铁氧体吸波材料

铁氧体吸波材料
铁氧体吸波材料

铁氧体吸波材料

资料整理:夏益民

一、电磁辐射防护材料概述与分类

电磁辐射防护材料可分为电磁波屏蔽材料和电磁波吸收材料。

电磁波屏蔽材料是指对入射电磁波有强反射的材料,主要有金属电磁屏蔽涂料、导电高聚物、纤维织物屏蔽材料。

将银、碳、铜、镍等导电微粒掺入到高聚物中可形成电磁波屏蔽涂料其具有工艺简单、可喷射、可刷涂等优点,成本也较低,因此得到广泛应用。据调查,美国使用的屏蔽涂料占屏蔽材料的80%以上,镍系屏蔽涂料化学稳定性好,屏蔽效果好,是目前欧美等国家电磁屏蔽涂料的主流。

导电高聚物屏蔽材料主要有两类,一类是通过在高聚物表面贴金属箔、镀金属层等方法形成很薄的导电性很高的金属层,具有较好的屏蔽效果;另一类是由导电填料与合成树脂构成,导电填料主要有金属片、金属粉、金属纤维、金属合金、碳纤维、导电碳黑等。

金属纤维与纺织用纤维相互包覆可用来制备金属化织物!此类织物既保持了原有织物的特性!又具有电磁屏蔽效能。

电磁波吸收材料指能吸收,衰减入射的电磁波,并将其电磁能转换成热能耗散掉或使电磁波因干涉而消失的一类材料。吸波材料由吸收剂、基体材料、黏结剂、辅料等复合而成,其中吸收剂起着将电磁波能量吸收衰减的主要作用,吸波材料可分为传统吸波材料和新型吸波材料#

传统的吸波材料按吸波原理可分为电阻型、电介质型和磁介质型。

电阻型吸波材料的电磁波能量损耗在电阻上!吸收剂主要有碳纤维、碳化硅纤维、导电性石墨粉、导电高聚物等;金属短纤维、钛酸钡陶瓷等属于电介质型吸波材料;铁氧体、羰基铁粉、超细金属粉等属于磁介质型吸波材料,它们具有较高的磁损耗角正切,主要依靠磁滞损耗、畴壁共振和自然共振、后效损耗等极化机制衰减吸收电磁波,研究较多且比较成熟的是铁氧体吸波材料。

二、铁氧体

铁氧体由以三价铁离子作为主要正离子成分的若干种氧化物组成,并呈现亚铁磁性或反铁磁性的材料。

铁氧体是一种具有铁磁性的金属氧化物。就电特性来说,铁氧体的电阻率比金属、合金磁性材料大得多,而且还有较高的介电性能。铁氧体的磁性能还表现在高频时具有较高的磁导率。因而,铁氧体已成为高频弱电领域用途广泛的非金属磁性材料。由于铁氧体单位体积中储存的磁能较低,饱合磁化强度也较低(通常只有纯铁的1/3~1/5),因而限制了它在要求较高磁能密度的低频强电和大功率领域的应用。

铁氧体磁性材料可用化学分子式 MFe2O4 表示。式中M代表锰、镍、锌、铜等二价金属离子。铁氧体磁性是通过烧结这些金属化合物的混合物而制造出来的。铁氧体磁性的主要特点是电阻率远大于金属磁性材料,这抑制了涡流的产生,使铁氧体磁性能应用于高频领域。

首先,按照预定的配方比重,把高纯、粉状的氧化物(如Fe2O4、Mn3O4、ZnO、NiO 等)混合均匀,再经过煅烧、粉碎、造粒和模压成型,在高温(1000~1400℃)下进行烧结。烧结出的铁氧体制品通过机械加工获得成品尺寸。上述各道工序均受到严格的控制,以使产品的所有特性符合规定的指标。不同的用途要选择不同的铁氧体材料。有适用于低损耗、高频特性好的系列,有磁导率的线性材料。按照不同的适用频率范围分为:中低频段(20~

150kHz)、中高频段(100~500kHz)、超高频段(500~1MHz)。

铁氧体的吸波性能来源于其既有亚铁磁性又有介电性能,其相对磁导率和相对电导率均呈复数形式,它既能产生介电损耗又能产生磁致损耗,因此铁氧体吸波材料具有良好的微波性能。

在用于吸波材料时,铁氧体主要有两种形式:一种是与胶粘剂复合制成复合材料,这种复合材料可以是涂料和橡胶等制品。这些材料材料的磁导率较低,需要较厚的材料才能对微波有较好的吸收。另一种是烧结铁氧体。由于烧结铁氧体内部结构较连续,材料可获得较高的磁导率,其缺点是材料较重易碎,耐高温性能弱。

材料对电磁波屏蔽和吸收的程度用屏蔽效能(SE)来表示,单位为分贝(dB),一般来说,SE越大,则衰减的程度越高。根据SE的不同取值将材料对电磁波的衰减程度分级如表。

吸波材料的基本物理原理是,材料对入射电磁波实现有效吸收,将电磁波能量转换为热能或其它形式的能量而损耗掉。该材料应具备两个特性即波阻抗匹配特性和衰减特性波阻抗匹配特性即创造特殊的边

界条件是入射电磁波在材料介质表面的反射系数,最小,从而尽可能的从表面进入介质内部。衰减特性是指进入材料内部的电磁波因损耗而被迅速吸收。损耗大小,可用电损耗因子和磁损耗因子来表征。要提高介质吸波效能,其基本途径是提高介质电导率,增加极化“摩擦”和磁化“摩擦”,同时还要满足阻抗匹配条件,使电磁波不反射而进入介质内部被吸收。

而对于单一组元的吸收体,阻抗匹配和强吸收要同时满足常常会有矛盾,因此有必要进行材料多元复合,以便调节电磁参数,使之尽可能在匹配条件下,提高吸收损耗能力。

日本FDK 将起始磁导率分别为12 和10 的MnZn铁氧体PE23、PE45 吸收剂分散到橡胶中,制备的薄层柔性吸波材料的性能见

过璧君和邓龙江采用共沉与高温助熔剂相结合的制粉工艺,研制的平面六角晶系的(ZnCo)2W 铁氧体吸收剂,与其它调节剂配合制成厚度为1.63mm 的涂层,在8~12GHz 频段均具有-10dB 以下的反射系数。其用传统陶瓷工艺制备了成分为Ba(CoTi)xFe12-xO19 的磁铅石结构单轴六角晶系铁氧体,单一吸收剂粉体涂层厚度为1.5mm时,最小反射系数为-10.88dB

(14.2GHz);与其它吸收剂复合后制成厚度为1.29mm 的涂层,12~18GHz全频段的反射系数均低于-10dB。

不过以上的涂布均较厚,可能并不适应于乐凯公司涂布工艺。

目前国内生产吸波材料的厂家也很多,较大的企业有北矿磁材科技股份有限公司和东信微波。其中,北矿在2~8GHz窄波段有吸收剂粉体BMA-PS,东信也有相关的吸波涂料。

各种吸波材料的比较

Christopher L Holloway 沙斐翻译 一前言 最早暗室(全电波)建于50年代,用于天线测量。吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸()。在~10GHz正入射时,反射系数为-20dB。60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为 -40dB。 目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。正入射时的反射系数为 -60dB。然而可使用的频率范围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。 电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。由于锥体的厚度大于波长,锥体的周边反射入射波。波在相邻的锥体间不断的反射,再反射很多次。每次反射时总有一部分波被锥体吸收。因此,仅有小部分抵达锥体基座。基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。最后从锥体的尖返回的波已是非常小了。 电-厚锥体的最佳性能的获得,依靠锥体内渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。 半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。频率范围为30-1000MHz。但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(-)。显然在30MHz 的频率上,厚度不可能是几个波长。因此暗室的频率范围被限制在90-1000MHz。 30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度 <1 4 λ)的性能,只能安装上以后,测量暗室特性来判定。直到80年代中期,计算和测量技 术发展以后,对小型宽带吸波材料的评估才成为可能。【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。 在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。电波入射到电-薄型吸波材料上时,它们并不在乎吸波材料的实际几何形状是锥型还是楔型。相反,它们的行为就象照射到一固体媒质上,该媒质的有效ε和μ随进入媒质的距离而变化。注意这是有效ε和有效μ和构成吸波材料的实际ε和μ是不同的。 最佳的吸波材料提供了从空气阻抗到吸波材料基座的波阻抗的逐渐过渡。正确的渗碳加载可使大部分入射波穿透锥或楔,并在通过基座时被吸收。更进一步调节渗碳可以使入射波被锥或楔反射的那一部分和从金属板反射后从吸波材料中透出来的那一部分那互相抵消,这种抵消可以获得非常小的反射率。显然只能发生在较窄的频率范围。一般说来渗碳加载对电-厚和电-薄材料的要求是不同的,【6】因此对于工作频率在30-1000MHz的小型宽带吸波材料(锥或楔型),渗碳加载既要考虑高频时的电-厚,又要考虑低频时的电-薄情况。这是极富于挑战性的。 60年代初期日本开发了电-薄型铁氧体瓦作为聚氨酯锥型和楔型的替代物。由于瓦的吸波性能和空气比较接近,在空气-瓦片界面反射很小,入射波直接渗入瓦片。又因为瓦片对磁场损耗大,所以渗入波被吸收。如有穿过瓦片的,则被金属板反射,重又回到瓦片,被再次吸收。如还有穿出瓦片回到空气中的,则可以象锥型和楔型吸波材料那样,调节瓦片厚度,在一定的较窄的频率范围内使其与瓦片直接反射到空气中的那一部分相抵消。 近年来,薄锥和楔(200-1000MHz)+铁氧体瓦+介质层(30-600MHz)构成了超小型

磁性吸波材料与应用

磁性吸波材料与应用 Magnetic Electromagnetic Wave Absorbing Materials and Applications 余声明 中国西南应用磁学研究所四川绵阳105信箱621000 摘要 本文论述了磁性吸波材料的基本原理、种类、应用及其发展。关键词磁性吸波材料应用发展 1前言 隐身技术是一门新兴边缘科学,涉及多个学科与技术领域,应用十分广泛。从各种武器装备、飞行器的隐身到现代电子信息设备的抗干扰系统都是不可缺少的实用技术和组成部分。 就武器而言,隐身技术是通过降低电器、武器或飞行器的光、电、热可探性而达到隐身目的的一种技术;或者说是采用多种技术措施,降低对外来信号(光、电、磁波、红外线等)的反射,使反射信号与它所处的背景信号难以区别,最大限度地减弱自身的特征信号,以达到自身隐蔽的效果。隐身技术可分为有源隐身技术和无源隐身技术。所谓有源是利用计算机分析外来探测信号,并及时主动发射相应的干扰信号,以达到自身的隐蔽。而无源隐身技术是一种被动隐身技术,它包括隐身结构技术和隐身材料技术。隐身结构技术是在尽量不影响功能的条件下降低自身特征信号,并设法减少雷达反射截面积,这在军事上显得特别重要。可见隐身结构技术和隐身材料技术是隐身技术不可分割的两部分,而隐身材料在实现隐身中起着重要作用,也是研究隐身技术的主要内容之一。 随着电子技术的飞速发展,电子产品特别是移动通讯、计算机、家用电器的普及,人们生存环境遭受到电磁波严重污染,城市高层建筑的增多又引起电子环境的恶化,如何降低电磁波干扰已成为全世界电子行业普遍关注的问题。隐身材料也是解决电子产品抗电磁干扰的有效方法之一。 隐身材料又称之为吸波材料,其作用把外来的电磁波能量转换为热能,降低反射波的强度,达到隐身或抗干扰的效果。按吸波材料损耗机理可分为:电阻型、电介质型和磁介质型。为了达到最佳的隐身效果,常常把多种吸波材料结合起来,构成复合型吸波材料,广泛用于雷达、航天、微波通讯及电子对抗、电子兼容的吸收屏蔽等领域。 本文专门介绍磁性介质主要是铁氧体吸波材料的概貌、应用情况及其发展。2磁性吸波材料 2.1吸波材料工作的基本原理 所谓吸波就是吸收电磁波,吸波材料的工作基本原理是: 对于一般材料,材料的介电常数ε与磁导率μ可写成以下复数形式: μ′′?μ′=με′′?ε′=ε??j ;j (1) 式中:ε′和μ′分别为吸波材料在电场或磁场作用下产生的极化和磁化强度的变量,而ε″为在外加磁场作用下,材料电偶矩产生重排引起损耗的度量,μ″为在外加磁场作用下,材料磁偶矩产生重排引起损耗的度量。对介质而言,承担着对电磁波吸波功能的是ε″和μ″,它们引起能量的损耗,损耗因子为tanδ可由下式表示: μ′ μ′′+ε′ε′′=δ+δ=δμεtan tan tan (2) 可见,tan δ随ε″和μ″的增大而增大。 设计吸波材料除了尽可能提高损耗外,还要考虑另一关键因素,即波阻抗匹配问题,使介质表面对波的反射系数(γ)为0或最小,电磁波入射到介质进而被吸收。反射系数γ的定义如式(3)所示: Zo Z Z Z in o in +?=γ(3)

铁氧体吸波材料研究进展

铁氧体吸波材料的研究进展 物理科学与技术学院凝聚态物理罗衡102211013 摘要:铁氧体吸波材料是既具有磁吸收的磁介质又具有电吸收的电介质,是性能极佳的一类吸波材料。本文对铁氧体吸波材料的工作原理、研究进展作了系统的介绍,并指出了铁氧体吸波材料的发展趋势。 关键词:铁氧体吸波材料研究进展 0 引言 近年来,随着电磁技术的快速发展,电磁波辐射也越来越多的充斥于我们的生活空间,电磁波辐射已成为继噪声污染、大气污染、水污染、固体废物污染之后的又一大公害。如电磁波辐射产生的电磁干扰(EMI)不仅会影响各种电子设备的正常运行,而且对身体健康也有危害。在军事高科技领域,随着世界各国防御体系的探测、跟踪、攻击能力越来越强,陆,海、空各军兵种军事目标的生存力,突防能力日益受到严重威胁;作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段之一的隐身技术,正逐渐成为集陆、海、空、天、电、磁五位一体之立体化现代战争中最重要、最有效的突防战术手段。 目前一般采用的手段是利用电磁屏蔽材料的技术,来进行抗电磁干扰和电磁兼容设计,但是屏蔽材料对电磁波有反射作用,可能造成二次电磁辐射污染和干扰,所以最好的解决办法是采用吸波材料技术,因为吸波材料可以将投射到它表面的电磁波能量吸收,并使电磁波能量转化为热能或其他形式的能量消耗而不反射[1-3]。 用于隐身技术的雷达吸波材料已达十几种之多,与透波材料相比,吸波材料研究得更为成熟,其中应用较广的几类吸波材料有铁氧体、金属微粉、纳米吸波材料、导电高聚物和铁电吸波材料等。在众多吸波材料中,磁性吸波材料具有明显优势,而且将是主要的研究对象。磁性吸波材料主要包括铁氧体、超细金属粉、多晶铁纤维等几类。其中金属吸收剂具有使用温度高、饱和磁化强度和磁损耗能力大等特点,但也存在一些自身的缺点:如频率展宽有一定难度,这主要是由于其磁损耗不够大,磁导率随频率的升高而降低比较慢的缘故;化学稳定性差;耐腐蚀性能不如铁氧体等[4];而对于铁氧体来说,除了具有吸收强、吸收频带宽、成本低廉、制备工艺简单等优点外,还因为具有较好的频率特性(其相对磁导率较大,而相对介电常较小),更适合制作匹配层,相对于高介电常数高磁导率的金属粉,在低频率拓宽频带方面,更具有良好的应用前景[5-8]。

吸波材料简介

吸波材料简介 1、定义 所谓吸波材料,指能吸收投射到它表面的电磁波能量的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。 2、吸波原理分类 吸波材料的损耗机制大致可以分为以下几类: 其一,电阻型损耗,此类吸收机制和材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。 其二,电介质损耗,它是一类和电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。 其三,磁损耗,此类吸收机制是一类和铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是和磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点。 3、材料种类 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 吸波材料按材料分类主要分为: 铁氧体吸波材料,是利用磁性材料的高频下损耗和磁导率的散射来吸收电磁波的能力。 金属超微粉吸波材料,金属材料因居里点高(770K)而耐高温,Ms可达铁氧体的3-4倍,金属自然共振频率比铁氧体高得多,有更好的吸收性能,但是块

吸波材料知识介绍系列

吸波材料知识介绍系列—————之一 吸波材料简介 在解决高频电磁干扰问题上,完全采用屏蔽的解决方式越来越不能满足要求了。因为诸多设备中,端口的设置及通风、视窗等的需求使得实际的屏蔽措施不可能形成像法拉第电笼那样的全屏蔽电笼,端口尺寸问题是设备高频化的一大威胁。另外,困扰人们的还有另外一个问题,在设备实施了有效的屏蔽后,对外干扰问题虽然解决了,但电磁波干扰问题在屏蔽系统内部仍然存在,甚至因为屏蔽导致干扰加剧,甚至引发设备不能正常工作。这些都是屏蔽存在的问题,也正是因为这些问题的存在,吸波材料有了用武之地。 吸波材料是指能够有效吸收入射电磁波并使其散射衰减的一类材料,它通过材料的各种不同的损耗机制将入射电磁波转化成热能或者是其它能量形式而达到吸收电磁波目的。不同于屏蔽解决方案,其功效性在于减少干扰电磁波的数量。既可以单独使用吸收电磁波,也可以和屏蔽体系配合,提高设备高频功效。 目前常用的吸波材料可以对付的电磁干扰频段范围从0.72GHz到40GHz。当然应用在更高和更低频段上的吸波材料也是有的。吸波材料大体可以分成涂层型、板材型和结构型;从吸波机理上可以分成电吸收型、磁吸收型;从结构上可以分为吸收型、干涉型和谐振型等吸波结构。吸波材料的吸波效果是由介质内部各种电磁机制来决定,如电介质的德拜弛豫、共振吸收、界面弛豫磁介质畴壁的共振弛豫、电子扩散和微涡流等。 吸波材料的损耗机制大致可以分为以下几类:其一,电阻型损耗,此类吸收机制与材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。其二,电介质损耗,它是一类与电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。其三,磁损耗,此类吸收机制是一类与铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是与磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是目前吸波材料研究的一大热点。由于篇幅所限,本文对吸波材料的损耗机制仅做了最为简约的叙述,对其详述及其结构设计及结构对吸波效能的影响等方面将在以后的文章中做出解释。 总之,高速发展的新科技正引领着世界范围内的各行各类电气、电子设备向高频化、小型化方向发展,高频EMI问题必将越发突显,吸波材料必然有越来越广阔的应用空间。

3米法暗室和10米法暗室介绍

在屏蔽室的天花板和四面墙贴上吸波材料,地面的吸波材料采用活动式铺设,即构成EMC实验室。该EMC 暗室(实验室)为十米法半电波暗室,在30MHz至18GHz的频率范围内,在3米测量距离拥有2米静区,10米测量距离拥有3米或更大静区,该暗室满足FCC、CE和VCCI对十米法暗室的认证、测量规则。 一.用途: 可对通讯设备、电子、电气设备进行EMC(EMC)测量,即电磁干扰(电磁干扰)和电磁敏感度(EMS)测量。适用频率30MHz-18GHz可延至40GHz。 二.主要规格及性能 1.屏蔽效能,满足EN 50147-1、GB12190-90。 技术参数如下: 频率屏蔽效能 14 kHz >60 dB 磁场 100 kHz > 80 dB 磁场 100 kHz > 100 dB 电场 1 MHz >100 dB 磁场 1 MHz >100 dB 电场 100 MHz > 100 dB 电场 1 GHz >100 dB 平面波10 GHz >100 dB 微波18 GHz >100 dB 微波100 MHz > 100 dB 电场 1 GHz >100 dB &nb 2.按照ANSI C6 3.4-2003的步骤和规定在直径3米的圆柱体静区内所有位置从30MHz至1GHz进行归

一化场衰减测量,按照10米法测量的归一化衰减(NSA)值和理论值偏差优于±4dB;1GHz至18GHz频率范围内使用传输损耗(TL)测量方法进行测量,仅在5GHz、10GHz和18GHz三点进行测量,归一化衰减(NSA)值和理论值偏差优于±4dB。同时满足CISPR16、EN50147-2、CISPR22-1997、GB9254-1998、VCCI V-3/99.05标准对场衰减的规则。 3.按照IEC61000-4-3步骤和规定,符合EN61000-4-3:1996和GB/T 17626.3-1998的规则,在30MHz至1GHz进行场均匀度测量,标准场为转台之上0.8米-2.3米范围内1.5米x1.5米的垂直平面,按照3米测量距离规则16个测量点的75%即12点场均匀性在0-6dB之间;1GHz至18GHz的测量仅在5GHz、10 GHz和18GHz三点以低于3v/m进行测量。 4. 按照CISPR22 Claas B(GB9254-1998)的规定,在30MHz-1GHz的频率范围内,无EUT的情况下,测得的环境电平值,至少低于规定的B级限值10dB。 三.在EMC实验室内,配置的主要附属设备 暗室的基本设施和设备 1. 屏蔽壳体一间:内部尺寸为20m长×12m宽×8m高,采用美国拼装式工艺建造,保证屏蔽效能的同时,也能保证屏蔽室的坚固耐用,并可以整体搬迁或扩建。 2. 屏蔽门:全开尺寸2.5m*2.5m,手动、电动或气动开启。 3. 波导通风口:8个,尺寸为300mm*300mm 4. 电气系统:300瓦卤素灯8盏,220V/单相/插座,380V/3相/插座 ? 5. 电源滤波器:在EUT、照明、天线塔、转台CCTV系统的电源滤波器,可增加电话滤波器、网络滤波器等。 220VAC/50Hz/单相/2*30A 一台

柔性吸波材料的设计

柔性吸波材料的设计 东莞市万丰纳米材料有限公司所生产的柔性吸波材料,是指能吸收投射到它表面的电磁波能量并且反射、折射和散射都很小的一类材料。电磁波吸收体以导电损耗、介电损耗、磁性损耗等来划分,可分为导电吸收体材料、介电吸收体材料和磁性吸收体材料。主要以介电损耗为损耗机理,在外界交变电场的作用下,材料纤维内的电子产生振动,将电磁能转化成为热能散耗掉。研究表明,这种材料具有相对重量轻、吸收频带宽、吸收性能好、耐候性强、抗老化、易弯折、可任意裁剪、耐湿、耐压、长期使用、无毒环保等突出优点。在生产中可以通过调节纤维的长度、直径、排列方式、分散剂的含量等相应调节材料的电磁吸收参数,根据客户需要制造成的不同频段宽度、用于军事、工业和民用等不同用途、从不同的厚度和不同形状。 由于电磁波的频率范围是从3—30kHz的超长波到300GHz—3Thz的波长,可以综合利用电磁波的各种特性。kHz频带的电磁波可沿长距离、中距离的地面传播,故可用于飞机、船舶的无线电导航;MHz频带的电磁波能产生电离层反射现象,故可用于国际间远距离通信、携带电话、电视转播;GHz频带的电磁波要用于携带电话、低轨道卫星用携带电话、船舶用雷达、卫星放送。 目前,电磁波的危害已成为日益严重的社会问题,仅仅凭常用的

屏蔽材料或者从电路的设计上来处理已经是很难解决这个问题,用途更广泛的电磁波吸收材料格外引人注目。被广泛地用于吸收电路杂波、消除电磁干扰、改进产品性能、屏蔽电磁泄露、降低光学器件反射、避免设备干扰、建筑辐射防护、消除电视重影、机房电磁污染治理、射频屏蔽箱、信息保密处理等诸多领域;随着各种类型的电子产品被大量使用,以柔性吸波材料为基础而开发出来的电磁辐射防护物品也逐渐走进人们的生活和工作中,将柔性吸波材料应用电视、音响、VCD机、计算机、游戏机、微波炉、移动电话等产品上,可以使电磁波泄露降到国家卫生安全限值以下,确保人体健康;将其应用于高功率雷达、微波医疗器、微波破碎机等机械设备上,能有效保护操作人员免受电磁波辐射的伤害。 万丰科技集团秉承"厚载万物,丰泽众生"的宗旨,立足于柔性吸波材料、纳米材料及高分子材料等学科的核心技术,以不断进取创新的精神,致力开发有益于环境保护,人类安全的产品,服务大众。

吸波材料

吸波材料 姓名:王丽君 学院:纺织与材料工程学院 专业:材料工程 科目:材料表面与界面工程技术学号:13208520403408

吸波材料 摘要:介绍了吸波材料的吸波原理和吸波材料的分类,以及几种新型吸波材料,如铁氧体吸波材料,纳米吸波材料、手性材料、导电高分子吸波材料,耐高温陶瓷材料,并简单介绍了纳米复合材料的制备方法。 关键词:吸波材料;吸波原理;新型吸波材料;纳米复合材料的制备 信息化战争中,武器平台的高度信息化和电子化,使飞机、坦克、舰艇等所处的环境日益复杂。它们除受地面或空中的火力威胁和电子干扰外,其一举一动还处于红外、雷达、激光等探测器的严密监视之下,使其生存能力和战斗能力面临极大挑战,这样其隐身性能就显得尤为重要。 隐身技术主要涉及材料隐身和结构隐身两大方面。前者是使用吸波材料或涂料;后者是合理地设计武器外形,以提高隐蔽性。再此,不得不提及吸波材料。 1、吸波材料的吸波原理 吸波材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转化为热能或其他形式的能量,一般由基体材料(或粘接剂)与吸收介质(吸收剂)复合而成。由于各类材料的化学成分和微观结构不同,吸波机理也不尽相同。材料吸收电磁波的基本条件是:①电磁波入射到材料上时,它能尽可能不反射而最大限度地进入材料内部,即要求材料满足阻抗匹配;②进入材料内的电磁波能迅速地几乎全部衰减掉,即要求材料满足衰减匹配。 2、吸波材料的分类 目前吸波材料分类较多,现大致分成下面4种: (1) 按材料成型工艺和承载能力,可分为涂覆型吸波材料和结构型吸波材料。前者是将吸收剂(金属或合金粉末、铁氧体、导电纤维等)与粘合剂混合后,涂覆于目标表面形成吸波涂层;后者是具有承载和吸波的双重功能,通常是将吸收剂分散在层状结构材料中,或是采用强度高、透波性能好的高聚物复合材料(如玻璃钢、芳纶纤维复合材料等)为面板,蜂窝状、波纹体或角锥体为夹芯的复合结构。 (2) 按吸波原理,吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 (3) 按材料的损耗机理,吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 (4) 按研究时期,可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石

铁氧体吸波材料

铁氧体吸波材料 资料整理:夏益民 一、电磁辐射防护材料概述与分类 电磁辐射防护材料可分为电磁波屏蔽材料和电磁波吸收材料。 电磁波屏蔽材料是指对入射电磁波有强反射的材料,主要有金属电磁屏蔽涂料、导电高聚物、纤维织物屏蔽材料。 将银、碳、铜、镍等导电微粒掺入到高聚物中可形成电磁波屏蔽涂料其具有工艺简单、可喷射、可刷涂等优点,成本也较低,因此得到广泛应用。据调查,美国使用的屏蔽涂料占屏蔽材料的80%以上,镍系屏蔽涂料化学稳定性好,屏蔽效果好,是目前欧美等国家电磁屏蔽涂料的主流。 导电高聚物屏蔽材料主要有两类,一类是通过在高聚物表面贴金属箔、镀金属层等方法形成很薄的导电性很高的金属层,具有较好的屏蔽效果;另一类是由导电填料与合成树脂构成,导电填料主要有金属片、金属粉、金属纤维、金属合金、碳纤维、导电碳黑等。 金属纤维与纺织用纤维相互包覆可用来制备金属化织物!此类织物既保持了原有织物的特性!又具有电磁屏蔽效能。 电磁波吸收材料指能吸收,衰减入射的电磁波,并将其电磁能转换成热能耗散掉或使电磁波因干涉而消失的一类材料。吸波材料由吸收剂、基体材料、黏结剂、辅料等复合而成,其中吸收剂起着将电磁波能量吸收衰减的主要作用,吸波材料可分为传统吸波材料和新型吸波材料# 传统的吸波材料按吸波原理可分为电阻型、电介质型和磁介质型。 电阻型吸波材料的电磁波能量损耗在电阻上!吸收剂主要有碳纤维、碳化硅纤维、导电性石墨粉、导电高聚物等;金属短纤维、钛酸钡陶瓷等属于电介质型吸波材料;铁氧体、羰基铁粉、超细金属粉等属于磁介质型吸波材料,它们具有较高的磁损耗角正切,主要依靠磁滞损耗、畴壁共振和自然共振、后效损耗等极化机制衰减吸收电磁波,研究较多且比较成熟的是铁氧体吸波材料。 二、铁氧体

磁性陶瓷材料

磁性陶瓷材料 1.铁氧体磁性材料概述 铁氧体是一种非金属磁性材料,又称磁性陶瓷。早在我国春秋战国时代就有“慈石召铁”的记载。其中所谓的“慈石”就是现代称之的磁铁矿 石,也就是铁氧体的一种,其主要成分是Fe3O4,可以称其为天然的铁 氧体。人类研究铁氧体是从20世纪30年代开始的,至今已有70多年历 史了。早期有日本、荷兰等国家对铁氧体进行了系统研究,于20世纪 40年代开始有软磁铁氧体的商品问世。在第二次世界大战期间,由于无 线电、微波、雷达和脉冲技术的飞速发展,迫切需要能由于高频段,并 具有损耗低的新型磁性材料。当时的金属磁性材料由于存在严重的趋肤 效应和涡流损耗,而无法使用。铁氧体基本上是绝缘体,电阻率高,涡 流损耗小,在当时得到了迅速的研究和开发。20世纪50年代是铁氧体 蓬勃发展的时期。1952年磁铅石型硬磁铁氧体研制成功。1956年又在 此晶系中开发出平面型的超高频铁氧体,同时发现了含稀土元素的石榴 石型铁氧体,从而形成了尖晶石型、磁铅石和石榴石型三大晶系铁氧体 材料体系。应该说铁氧体的问世,是强磁性磁学和磁性材料发展史上的 一个重要里程碑。至今铁氧体磁性材料已在广播、通讯、收音机、电视、 音像技术、电子计算机技术、自动控制、雷达、宇航与卫星通讯、仪器、 仪表、印刷、显示以及生物医学、光电子技术等众多高技术领域得到了 广泛应用。 尖晶石型铁氧体

磁铅石型铁氧体 从化学组成上看,铁氧体是由铁族离子、氧离子及其他金属离子所组成的复合金属氧化物。但也有少数不含铁的磁性氧化物,近年来显示出明显的科学意义和高新技术方面的应用前景。 2.铁氧体磁性材料的种类和应用--《功能陶瓷材料》 铁氧体材料分为软磁、硬磁、旋磁、矩磁和压磁等五类。 (1)软磁铁氧体材料这类铁氧体是最先得到广泛运用的,也是日常生活中人们经常接触到的。所谓软磁铁氧体材料是指在较弱的磁场作用下,很容易被磁化也容易被退磁的一类铁氧体材料。其典型的代表是锰锌铁氧体Mn-ZnFe2O4,如

各种吸波材料的比较

各种吸波材料的比较 Christopher L Holloway 沙斐翻译 一前言 最早暗室(全电波)建于50年代,用于天线测量。吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸(5.08cm)。在2.4~10GHz正入射时,反射系数为-20dB。60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为-40dB。 目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。正入射时的反射系数为-60dB。然而可使用的频率围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。 电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。由于锥体的厚度大于波长,锥体的周边反射入射波。波在相邻的锥体间不断的反射,再反射很多次。每次反射时总有一部分波被锥体吸收。因此,仅有小部分抵达锥体基座。基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。最后从锥体的尖返回的波已是非常小了。 电-厚锥体的最佳性能的获得,依靠锥体渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。 半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。频率围为30-1000MHz。但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(0.91-1.83m)。显然在30MHz的频率上,厚度不可能是几个波长。因此暗室的频率围被限制在90-1000MHz。 30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度 <1 4 λ)的性能,只能安装上以后,测量暗室特性来判定。直到80年代中期,计算和测量技 术发展以后,对小型宽带吸波材料的评估才成为可能。【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。 在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。电波入射到电-薄型吸波材料上时,它们并不在乎吸波材料的实际几何形状是锥型还是楔型。相反,它们的行为就象照射到一固体媒质上,该媒质的有效ε和μ随进入媒质的距离而变化。注意这是有效ε和有效μ和构成吸波材料的实际ε和μ是不同的。 最佳的吸波材料提供了从空气阻抗到吸波材料基座的波阻抗的逐渐过渡。正确的渗碳加载可使大部分入射波穿透锥或楔,并在通过基座时被吸收。更进一步调节渗碳可以使入射波被锥或楔反射的那一部分和从金属板反射后从吸波材料中透出来的那一部分那互相抵消,这种抵消可以获得非常小的反射率。显然只能发生在较窄的频率围。一般说来渗碳加载对电-厚和电-薄材料的要不同的,【6】因此对于工作频率在30-1000MHz的小型宽带吸波材料(锥或楔型),渗碳加载既要考虑高频时的电-厚,又要考虑低频时的电-薄情况。这是极富于挑战性的。 60年代初期日本开发了电-薄型铁氧体瓦作为聚氨酯锥型和楔型的替代物。由于瓦的吸

吸波材料现状和应用——整理超经典

吸波材料的发展现状 一. 1.目前吸波材料分类较多,现大致分成下面4种: 1.1按材料成型工艺和承载能力可分为涂覆型吸波材料和结构型吸波材料。1.2 按吸波原理 吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 1.3 按材料的损耗机理 吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 1.4 按研究时期 可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的2种。 2.无机吸波剂 2.1 铁系吸波剂 2.1.1 金属铁微粉 金属铁微粉吸波剂主要是通过磁滞损耗、涡流损耗等吸收衰减电磁波,主要包括金属铁粉、铁合金粉、羰基铁粉等。金属铁微粉吸收剂具有较高的微波磁导率,温度稳定性好等优点,但是其抗氧化、抗酸碱能力差,介电常数大,频谱特性差,低频吸收性能较差,而且密度大。 2.1.2 多晶铁纤维 多晶铁纤维具有很好的磁滞损耗、涡流损耗及较强的介电损耗,并且是良好的导体,在外界电场作用下,其内部自由电子发生振荡运动,产生振荡电流,将电磁波的能量转化成热能,从而削弱电磁波。 2.1.3 铁氧体 铁氧体吸波材料是研究较多也较成熟的吸波材料。它的优点是吸收效率高、涂层薄、频带宽;不足之处是相对密度大,使部件增重,以至影响部件的整体性能,高频效应也不太理想。 2.2碳系吸波剂 2.2.1石墨、乙炔炭黑

综述(铁氧体材料)

文献综述 一、研究背景 随着科技的发展,吸波材料在军用及民用领域的应用日益广泛,己经成为各国军事装备隐身和民用防电磁辐射等技术领域研究的热点[1]。在众多的吸波材料中,以自然共振为主要吸波机制的铁氧体吸波材料作为一种传统的吸波剂,具有较好的性能和低廉的成本,因而是目前各国研究得比较多和比较成熟的吸波材料,己经成功地应用于隐身技术[2-3]。这些吸收剂,虽然在一定的频带范围内吸收雷达电磁波较强,但其有一个致命的缺点就是密度太大,难以满足当前国家在军事隐身、军事通讯、电缆信号泄漏防护,民用电磁波辐射防护等方面对吸收电磁波宽频带、吸收强、重量轻的新型吸收剂需求[4]。 二、研究现状 目前开发研制的新型吸波剂达几十种之多,但大部分处于试验阶段,要达到真正的实用化还有许多的工作要做,同时对一些比较成熟的吸波剂进行结构改造也是当前吸波剂发展的重要方向,对材料科学工作者来说,如何经济、有效地解决传统铁氧体吸波剂所存在的弊端是雷达吸波剂研究中的主要问题。 铁氧体是目前研究较多且比较成熟的吸波剂,应用十分广泛。铁氧体既有亚铁磁性又有介电特性,对微波电磁场来说,其相对磁导率和相对介电特性均呈现复数形式,一般称为双复介质。它既能产生磁滞损耗又能产生电致损耗,吸波性能优良。它的吸波机理主要是畴壁共振和自然共振。按其微观结构的不同,铁氧体可以分为立方晶系尖

晶石型、六角晶系磁铅石型和稀土石榴石型三个主要系列,他们均可以作为吸波剂。 铁氧体吸波剂价格低廉,吸波性能优良,一直受到各个国家的重视,至今仍是组成雷达吸波材料的主要成分之一。国内就铁氧体吸波剂也作了许多的研究。但是铁氧体作为吸波剂应用时存在比重大、吸收频带窄等缺点。为了克服这一缺点,各国正在研制开发新型的铁氧体。目前主要有以下三大途径:(1)把铁氧体制成超细粉末,从而大大降低其比重,改变其磁、电、光等物理化学性能,提高吸波能力。国内钱逸泰先生等人已经开始了这方面的研究工作[11];(2)制备含有大量游离电子的铁氧体或在铁氧体内加入少量放射性物质,在雷达波作用下,游离电子急剧循环运动,大量消耗电磁能,从而提高铁氧体吸波性能;(3)研究新型“铁球”吸波剂,在空心的玻璃微球表面涂上铁氧体粉或把铁氧体制成空心微球,这样制成的铁球吸波剂,比重比铁氧体轻得多,而吸波性能优于铁氧体。这是因为铁球吸波涂层不仅能吸波,还能偏转和散射雷达波。美国的F-117A隐形飞机和“海上阴影”号隐身舰艇都采用的是一种叫“铁球”的铁氧体吸波材料。除上述三个措施以外,将立方晶系、六方晶系和反铁磁铁氧体通过改变铁氧体的化学成分、粒径、粒度分布、粒子形状、混合量和表面处理技术来提高铁氧体吸波性能的研究也取得了较大的进展。 铁氧体空心粒子作为一种具有特殊结构的功能材料复合粒子,具有质轻和内核折光指数远低于壳层物质等特点。由于这种空心粒子体密度小、其特有的电磁性能表现有可能克服现有的雷达吸收涂层材料

铁氧体

铁氧体又称铁淦氧或磁性瓷。为一类非金属磁性材料。是磁性的三氧化二铁与其他一种或多 种金属氧化物的复合氧化物(或正铁酸盐)。铁氧体有磁性,在高频时会较高的磁导率(比金属磁性材料高);其电阻率比金属磁性材料大得多,还有较高的介电性能。磁铁矿FeO·Fe2O3是最简单的铁氧体。通常铁氧体限于由那些具有d层或f层不成对电子的元素 组成,尤其是与二价铁离子半径接近的二价金属离子,如锰、锌、铜、镍、镁、钴等离子, 也可是希土元素离子或镓、铝、铋、钡、锶等离子。 铁氧体磁性材料按其矫顽力(使已磁化的铁磁质失去磁性而必须加的与原磁化方向相反的外 磁场强度)和用途可分为软磁、硬磁、旋磁、矩磁、压磁五类。软磁铁氧体在较弱磁场下易 磁化也易退磁,如锰锌铁氧体Mn-ZnFe2O4和镍锌铁氧体Ni-ZnFe2O4,结构为尖晶石型; 主要做各种电感元件,如滤波器、变压器、天线等的磁芯和录音、录像机的磁头。硬磁铁氧 体磁化后不易退磁,能长期保留磁性,如钡铁氧体BaFe12O17,结构大多为磁铅石型;主 要用作恒磁源,在电讯、电声、电表、电机工业中可代替铝镍钴系硬磁金属材料。旋磁铁氧 体也称微波铁氧体,如镍铜铁氧体Ni-CuFe2O4和钇石榴石铁氧体3M2O3·5Fe2O3(M为 三价钇、钐、钇等希土离子),用于雷达、导航、遥控等电子设备中。矩磁铁氧体有矩形磁 滞回线,如锂锰铁氧体Li-MnFe2O4等,一般用作记忆元件,用于电子计算机存储器中。 压磁铁氧体磁化时,能在磁场方向作机械伸长或压缩,如镍锌铁氧体Ni-ZnFe2O4、镍铜铁氧体Ni-CuFe2O4等,一般作磁致伸缩元件,用于超声波换能器等。 铁氧体性能好,成本低,生产工艺简单,又能节约大量贵重金属,为高频弱电领域中有发展 前途的非金属磁性材料。但其饱和磁化强度较低,通常为纯铁的1/3—1/5,不能用于发 电、电动、输电变压器等大功率电力设备中。 隐身技术与隐身材料 https://www.360docs.net/doc/b05378592.html, 时间:2007-1-6 来源:生命经纬 当人们谈论1991年初春海湾战争中的先进武器时,都免不了要提到隐身战斗机F-117A。隐身飞机的英文名称是stealthy aircraft,也可译成隐形飞机。设计者的主导思想是力图降低飞机在航行过程中的目标特性,以提高它的突防能力和攻击能力。隐身技术、星球大战和核技术被美国列为国防的三大高科技领域。 飞机隐身有六大要素:雷达、红外、视觉、噪音、烟雾、凝迹。早期的隐身措施是:(1)使发动机排气更干净,烟道气更淡;(2)蒙皮染成灰色,提高视觉隐形;(3)提高升限和飞行速度。但这些还不是真正的隐身飞机。F-117A是第一种真正的隐身战斗机。其隐身的具体措施是:(1)设计成独特的气动外形。当入射的无线电波波长远小于飞机尺寸时,根据几何光学原理,可以看成独立反射的集合,并尽量使反射信号相互干涉。(2)为防止进气道、发动机、压气机反射雷达波,两侧设有条形隐蔽网状格栅栅条,能屏蔽10cm或更长的雷达波。(3)采用能够吸收雷达波的复合材料和吸波涂料。(4)采用有源或无源电子干扰。(5)在红外隐身方面,主要是降低飞机的红外辐射,其具体措施是降低发动机的喷口排气温度和采用屏蔽技术。 从以上几项措施可以看到:(1)隐身技术主要是指降低飞机的雷达反射截面积和红外特征。(2)隐身技术是一种综合技术。在进行雷达波隐身技术研究中,最重要的是改进飞行器的气动外形设计,其次是吸波材料的选用。(3)隐身技术是一种探测对抗技术。在一切军事行动中,交战双方的行为都具有很大的保密性、多样性。不同的隐身技术都是针对现有探测技术而发展起来的,

铁氧体

铁氧体.txt如果中了一千万,我就去买30套房子租给别人,每天都去收一次房租。哇咔咔~~充实骑白马的不一定是王子,可能是唐僧;带翅膀的也不一定是天使,有时候是鸟人。是镍铁尖晶石 尖晶石是一族矿物,在自然界中形成于熔融的岩浆侵入到不纯的灰岩或白云岩中经接触变质作用形成的。有些出现在富铝的基性岩浆岩中。宝石级尖晶石则主要是指镁铝尖晶石,是一种镁铝氧化物。晶体形态为八面体及八面体与菱形十二面体的聚形。颜色丰富多彩,有无色、粉红色、红色、紫红色、浅紫色、蓝紫色、蓝色、黄色、褐色等。尖晶石的品种是依据颜色而划分的,有红、橘红、蓝紫、蓝色尖晶石等。玻璃光泽,透明。贝壳状断口。淡红色和红色尖晶石在长、短波紫外光下发红色荧光。 H2 + 2Fe3+ +O2- ==H2O + 2Fe+ +Vo(空穴) CO2 +2Vo+ 4Fe2+ ==C +2O2- +4Fe3+ 总反应:CO2+2H2 ==2H2O +C 不同的铁磁材料磁滞现象的程度不同,磁滞回线水平方向越宽的材料,也就是磁滞回线面积越大的材料,其磁滞现象越严重。如图(a)所示,磁滞回线面积宽阔,材料的剩磁和矫顽磁力都大,其磁滞损失严重,不宜于作交变磁场中工作的铁心,而适合于作永久磁铁,这种材料称为硬磁性材料。如图(b)所示,磁滞回线瘦窄,而面积较小,这种材料称为软磁性材料,它的磁滞损失较小,适于交变磁场工作。软磁材料是电子工业中变压器、电机等电磁设备所不可缺少的材料。 软磁性材料软磁性材料的剩磁与矫顽磁力都很小,即磁滞回线很窄,它与基本磁化曲线几乎重合。这种软磁性材料适宜作电感线圈、变压器、继电器和电机的铁心。常用的软磁性材料有硅钢片,坡莫合金和铁氧体等。 1. 硅钢片硅钢片是电源变压器、电机、阻流线圈和低频电路的输入输出变压器等设备最常用的材料。硅钢片质量的好坏,通常用饱和磁感应强度B来表示。好的硅钢片饱和磁感应强度可达10000高斯以上,看上去晶粒多、片子薄、质脆、断面曲折。差的硅钢片只有6000高斯,看上去呈深黑色、片子厚、韧性大、断面平直。有一种专供C型变压器铁心用的冷轧硅钢片,它的导磁性能是有方向性的,使用时要沿导磁性强的方向制成状,用卷绕法作成“C”型变压器铁心,其饱和磁感应强度比普通硅钢片高很多,采用这种硅钢片可大大提高磁感应强度,减小铁心的体积和重量。 2. 坡莫合金坡莫合金又叫铁镍合金,它在弱磁场(小电流产生的磁场)下具有独特的优点,能满足电信工程的特殊需要。例如超坡莫合金的初始导磁率μ0可达10万以上。但坡莫合金中含有镍,比较贵重,不宜广泛地使用,只在一些要求灵敏度高、体积又必需小的电磁器件中,才采用这种材料,它是一种高级的软磁性材料。 3. 铁氧体铁氧体是目前通信设备中大量使用的磁性元件,可以用它作电感和变压器铁心。铁氧体就其形状来分有E型如图3-19,罐形如图3-20和环形如图3-21所示。E形铁氧体多用来作变压器的铁心,罐形铁氧体多用来作电感线圈和某些变压器的铁心,环形铁氧体用来作特殊要求的电感线圈。 铁氧体是一种非金属的磁性材料,其电阻率较高,在102~109欧姆—厘米之间,涡流损耗小,起始导磁率大,其值可由几十到几千。使用频率范围不同,则可选用不同类型的铁氧体,其频率可由几百赫到几百兆赫。这种磁性材料的主要缺点是机械性能脆,热稳定性差,饱和磁感应强度低。 实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同.根据物质在外磁场中表现出的特性,物质可粗略地分为三类:顺磁性物质,抗磁性物质,铁磁性物质. 根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁

电波暗室性能指标的测试方法

摘要:介绍电波暗室的类型、各种吸波材料的特点,并通过许多实例,阐述电波暗室的材料选型以及电波暗室建造和管理方面的经验。 关键词:电波暗室吸波材料电磁兼容 1 电波暗室的形状和尺寸 电波暗室的主要形状为矩形和锥形。 电磁兼容测试暗室均采用矩形室。其尺寸如下:10m法半电波暗室,室尺寸约为21m×15m×11m。3m法半电波暗室多采用铁氧体和泡沫角锥复合,室尺寸约为9m×6m×5.5m;如果尺寸达到1lm×8m×7m,也可采用1.6m左右大型角锥吸波材料,可节省费用。预测试半暗室采用铁氧体和泡沫角锥复合,室尺寸约为7m×4m×3m。室尺寸还可根据测试件的尺寸适当扩大。 在进行天线测试时,发射天线和试验天线(目标)之间的距离要符合远场条件: L是两天线之间的距离; D是试验天线(目标)口径; λ是波长。 矩形电波暗室的长度比L大一些。宽度应保证电波人射角不超过60。。人射角大干60。,性能明显下降。一般从电性能和经济观点考虑,室宽度和长度之比应在1/2~1/3之间。 锥形电波暗室的低频性能好,又比较经济,但也有局限性,对于多源、动源和双稳态雷达横截面积测试等是不适用的。也不能提供绝对场强的测试。 为了形成远场,还有半开式暗室。接收区域是一个暗室,发射在室外较远位置,这种暗室不能实现屏蔽。紧缩场则用抛物面反射器将电波变成平面波,增加了一些费用但节省了空间。 2 吸波材料的种类 电波暗室用吸波材料较早和较多采用的是软质聚氯酯泡沫浸渍炭黑并进行阻燃处理制成的,它具有良好的电性能,在较宽的频带具有很低的反射、散射和较大的透射衰减,典型的反射率如图1所示

国内外有很多空心或半空心角锥,是采用塑料板、泡沫塑料板、纸板、无纺布等制成,再涂以炭黑、石墨制成的导电漆或包复薄金属膜,表面涂阻燃漆或包阻燃膜满足阻燃要求。锥高2m米左右的空心角锥可克服同高度实心角锥的重量重、价格贵、尖部易下垂等缺点,电性能可满足电磁兼容的要求,但比泡沫实心角锥略差。大型角锥SAH型虽为半空心,但以泡沫塑料为主体。与同高度的实心泡沫角锥相近,可用于电磁兼容和天线测试。

磁性材料:

磁性材料: 概述:磁性是物质的基本属性之一.磁性现象是与各种形式的电荷运动相关联的,由于物质内部的电子运动和自旋会产生一定大小的磁场,因而产生磁性.一切物质都具有磁性.自然界的按磁性的不同可以分为顺磁性物质,抗磁性物质,铁磁性物质,反铁磁性物质,以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为磁性材料. 磁性材料的分类,性能特点和用途: 1铁氧体磁性材料,一般是指氧化铁和其他金属氧化物的符合氧化物.他们大多具有亚铁磁性. 特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用.饱和磁化强度低,不适合高磁密度场合使用.居里温度比较低. 2 铁磁性材料:指具有铁磁性的材料.例如铁镍钴及其合金, 某些稀土元素的合金.在居里温度以下,加外磁时材料具有较大的磁化强度. 3 亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度. 4 永磁材料:磁体被磁化厚去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大.可分为三类,金属永磁,例,铝镍钴,稀土钴,铷铁硼等. 铁氧体永磁,例,钡铁氧体,锶铁氧体,其他永磁,如塑料等. 5软磁材料:容易磁化和退磁的材料.锰锌铁氧体软磁材料,其工作频率在1K-10M之间.镍锌铁氧体软磁材料,工作频率一般在1-300MHZ 金属软磁材料:同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁, 铁铝合金, 铁钴合金,铁镍合金等,常用于变压器等. 术语: 1 饱和磁感应强度:(饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度.在实际应用中, 饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度. 2 剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度. 3 磁通密度矫顽力, 他是从磁性体的饱和磁化状态,沿饱和磁滞回线单调改变磁场强度, 使磁感应强度B减小到0时的磁感应强度. 4内禀矫顽力:从磁性体的饱和磁化状态使磁化强度M减小到0的磁场强度. 5磁能积:在永磁体的退磁曲线上的任意点的磁感应强度和磁场强度的乘积. 6 起始磁导率:磁性体在磁中性状态下磁导率的极限值.

相关文档
最新文档