim

(+)()2T T

T X t X t dt

T

τ-→∞

?

若〈()X

t X t τ(+)〉存在,称〈()X t X t τ(+)〉为X (τ)的时间相关函数。又

〈()X t X t τ(+)〉 E {()X t X t τ(+)}=X

R τ() 则称该过程的自相关函数具有各态历经性。

定义 如果X (t )是一均方连续的平稳随机过程,且其均值和自相关函数均具有各态历经性,则称该过程X (t )为具有各态历经性的,或者说X (t )是各态历经的,或是遍历的。

例一 有随机相位正弦波过程X (t )=cos()A t ωθ+,其中A, ω是常数,θ为[0,2∏]内均匀分布的随机变量。试计算它的时间平均值和时间相关函数;问该过程是否具有各态历经性?

解 〈X (t )〉=1lim

cos()2T T

T A t dt

T

ωθ-→∞

+?

=sin cos lim

T A T T

ωθ

ω→∞

=0

〈()X t X t τ(+)〉=2

1lim

cos()cos()2T T

T A t t dt

T

ωωτθωθ-→∞

+++?

=[]2

1

lim

cos(22)+cos 22

T T

T A

t dt T

ωωτθωτ-→∞

++?

=

2

cos 2

A

ωτ

因为X (t )的集平均值和集相关函数分别为 〈X (t )〉=E {X (t )}=0

X

R τ()=2

cos 2

A

ωτ

故 〈X (t )〉=E {X (t )}=〈X (t )〉

X

R τ()=〈()X t X t τ(+)〉 因此随机相位正弦波过程具有各态历经性。

例二 设X(t)=X ,-∞

解 由于

[]2

()()214(,)()()3

X X m t E X t EX R t t X t X t EX

ττ===??+=+==

??

因此{X(t),-∞

11()22T T T

T

X t X t dt X dt X

T

T

--→∞

→∞

==?

?

T +T +()=l.i.m

l.i.m

时间相关函数

22

11()()()()22T T T

T

X t X t X t X t dt X dt X

T T

ττ--→∞

→∞

+=+==?

?

T +T +l.i.m

l.i.m

由于P (X=2)=1和P(2143

X =)=1不成立,故,{X(t),-∞

相关函数不具有各态历经性。

为了对平稳过程的各态历经性有充分的认识和了解,我们引入以下几个定理进一步说明一个平稳过程该满足怎样的条件才是各态历经的。定理的证明过程不做解答。

定理一 (均值各态历经定理)平稳过程X (t )的均值具有各态历经性的充要条件是

22

1lim

(1)()02T X X T R d T

T τ

τμτ→+∞

??-

-=?

??

定理二 (自相关函数各态历经定理)平稳过程X (t )的自相关函数X

R τ()具有各态历经性的充要条件是

22

1

110

1lim

(1)()02T X T B R d T

T

ττττ→+∞

??-

-=??

?

(), (1)

其中[]111()=()()()()B E X t X t X t X t τττττ++++。

在(1)式中令τ=0,就可以得到均方值具有各态历经性的充要条件。

在实际应用过程中通常只考虑定义在0≤t ≤+∞上的平稳过程。此时上面的所有时间平均都应以0≤t ≤+∞上的时间平均来代替。而相应的各态历经定理可表示为下述形式:

定理三

[]0

1lim

()()T X

T X t dt E X t T μ→+∞

==? (2)

以概率1成立的充要条件是

2

1lim

(1)()0T X X T R d T T

τ

τμτ→+∞

??-

-=???

定理四

[]0

1lim

()()()()()T X T X t X t d E X t X t R T ττττ→+∞

+=+=?

以概率1成立的充要条件是

2

1

110

1lim

(1)()0T X T B R d T

T

ττττ→+∞

??-

-=??

?

() (3) 各态历经定理的重要价值在于它从理论上给出了如下保证:一个平稳过程X

(t ),若0

1lim

()T X

T x t dt T

μ→+∞

=?

1lim

()(+)()

T X T x t x t dt R T

ττ→+∞

=?

值得注意的是:具有各态历经性的随机过程必定是平稳随机过程,但平稳随机过程不一定是各态历经的。在通信系统中所遇到的随机信号和噪声,一般均能满足各态历经条件。

对平稳随机过程X(t),如果它的数字特征与某一样本x(t)的相对应的时间平均值之间有下列关系:

{}{}{

}

2

2

()()()()()()(4)()()()

X E X t x t E X t E X t x t x t R x t x t ττ=-=?-???????

=+

那么,我们称平稳随机过程X(t)具有各态历经性。(上面的分析虽然对平稳随机过程的某一特定样本而言的,但是,只要平稳随机过程的所有样本都具有相同的性质,那么这些分析就与样本的选择无关了。)

平稳随机过程的各态历经性可以理解为平稳过程的各个样本都同样地历经了随机过程的各种可能状态。由于任一样本都蕴含着平稳过程的全部统计特性的信息,因而任一样本的时间特征就可以充分地代表整个平稳随机过程的统计特性。这就是(4)式的实质。

如果一个平稳过程是具有各态历经性的,我们就可以通过过程的一个样本很容易地求得平稳过程的各数字特征量,这是很有实际意义的结论。由此,我们也看到了平稳随机过程的物理意义(假定平稳过程是一噪声电压):

{}2

2

2

()()(0)()()()m E X t x t x t x t x t σ

====?-?

??X 是直流分量。(均值)R 是总平均功率。

是交流平均功率。(方差)

从上面的讨论中可以看到,具有各态历经性的随机过程一定是平稳随机过程,但平稳随机过程却并不都具有各态历经性。各态历经的条件还是比较宽的,工程实际中遇到的许多过程都能够满足它的条件,不过要去验证它是否符合充要条件,往往比较困难。在许多情况下假定它具有各态历经性,从这个假设出发,对所得到的数据进行分析处理,看其结果是否与实际相符合,如果不相符合就要修改此假定,另作分析。

随机过程复习题

第一章 1. 填空 若X 1,X 2,…,X n 是相互独立的随机变量,且g i (t)是X i 的特征函数,i=1,2,…,n)则X=X 1+X 2+…X n 的特征函数g(t)= _g 1(t) g 2(t)…g n (t) 2.设P(S)是X 的母函数,试证: (1)若E(X)存在,则()1EX P '= (2)若D(X)存在,则 DX = P"(1)+ P ′ (1)-[ P ′ (1)]2 证明:(1)因为()0 k k k P s p s ∞ == ∑,则()1 1 k k k P s kp s ∞ -='= ∑,令1s →,得 ()1 1k k E X P kp ∞ ='==∑ 。 (2)()1 1 k k k P s kp s ∞ -='= ∑, ()()2 2 1k k k P s k k p s ∞ -=''=-∑()2222 =k k k k k k p s kp s ∞ --=-∑ 令1s →,得()()()2 22112 P 1= 1k k k k p kp EX p EX p EX p ∞ ='''-=--+=-∑ ()()2=P 1+1EX p '''∴ ()()()()2 22P 1+11DX EX EX p p ''''∴=-=-???? 证毕 3. 设X 服从B(n,p),求X 的特征函数g(t)及EX,EX 2 ,DX. 解:X 的分布列为P(X=k)=1k k n n C p q -,q=1-p ,k=0,1,2,...n, ()00 k n n n itk k k n k k it n k it g t e C p q C pe q pe q n n k k ? ??? ? ? ? ? ? ? --===+∑∑== 由性质得 ()() , 0n t d it EX i i np dt p q g e ==-=-=+ ()()()22 " 2 2 2 2 0n t it i npq d i p q g p n e EX dt ===-=+-+ ()2 2DX =EX EX =npq -

随机过程习题答案A

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1)是齐次马氏链。经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

第3章 平稳随机过程的谱分析

第3章 平稳随机过程的谱分析 付里叶变换是处理确定性信号的有效工具,它信号的频域内分析处理信号,常常使分析工作大为简化。 对于随机信号,是否也可以应用频域分析方法?付里叶变换是否可引入随机信号中? 3.1 随机过程的谱分析 3.1.1 回顾:确定性信号的谱分析 )(t f 是非周期实函数, )(t f 的付里叶变换存在的充要条件是: 1.)(t f 在),(∞-∞上满足狄利赫利条件; 2.)(t f 绝对可积: +∞

3.1.2 随机过程的功率谱密度 一、样本函数的平均功率 问题1:由于付里叶变换是针对确定性函数进行的,在处理随机过程)(t X 时,取 )(t X 的一个样本函数)(t x (在曲线族中取某一曲线)来进行付里叶分 析。 问题2:随机过程)(t X 的样本函数)(t x 一般不满足付里叶变换的条件,它的总能 量是无限的,需考虑平均功率。 若随机过程)(t X 的样本函数)(t x 满足 +∞<=? -∞→T T T dt t x T W 2 )(21 lim W 称为样本函数)(t x 的平均功率。 对于平稳过程,其样本函数的平均功率是有限的。 二、截取函数 对于)(t X 的一个样本函数)(t x ,在)(t x 中截取长为T 2的一段,记为)(t x T , 它满足: ???? ?≥<=T t T t t x t x T 0 ) ()( 称)(t x T 为)(t x 的截取函数。 三、截取函数的付里叶变换 0>T ,取定后,)(t x T 的付里叶变换一定存在: ??--+∞ ∞--==T T t j t j T T dt e t x dt e t x X ωωω)()()( 其付里叶逆变换为: ? +∞ ∞ -= ωωπ ωd e X t x t j T T )(21 )( 其帕塞瓦(Parseval )等式为 ? ? ? +∞ ∞ --+∞ ∞ -= =ωωπ d X dt t x dt t x T T T T 2 2 2 )(21 )()(

随机过程-习题-第6章

6.1 6.2 6.3 6.4设有n 维随机矢量)(21n ξξξξτ =服从正态分布,各分量的均值为 n i a E i ,,2,1, ==ξ,其协方差矩阵为 ????? ? ??? ? ?=22 2 2 2 2 2000000σσσσσσσ a a a B 试求其特征函数。 解:n 元正态分布的特征函数为 }2 1 e x p {),,,(21][Bt t t j t t t n '-'=μφξ n i a E i ,,2,1, ==ξ ),,,(21n t t t t =' ,则 ∑== 'n i i jat t j 1 μ ()()),,,(2 1 2 23222 2212 1' ++='n n t t t t t a t t a t t Bt t σσσσσσ =22223232222221221σσσσσσn t t a t t t a t t t ++++++ =∑∑ -=+=+ 1 1 2112 2n i i i n i i a t t t σσ

∴]21exp[)]21(exp[),,,(1 1 211 2221][∑ ∑ -=+=- -=n i i i n i i i n a t t t jat t t t σσφξ 6.5. 设n 维正态分布随机矢量)(21n T ξξξξ =各分量的均值为i E i =ξ, n i ,3,2,1=,各分量间的协方差为 n i m i m n b i m ,3,2,1,|,|,=--= 设有随机变量∑==n i i 1 ξη,求η的特征函数。 解:易得:???? ? ???????=n ξξξη 21]111[ 2 ) 1(][][1 1 += ==∑∑==n n i E E n i n i i ξη 协方差矩阵为: ??????? ??? ? ?? ???------=n n n n n n n n n n 321 312211121B 所以 ]111[]111['??= B ηD =2 2 3n n + 由于高斯分布的随机变量的线形组合依旧是高斯分布的,所以η的特征函数为: ?? ? ???????++-+=2456822)1(exp )(t n n n t n n j t ηΦ 6.6 设有三维正态分布随机矢量)(321ξξξξ=T ,其各分量的均值为零,即0][=i E ξ )3,2,1(=i ,其协方差矩阵为 ???? ? ??=333231232221131211b b b b b b b b b B

平稳随机过程的谱分析

第二章平稳随机过程的谱分析 本章要解决的问题: ●随机信号是否也可以应用频域分析方法? ●傅里叶变换能否应用于随机信号? ●相关函数与功率谱的关系 ●功率谱的应用 ●采样定理 ●白噪声的定义 2.1 随机过程的谱分析 2.1.1 预备知识 1、付氏变换: 对于一个确定性时间信号x(t),设x(t)是时间t的非周期实函数,且x(t) 满足狄利赫利条件(有限个极值,有限个断点,断点为有限值)且绝对可积,能量有限,则x(t)傅里叶变换存在。即: 满足上述三个条件的x(t)的傅里叶变换为:

其反变换为: 2、帕赛瓦等式 由上面式子可以得到: ——称为非周期性时间函数的帕塞瓦(Parseval)等式。 物理意义:若x(t)表示的是电压(或电流),则上式左边代表x(t)在时间(-∞,∞)区间的总能量(单位阻抗)。因此,等式右边的被积函数 2 ) (ωX X 表示了信号x(t)能量按频率分布的情况,故称 2 ) (ωX X 为 能量谱密度。 2.1.2、随机过程的功率谱密度 一个信号的付氏变换是否存在,需要满足三个条件,那么随机信号是否满足这三个条件从而存在付氏变换呢? 随机信号持续时间无限长,因此,对于非0的样本函数,它的能量

一般也是无限的,因此,其付氏变换不存在。 但是注意到它的平均功率是有限的,在特定的条件下,仍然可以利用博里叶变换这一工具。 为了将傅里叶变换方法应用于随机过程,必须对过程的样本函数做 某些限制,最简单的一种方法是应用截取函数。 x(t): 截取函数T 图2.1 x(t)及其截取函数 x(t)满足绝对可积条件。因此,当x(t)为有限值时,裁取函数T x(t)的傅里叶变换存在,有 T x(t)也应满足帕塞瓦等式,即:(注意积分区间和表达很明显,T 式的变化)

第十二章 平稳随机过程

第十二章 平稳随机过程 §1 基本概念 定义1:已给s.p t X t X {=,}T t ∈,若1≥?n ,即T 中任意的,,,21n t t t Λ与 h t h t h t n +++,,,21Λ,n 维r.v ),,(21n t t t X X X Λ与),,(21h t h t h t n X X X +++Λ有相同 的n 维d.f 。即 ) ,,,;,,(),,() ,,(),,,;,,,(2121212121212121n n n h t h t h t n t t t n n x x x h t h t h t F x X x X x X P x X x X x X P x x x t t t F n n ΛΛΛΛΛΛ+++=≤≤≤=≤≤≤=+++ 则称s.p t X 是一个严(强,狭义)平稳过程。 当t X ?n 维d.l 时,则有 ),,;,,,(),,;,,,(21212121n n n n x x x h t h t h t f x x x t t t f ΛΛΛΛ+++= 若取n =1,则有),(),(1111x h t f x t f +=,特别,当T ∈0,可取,1t h -=则有),0(),(111x f x t f =。此时平稳过程t X 的一维d.l 与1t (时间)无关。于是 X X m dx x xf t X E μ=== ?+∞ ∞ -),0()(1 即t X 的均值是一个与时间无关的常数。 其方差 ?∞ ∞ -=-=-=.),0()(][2 22 X X X t t dx x f m x m X E X D σ也与时间t 无关的 常数。 而且T X 的二维d.l 也只依赖于.21t t -=τ即当2t h -=时,有 ).,;(),;0,(),;,(2121212121x x f x x t t f x x t t f τ∧ =-= 所以t X 与τ+t X 之间自相关为 ??∞∞-∞ ∞ -+== =+).(),;(),(21212 1ττττX t t X R dx dx x x f x x X X E t t R 它只依赖于.τ类似地τ+t t X X ,之间协方差为

上海大学随机过程第六章习题与答案

第三章 习 题 1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概 率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链. (1)写出状态空间; (2)求一步转移概率矩阵; (3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为 {2,1,0,1,2}S =-- (2){,0}n X n ≥的一步转移概率矩阵为 10000000 0000 1q r p q r p q r p ????????=???????? P (3)因为两步转移概率矩阵为 22 (2) 2222 22 1 0000 202220 20 000 1q rq r pq pr p q rq r pq pr p q qr pq r p pr ????++????==+? ?++?????? P P 所以在甲获得1分的情况下,再赛2局甲胜的概率为 (2) 12(1)p p pr p r =+=+ 2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则

(1){,1,2,}i Y i =L 是否为Markov 链? (2)令1 n n i i X Y == ∑,问{,1,2,}i X i =L 是否为Markov 链? 解(1)由于 11221112211122111221111221(,,,,) (,,,)(,,,) ()()()() ()() (,,,) n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------================= ========L L L L L 因此,{,1,2,}n Y n =L 是马尔可夫链. (2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依 次 类 推 , 1121 n n X U U U --=+++L 为 1 n U -的函数,记为 1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互 独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而 12211122111 1112211 (,,,)(,,,) (,,,)()() n n n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L 因此{,1,2,}n X n =L 是马尔可夫链. 3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果 max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻 n 产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值. (1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率; (2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率. 证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足

平稳随机过程

平稳随机过程 ?严格平稳随机过程 ?广义平稳随机过程 ?平稳随机过程自相关函数性质?各态历经过程

1. 严格平稳(Strict Sense Stationary, SSS)随机过程定义: 随机过程X (t )的任意N 维统计特性与时间起点无关。 1111(,,,,,)(,,,,,) X N N X N N p x x t t t t p x x t t +?+?=如果X (t ) 是严格平稳的,则与t 无关。 (,)()X X p x t p x =即X(t)与X(t+?t)具有相同的统计特性。

二维概率密度 只依赖于τ,与t 1和t 2的具体取值无关。 12121212121221212 (,,,)(,,,) (,,,0)(,,) X X X X p x x t t p x x t t t t p x x t t t t p x x t t =+?+?=-?=-=ττ=-

如果X (t )是严格平稳随机过程, 则 121212121212 (,)(,,,)() X X X R t t x x p x x t t dx dx R t t ∞ -∞ ==ττ=-?()()X X X m t xp x dx m ∞ -∞==?22 2()()()X X X X t x m p x dx ∞ -∞σ=-=σ ?

100200300400500 -4-3-2-101234Stationay Gaussian Noise 0100200300400500 -4 -3 -2-101234Non-stationay Gaussian Noise

相关正态随机过程的仿真实验报告

实验名称:相关正态随机过程的仿真 一、实验目的 以正态随机过程为例,掌握离散时间随机过程的仿真方法,理解正态分布随机过程与均匀分布随机过程之间的相互关系,理解随机过程的相关函数等数值特征;培养计算机编程能力。 二、实验内容 相关正态分布离散随机过程的产生 (1)利用计算机语言的[0,1]区间均匀分布随机数产生函数生成两个相互独立的序列 {U1(n)|n=1,2,…100000},{U2(n)|n=1,2,…100000} 程序代码: clc; N=100000; u1=rand(1,N); u2=rand(1,N);%----------------在[0,1] 区间用rand函数生成两个相互独立的随机序列 n1=hist(u1,10);%--------------------------hist函数绘制分布直方图 subplot(121);%-----------------------------一行两列中的第一个图 bar(n1); n2=hist(u2,10); subplot(122); bar(n2); 实验结果:

(2)生成均值为m=0,根方差σ=1的白色正态分布序列 {e(n)|n=1,2, (100000) [][]m n u n u n +=)(2cos )(ln 2-)(e 21πσ 程序代码: clc; N=100000; u1=rand(1,N); u2=rand(1,N);%---------------在[0,1] 区间用rand 函数生成两个相互独立的随机序列 en=sqrt(-2*log(u1)).*cos(2*pi*u2);%--------定义白色正态分布e(n) n=hist(en,100);%--------------------------hist 函数绘制分布直方图 bar(n); 实验结果: (3)假设离散随机过程x(n)服从均值为x m =0、根方差为2x =σ、相关函数为||2)(r k x x k ασ= )6.0(=α 功率谱函数为

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

随机过程课后习题

习题一 1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。求X 的特征函数、EX 及DX 。其中01,1p q p <<=-是已知参数。 2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为 (2)求其期望和方差; (3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。 3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。 (1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。 4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。 5.试证函数 为一特征函数,并求它所对应的随机变量的分布。 6.试证函数 为一特征函数,并求它所对应的随机变量的分布。 7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概 率密度函数。 8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。求X+Y 的分布。 9.已知随机向量(X, Y )的概率密度函数为 试求其特征函数。 10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩 阵为B σ?kl 44=(),求(X ,X ,X ,X E 1234)。 11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和 213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。 12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求: (1)随机向量(X 1, X 2, X 3)的特征函数; 1,0() 0,0()p p bx b x e x p x p x --?>? Γ??≤? =0,0 b p >>1 n k k X =∑ (1)()(1) jt jnt jt e e f t n e -=-21 ()1f t t =+1 1n i i X X n ==∑22 1[1()],1,1 (,)40,xy x y x y p x y ?+--<

随机过程习题答案

随机过程习题解答(一)第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a )分别写出随机变量和的分布密度 (b )试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a )试求和的相关系数; (b )与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。解:(a )利用的独立性,由计算有: (b )当的时候,和线性相关,即 3、 设是一个实的均值为零,二阶矩存在的随机过程,其相关函数 为 ,且是一个周期为T 的函数,即, 试求方差函数 。 解:由定义,有: 4、考察两个谐波随机信号和,其中: 式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a )求的均值、方差和相关函数; (b )若与独立,求与Y的互相关函数。 解:(a ) (b ) 第二讲作业: P33/2.解:

其中为整数, 为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数 ,因此有一维分布: P35/4. 解: (1) 其中 由题意可知, 的联合概率密度为: 利用变换: ,及雅克比行列式: 我们有 的联合分布密度为: 因此有: 且 V 和 相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于 独立、服从正态分布,因此 也服从正态分布,且 所以 。 (4) 由于: 所以 因此 当时, 当 时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有: P37/10. 解:(1) 当i =j 时 ;否则 令 ,则有 (2)

随机过程试题

第一单元 1. 下列常见的分布中属于离散型随机变量的分布有():( 2.0分) A.二项式分布 B.均匀分布 C.泊松分布 D.正态分布 E.(0-1)分布 2. 下列常见的分布中属于连续型随机变量的分布有():(2.0分) A.二项式分布 B.均匀分布 C.泊松分布 D.正态分布 E.(0-2)分布 3. 下列关于随机变量分布函数性质的描述,正确的是():(2.0分) A.分布函数是一个不减函数 B.分布函数能够完整地描述随机变量的统计规律性 C.分布函数的最大值为无穷大 D.分布函数是右连续函数 E.离散型随机变量的分布函数是一系列冲激函数的线性组合 4. 下列关于随机变量概率密度性质的描述,正确的是():(2.0分) A.概率密度是一个不减函数 B.概率密度能够完整地描述随机变量的统计规律性 C.只有连续型随机变量才存在概率密度 D.概率密度是非负的函数

E.随机变量的概率密度一定存在 5. 随机试验有什么特点?(2.0分) 6. 基本事件是随机试验中最简单的随机事件。(2.0分) 7. 两个事件乘积的概率等于其中一个事件的概率乘以另一事件在此事件发生的条件下的条件概率。(2.0分) 8. 全概率公式用于在许多情况(B1,B2,…,Bn)下都可能发生事件A,求发生A 的全概率;贝叶斯公式则用于当A已经发生的情况下,求发生事件A的各种可能原因的条件概率。(2.0分) 9. 随机变量是样本空间上的单值实函数。(2.0分) 10. 两个随机变量如果相互独立,则它们的联合分布函数等于这两个随机变量的一维分布函数的乘积。(2.0分)

11. 如果要使两个随机变量之和的数学期望等于这两个随机变量的数学期望之和,则要求这两个随机变量是相互独立的。(2.0分) 12. 如果要使两个随机变量之和的方差等于这两个随机变量的方差之和,则要求这两个随机变量是相互独立的。(2.0分) 13. 两个随机变量如果是不相关的,则它们必定是相互独立的。(2.0分) 14. 当一个随机变量的数学期望为零时,它的方差和均方值相等。(2.0分) 15. 复随机变量的数学期望和方差都是复数。(2.0分) 16. 协方差是反映两个随机变量相关关系的数字特征。(2.0分) 17. 相互独立的随机变量和的特征函数等于各变量的特征函数的乘积。(2.0分) 18. 数学期望、方差和协方差都是矩的特殊情况,其中数学期望是随机变量的____矩,方差是随机变量的____矩,协方差是两个变量的____矩。(2.0分) 19. 离散型随机变量的统计规律可以用____、____、____和____来描述。(2.0分) 20. 连续型随机变量的统计规律可以用____、____和____来描述。(2.0分) 21. 数学期望表示____运算。(2.0分) 22. 掷3枚硬币, 求出现3个正面的概率。(2.0分) 23. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率。(2.0分) 24. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A)的概率为4/15, 刮风(用B表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P(A|B), P(B|A), P(A+B)。(2.0分) 25. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率。(2.0分) 26. 发报台分别以概率0.6和0.4发出信号“·”和“—”。由于通信系统受到干扰,当发出信号“·”时,收报台分别以概率0.8及0.2收到信息“·”及“—”;又当发出信号“—”时,收报台分别以概率0.9及0.1收到信号“—”及“·”。求当收报台收到“·”时,发报台确系发出信号“·”的概率,以及收到“—”时,确系发出“—”的概率。(2.0分) 27. 用随机变量来描述掷一枚硬币的试验结果。写出它的概率函数和分布函数。 (2.0分) 28. 如果ξ的概率函数为P{ξ=a}=1, 则称ξ服从退化分布。写出它的分布函数F(x), 画出F(x)的图形。(2.0分) 29. 服从柯西分布的随机变量ξ的分布函数是F(x)=A+B arctgx, 求常数 A,B;P{|ξ|<1}以及概率密度υ(x)。(2.0分)

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布 X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x) p k f (t)dt 分布函数 k x X 的概率分布用概率密度 f (x) F(x) 分布函数 连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,) 其联合分布函数 1 2 n 1 1 2 离散型 联合分布列 连续型联合概率密度 3.随机变量 的数字特征 数学期望:离散型随机变量 X EX x p k k X EX xf (x)dx 连续型随机变量 2 DX E(X EX) 2 EX (EX) 2 方差: 反映随机变量取值 的离散程度 协方差(两个随机变量 X ,Y ): B E[( X EX)(Y EY)] E(XY) EX EY XY B XY 相关系数(两个随机变量 X,Y ): 0,则称 X ,Y 不相关。 若 XY DX DY 独立 不相关 itX g(t) E(e ) itx e p k 连续 g(t) k e itx f (x)dx 4.特征函数 离散 g(t) 重要性质: g(0) 1, g(t) 1 g( t) g(t) , , g (0) i EX k k k 5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布 P( X 1) p,P( X 0) q EX p DX pq P(X k) C p q n k k k EX np DX n p q n k 泊松分布 P( X k) e k! EX DX 均匀分布略 ( x a)2 1 2 N(a, ) f (x) 2 2 2 EX a 正态分布 e DX 2

2.9 严平稳随机过程

随机信号分析

目录 CONTENTS CONTENTS 严平稳随机过程平稳随机过程的基本概念

-2.5-2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 ()()x m t E X t =????随机过程的数学期望()1x m t ()4x m t () 5x m t 如果数学期望与时间无关,将简化分析和计算! ()x x m t m =

-2.5-2 -1.5-1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 随机过程的自相关函数????=?R t t E X t X t X ,1212)()()(R t t X ,23) (?=τt t 320R t t X ,56)(?=τt t 650如果自相关函数与观察起始时刻无关,只和观察的两个随机变量的时间差有关? ==?ττR t t R t t X X ,,1221)()(有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

严平稳随机过程 随机过程X t ,若它的n 维概率密度(或n 维分布函数) 不随时间起点选择的不同而改变 就是说,对任何n 和ε,随机过程X t 的n 维概率密度满足: +++=εεεf x x x t t f x x x t t X n n X n n ,,,;,,,t ,,,;,,,t 12121212)()(f x x x t t n n ,,,;,,,t 1212) (则称X t 为严(格)平稳过程,或称X t 为狭义平稳过程。 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

随机过程分析

随机过程分析 摘要随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。如何全面的对随机信号进行系统和理论的分析是现在通信的关键,也是今后通信业能否取得巨大进步的关 键。 关键字通信系统随机过程噪声 通信中很多需要进行分析的信号都是随机信号。随机变量、随机过程是随机分析的两个基本概念。实际上很多通信中需要处理或者需要分析的信号都可以看成是一个随机变量,利用在系统中每次需要传送的信源数据流,就可以看成是一个随机变量。例如,在一定时间内电话交换台收到的呼叫次数是一个随机变量。也就是说把随某个参量而变化的随机变量统称为随机函数;把以时间t为参变量的随机函数称为随机过程。随机过程包括随机信号和随进噪声。如果信号的某个或某几个参数不能预知或不能完全预知,这种信号就称为随机信号;在通信系统中不能预测的噪声就称为随机噪声。下面对随机过程进行分析。 一、随机过程的统计特性 1、数学期望:表示随机过程的n个样本函数曲线的摆动中心,

?∞ ∞-==11);()]([)(dx t x xp t X E t a 2、方差:表示随机过程在时刻t 对于均值a(t)的偏离程度。 即均方值与均值平方之差。 {}?∞∞--=-=-==112222);()]([)]()([))](()([)]([)(dx t x p t a x t a t X E t X E t X E t X D t δ 3、自协方差函数和相关函数: 衡量随机过程任意两个时刻上获得的随机变量的统计相关特性时,常用协方差函数和相关函数来表示。 (1)自协方差函数定义 {} )]()()][()([);(221121t a t X t a t X E t t C x --=??∞∞-∞ ∞---=2121212211),;,()]()][([dx dx t t x x p t a x t a x 式中t1与t2是任意的两个时刻;a (t1)与a(t2)为在t1及t2得到的数学期望; 用途:用协方差来判断同一随机过程的两个变量是否相关。 (2)自相关函数 ??∞∞-∞ ∞-==2121212212121),;,()]()([),(dx dx t t x x p x x t X t X E t t R X 用途:a 用来判断广义平稳; b 用来求解随机过程的功率谱密度及平均功率。 二、平稳随机过程 1、定义(广义与狭义): 则称X(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述 首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当 12,,n t h t h t h T +++∈…,时,n 维随机变量 (X(1t ),X(2t ),…,X(t n )) 和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。 在实际工作中,确定随机过程的均值函数和相关函数是很重要的。而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。 但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。 定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即 〈X (t )〉=1lim ()2T T T X t dt T -→∞? 存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。 定义 设X (t )是一均方连续平稳随机过程,且对于固定的τ,()X t X t τ(+)也是连续平稳随机过程,〈()X t X t τ(+)〉 代表()X t X t τ(+)沿整个时间轴的平均值,即 ()X t X t τ(+)=1lim (+)()2T T T X t X t dt T τ-→∞? 若〈()X t X t τ(+)〉存在,称〈()X t X t τ(+)〉为X (τ)的时间相关函数。又

相关正态随机过程的仿真

应用统计与随机课程 课程实验报告题目:相关正态随机过程的仿真

实验1 相关正态随机过程的仿真 实验目的: 以正态随机过程为例,掌握离散时间随机过程的仿真方法,理解正态分布随机过程与均匀分布随机过程之间的相互关系,理解随机过程的相关函数等数值特征;培养计算机编程能力。 实验内容: 程序代码: u1=rand(1,100000); u2=rand(1,100000);%--------------------在[0,1]区间用rand函数生成两个相互独立的是随机序列n1=hist(u1,10)%--------------------------用hist函数绘制分布直方图 subplot(121)%-----------------------------将两幅分布图显示在一个窗口 bar(n1) n2=hist(u2,10) subplot(122) bar(n2) 实验结果:

结果分析: 因为两个独立序列是随机产生,且在[0,1]均匀分布,故将[0,1]分为十个等宽区间时,落在每个区间的数目应该大致相等。 实验内容:

程序代码: clc; u1=rand(1,100000); u2=rand(1,100000);%--------------------在[0,1]区间用rand函数生成两个相互独立的是随机序列en=sqrt(-2*log(u1)).*cos(2*pi*u2);--------定义白色正态分布e(n) n=hist(en,100);%-------------------------------用hist函数绘制分布直方图 bar(n) 实验结果: 结果分析: 绘制出的图形符合白色正态分布

相关文档
最新文档