铁氧体材料吸波性-李景旭

合集下载

《新型铁氧体吸波材料的设计合成与性能研究》范文

《新型铁氧体吸波材料的设计合成与性能研究》范文

《新型铁氧体吸波材料的设计合成与性能研究》篇一一、引言随着现代电子技术的飞速发展,电磁波干扰问题日益突出,对电子设备和通信系统的正常运行造成了严重影响。

因此,吸波材料的研究与开发显得尤为重要。

铁氧体作为一种典型的吸波材料,因其具有高磁导率、高电阻率和良好的吸波性能而备受关注。

本文旨在研究新型铁氧体吸波材料的设计合成及其性能,为解决电磁波干扰问题提供新的解决方案。

二、新型铁氧体吸波材料的设计1. 材料选择新型铁氧体吸波材料采用铁、锌、钴等元素作为主要成分,通过控制各元素的配比,实现材料性能的优化。

2. 结构设计在材料结构上,采用纳米级颗粒设计,提高材料的比表面积和磁导率。

同时,通过引入多孔结构,提高材料的吸波性能。

三、合成方法1. 溶胶-凝胶法采用溶胶-凝胶法合成新型铁氧体吸波材料。

首先将原料按一定比例溶解在有机溶剂中,形成均匀的溶液。

然后通过凝胶化过程形成湿凝胶,再经过干燥、煅烧等工艺得到最终产品。

2. 化学共沉淀法化学共沉淀法也是一种有效的合成方法。

将含有铁、锌、钴等元素的盐溶液进行共沉淀反应,得到前驱体。

经过煅烧、研磨等工艺得到最终产品。

四、性能研究1. 电磁参数测试采用矢量网络分析仪对新型铁氧体吸波材料的电磁参数进行测试,包括复介电常数和复磁导率等。

2. 吸波性能测试将新型铁氧体吸波材料制备成不同厚度的样品,进行电磁波吸收性能测试。

通过测试结果分析材料的吸波性能与厚度、频率等因素的关系。

3. 性能优化通过调整材料的组成和结构,优化其电磁参数和吸波性能。

同时,研究材料的耐候性、耐温性等性能指标,为实际应用提供依据。

五、结果与讨论1. 合成方法对比采用溶胶-凝胶法和化学共沉淀法合成的新型铁氧体吸波材料均具有良好的吸波性能。

其中,溶胶-凝胶法得到的材料具有较高的磁导率,而化学共沉淀法得到的材料具有较高的复介电常数。

因此,根据实际应用需求选择合适的合成方法。

2. 性能分析新型铁氧体吸波材料具有优异的吸波性能,能够在较宽的频率范围内实现良好的电磁波吸收效果。

铁氧体陶瓷吸波材料

铁氧体陶瓷吸波材料

铁氧体陶瓷吸波材料是吸波材料的一种,它是一种烧结型吸收体,一般采用磁导率较高的尖晶石型铁氧体,如NiZn、MnZn体系等。

根据使用频段不同,采用不同磁导率的铁氧体,由于受居里点的限制,铁氧体吸收体不宜应用于200℃以上的高温环境。

现代飞机、舰艇和导弹等作战平台和武器装备,主要依靠外形(结构)设计和材料表面涂层(贴层)这两种方法,来降低其信号的可探测性实现隐身。

其中,外形设计也称赋形,目的是通过结构设计技术改变外形,控制作战平台和武器装备表面的取向,让它们不向雷达发射机或雷达接收机的方向上反射回波;而材料表面涂层,则通过作战平台和武器装备涂覆的吸波(隐身)材料,吸收一些入射电磁波来降低反射回波。

在目前技术条件下,只有在外形设计的基础上,再采用适宜的吸波材料,作战平台和武器装备才能具备良好的隐身特性。

所以说,吸波材料是实现隐身的关键要素之一。

陶瓷吸波材料的研究进展在近年来更是引人瞩目。

不久前,国内媒体就报道了哈尔滨工业大学研制出了一种改进型的陶瓷吸波材料,它的吸波特性更好,能使战机等作战平台有着更强的隐身能力。

那么,什么是陶瓷吸波材料?它为什么就能有更好的特性呢?陶瓷吸波材料属于电介质型吸波材料中的一种,一般可用碳化硅和硼硅酸铝等作为吸收剂,并采用渐变式的多层吸波结构,使入射电磁波在材料表面的反射很小并大多进入材料内部,同时在内部转化成热能而被迅速吸收。

相对于其他吸波材料,通过特殊的结构设计以及控制制备过程中的工艺参数和热处理时间,陶瓷吸波材料有着更突出的物理和化学特性,所以不但耐高温、抗腐蚀、不惧潮湿、稳定性好、膨胀率低、适应波段宽,且涂层薄、密度小、质量轻、强度大、附着力好。

比如此次哈工大研制的陶瓷吸波材料就采用了独特的微纳结构和成分设计技术,使其密度非常低,成为已知陶瓷吸波材料中最轻的一种。

如果用于代替传统的吸波材料将大大减轻隐身战机的重量,增加其载弹量和机动能力,降低其维护保障难度,提高其战力水平。

铁氧体吸波材料吸波性能影响因素研究进展

铁氧体吸波材料吸波性能影响因素研究进展

力的 目的【 l J 。其中,铁氧体类吸波材料由于既有亚 铁磁性又有介 电特性, 因而兼具磁性和介电两种材
众所周 知 ,材料 的性能 主要 取 决于它 的化 学成 分和 制备 工艺 ,这两者 直接 影响 着材 料 的微观 结构
和相组成。材料的组织结构对吸波性能有着较大影
响。铁氧 体 的吸波性 能与化 学 组 分 、制备 工艺 、粒 子 尺寸 、 应用频 率等密切 相关L 5 j 。 目前 , 铁氧 体粒径 、
形貌、 晶型等 对吸波 性能 的影 响 已有 大量研 究 】 ,
但 综合 起来 探 讨吸 波性 能 与铁 氧 体 的组 织 结构 ( 包 括 粒径 、相 组 成 、形貌 、晶体 结 构 )的关 系 鲜有 报 道 ,且吸 波机 理 的研 究还 很欠 缺 。研 究铁 氧 体 的组 织结构 对 吸波性 能的影 响 , 对 于提 高铁 氧 体 吸波 性 能 ,指 导铁氧 体 吸波材 料 的研 究 工 作 意义 重 大 。本 文 就近 期 关 于 铁 氧 体 吸 波 材 料 的 吸 波 性 能 与其 粒 径 、形貌 、相组 成等 的关系 方 面 的研 究进 行 综 合分 析, 探 究铁 氧 体材料 的组织 结 构对 其 吸波 性 能的影
Ke y wo r d :f e r r i t e ; a b s o r b i n g ma t e r i a l s : a b s o r b i n g p r o p e r t y
1引言
随着现代电磁技术的不断发展, 电磁干扰对军
事安 全和 民用 电子信 息领 域 的影响越 来越 严重 , 高 性 能 吸波 与 防 护 材料 已经 成 为 了 当前 电磁 材 料领 域研 制和 开 发 的重 点之 一 。 吸波 材料 作为一 种重 要 的 军事 功能材 料 ,其 作用是 减少 或消 除雷达 、红外 线 等对 目标 的探 测 , 以达 到战场 隐身 提高 自身 生存

铁氧体基复合材料的制备及其吸波性能的研究

铁氧体基复合材料的制备及其吸波性能的研究

铁氧体基复合材料的制备及其吸波性能的研究铁氧体基复合材料的制备及其吸波性能的研究引言:在现代社会中,对电磁波的吸收和屏蔽成为了一个重要的课题。

铁氧体基复合材料作为一种常见的吸波材料,具有优良的吸波性能和广泛的应用前景。

本文将介绍铁氧体基复合材料的制备方法以及其吸波性能的研究。

一、铁氧体基复合材料的制备方法1. 传统工艺传统的铁氧体基复合材料制备方法主要包括烧结法、共沉淀法和溶胶-凝胶法。

其中,烧结法是将已配好的铁氧体粉末制备成坯体,然后通过高温烧结使其成型。

共沉淀法则是通过沉淀反应将铁氧体粉末和其他添加剂一起沉淀出来,然后进行烧结。

溶胶-凝胶法是通过化学反应制备胶体,再通过热处理得到所需的复合材料。

2. 现代新工艺随着科学技术的不断发展,新的材料制备工艺也不断涌现。

例如,微波辅助法是一种利用微波辐射进行加热的方法,可以大幅度降低材料的制备温度和时间,并且提高材料的致密性和均匀性。

还有等离子体方法、溶胶燃烧法等新工艺也被应用于铁氧体基复合材料的制备中。

二、铁氧体基复合材料的吸波性能研究1. 吸波机理铁氧体基复合材料具有良好的电磁波吸收性能,其吸波机理主要有三个方面:电磁波能量的电导损耗、磁滞损耗和界面极化损耗。

其中,电导损耗是指材料在电磁场作用下的电导性导致的能量损耗;磁滞损耗是指材料在外加磁场作用下的磁导性导致的能量损耗;界面极化损耗是指材料间的界面极化现象导致的能量损耗。

2. 影响吸波性能的因素铁氧体基复合材料的吸波性能受到多种因素的影响。

其中,材料的组成、结构和形貌是主要因素之一。

不同组分和结构的材料具有不同的吸波性能。

此外,材料的厚度、密度、烧结温度等参数也会影响吸波性能的表现。

3. 吸波性能的测试方法为了评价铁氧体基复合材料的吸波性能,一般采用反射损耗和吸波带宽作为评判指标。

反射损耗是指材料表面反射电磁波的能力,通常用dB单位表示;吸波带宽是指材料能够有效吸收电磁波的频率范围。

结论:铁氧体基复合材料具有优良的吸波性能和广泛的应用前景,其制备方法和吸波性能的研究对推动材料科学的发展具有重要意义。

铁氧体聚苯胺复合纳米吸波材料研究进展

铁氧体聚苯胺复合纳米吸波材料研究进展

铁氧体/聚苯胺复合纳米吸波材料研究进展张存瑞,李巧玲,李保东,赵静贤(中北大学理学院化学系,山西太原030051)摘要:铁氧体/聚苯胺复合纳米吸波材料能够将介电损耗和磁损耗有机结合起来的,具有广阔的应用前景。

本文对铁氧体/聚苯胺纳米复合吸波材料的制备技术以及国内外研究进展进行综述,最后对制备强、宽、轻、薄的纳米复合吸波剂进行了展望。

关键词:纳米复合;吸波材料;铁氧体;聚苯胺The Development on Ferrite/Polyaniline Nano-composite Materials Zhang Cunrui, Li Qiaoling, Li Baodong, Zhao Jingxian Department of chemistry, North University of China, Taiyuan 030051,China Abstract:The ferrite / polyaniline composites nano-composites possess both dielectric losses and magnetic losses, so they have good application prospect in radar absorbing materials. In the text, the preparation technology and research progress of ferrite/ polyaniline nano-composite radar magnetic absorber materials in and abroad the country were summarized. Finally, the research future of nano-absorber with the properties of strong absorption, brand frequency, low density and small thickness is also expressed.Key words: Nano-composite; Radar magnetic absorber materials; Ferrite; Polyaniline国家自然基金(No.20571066);山西省高等学校优秀青年学术带头人计划资助。

铁氧体吸波材料

铁氧体吸波材料

铁氧体吸波材料
铁氧体吸波材料是一种具有优异吸波性能的功能材料,广泛应用于电磁兼容、
雷达隐身、通信、医疗等领域。

铁氧体吸波材料的研究和应用已经成为材料科学领域的热点之一。

本文将从铁氧体吸波材料的基本原理、制备方法和应用领域等方面进行介绍。

铁氧体吸波材料的基本原理是利用铁氧体材料对电磁波的吸收和反射特性,将
电磁波能量转化为热能而实现吸波效果。

铁氧体材料具有较高的介电常数和磁导率,能够有效地吸收和衰减电磁波。

此外,铁氧体吸波材料还具有良好的抗氧化性能和耐高温性能,能够在恶劣环境下稳定工作。

铁氧体吸波材料的制备方法主要包括化学溶胶-凝胶法、固相反应法、溶剂热法、微波烧结法等。

其中,化学溶胶-凝胶法能够制备出颗粒细小、分布均匀的铁
氧体吸波材料,具有较好的吸波性能;固相反应法制备的铁氧体吸波材料具有较高的烧结密度和力学性能;溶剂热法和微波烧结法则能够实现对铁氧体吸波材料的快速制备和成型。

铁氧体吸波材料在电磁兼容、雷达隐身、通信、医疗等领域有着广泛的应用。

在电磁兼容领域,铁氧体吸波材料能够有效地抑制电磁干扰和辐射,保障电子设备的正常工作;在雷达隐身领域,铁氧体吸波材料能够有效地减小雷达截面积,实现对雷达信号的有效屏蔽;在通信领域,铁氧体吸波材料能够提高通信设备的传输性能和抗干扰能力;在医疗领域,铁氧体吸波材料能够用于医学影像设备和医疗诊断仪器的射频屏蔽和吸波。

总之,铁氧体吸波材料具有广阔的应用前景和市场需求,对其研究和开发具有
重要意义。

随着科学技术的不断进步和发展,相信铁氧体吸波材料将会在更多领域展现出其独特的价值和作用。

铁氧体复合吸波材料研究现状

铁氧体复合吸波材料研究现状

铁氧体复合吸波材料研究现状铁氧体复合吸波材料是一种新型吸波材料,可以有效地吸收和消散声波,改善声学环境,减少噪声污染。

它以铁素体作为主要成分,以多孔结构的形式制成,具有高吸波效果、环境适应性好和良好的机械性能等优点,是现代声波控制技术的核心材料。

本文就铁氧体复合吸波材料的研究现状进行介绍。

一、成分分析铁氧体复合吸波材料是一种多成分材料,它由铁素体、碳酸钙、尼龙纤维、粗骨料等组成。

铁素体是材料的主要组成成分,它具有高强度、高耐磨、高导热性等特点,在碳酸钙的作用下可以形成规则的多孔结构,从而增强材料的吸波性能、使材料的比表面积增加等。

碳酸钙是一种多孔性质的硬物质,具有良好的吸收和消散声波的效果,可以有效增强材料的吸波效果。

尼龙纤维是一种吸波保温材料,具有结实耐压、轻质化、阻尼、低热传导等特点,可以增强材料的抗冲击性能和耐磨性。

粗骨料是一种增强材料强度和硬度的重要组成成分,它可以增强材料的抗压强度和抗冲击强度,从而起到增强材料的力学性能的作用。

二、制备工艺铁氧体复合吸波材料的制备工艺主要有粉末冶金法、工业型固相添加法、喷丸施工法、焊接复合法等。

粉末冶金法是以粉末冶金技术加工吸波材料的制备工艺,具有生产周期短、成本低、质量稳定等特点,是制备吸波材料最常用的工艺之一;工业型固相添加法是将吸波材料中的尼龙纤维、碳酸钙等添加剂与铁素体混合,然后经过热处理和冷却形成吸波材料;喷丸施工法则是将吸波材料经过一定的处理,制成粉末状,然后与粗骨料一起,经过喷丸施工而形成的复合材料;焊接复合法是将经过一定的处理的复合材料,经过焊接加工,从而形成复合吸波材料。

三、性能特点铁氧体复合吸波材料具有多种优良的性能:首先,该材料具有优良的吸波性能,其吸波效率达到90%以上,超过了传统吸波材料上的许多其它吸波材料;其次,材料具有良好的抗拉性能,弹性模量大、延伸率低,可以抵抗外界的拉力;第三,材料具有良好的耐腐蚀性,可以抵抗外界的腐蚀;最后,材料具有优越的热稳定性,能够承受高温和低温的极端条件,同时具有良好的抗热衰减性能。

铁氧体吸波材料

铁氧体吸波材料

铁氧体吸波材料引言。

铁氧体吸波材料是一种能够有效吸收电磁波的材料,具有广泛的应用前景。

本文将介绍铁氧体吸波材料的基本特性、制备方法以及在电磁波吸收领域的应用。

一、铁氧体吸波材料的基本特性。

铁氧体是一类具有磁性的材料,其晶格结构中含有Fe3+离子。

铁氧体具有较高的磁导率和磁饱和感应强度,因此被广泛应用于电磁波吸收材料的制备中。

铁氧体吸波材料具有以下基本特性:1. 宽频吸收特性,铁氧体吸波材料在较宽的频率范围内都能够有效吸收电磁波,具有良好的吸波性能。

2. 高吸波性能,铁氧体吸波材料能够吸收大部分入射电磁波能量,减小反射和透射。

3. 稳定性,铁氧体吸波材料具有良好的化学稳定性和热稳定性,在恶劣环境下仍能保持良好的吸波性能。

二、铁氧体吸波材料的制备方法。

1. 化学合成法,通过溶胶-凝胶法、共沉淀法等化学合成方法,可以制备出具有良好吸波性能的铁氧体吸波材料。

2. 固相反应法,将适量的铁氧体粉末与适量的其他添加剂混合,经过一定温度和时间的固相反应,可以制备出吸波性能优良的铁氧体吸波材料。

3. 物理气相沉积法,利用物理气相沉积技术,在基底上沉积一层铁氧体薄膜,形成吸波膜材料。

三、铁氧体吸波材料在电磁波吸收领域的应用。

1. 通信领域,铁氧体吸波材料可以用于制备各种类型的天线、基站和通信设备外壳,减小电磁波对周围环境的干扰。

2. 航空航天领域,铁氧体吸波材料可以用于制备飞机、卫星等航空航天器材的外壳,减小雷达探测和敌对电磁干扰。

3. 电子设备领域,铁氧体吸波材料可以用于制备电子设备的外壳和屏蔽罩,减小电磁波对电子设备的干扰。

结论。

铁氧体吸波材料具有良好的吸波性能和稳定性,是一种在电磁波吸收领域具有广泛应用前景的材料。

通过不同的制备方法,可以制备出各种形式的铁氧体吸波材料,满足不同领域的需求。

随着电子技术的不断发展,铁氧体吸波材料将在更多领域得到应用,并取得更大的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

பைடு நூலகம் 反射率测试示意图
• 测量原理 在给定波长和极化的条件下,电磁波从同一角度,以 同一功率密度入射到RAM平板和良导体平面,RAM平面与 同尺寸良导体平面二者镜面方向反射功率之比定义为RAM 反射率。比值越小说明材料的吸波性能越好。
黑色的磁性铁氧体雷达吸波材料
吸波性能测试方法
雷达吸波材料反射率是吸波材料的重要指标,它表示 了吸波材料相对于金属平板反射的大小。常用的测量RAM 反射率的方法有:弓形法、远场RCS法、空间样板平移法 等。 • RAM反射弓形测量法 弓形法是20世纪40年代美国海军实验研究室发明的, 该方法事国际上应用最广泛的吸波材料性能评价方法。正 如他的名字指出的那样,分离的放射和接收天线安装在被 测RAM样板上方的半圆架子上,样板置于弓形框的圆心。 通过改变天线在弓形框上的位置,可以测出不同入射角的 RAM反射率,弓形法RAM发射率自动扫描测试系统方框图如 图所示。
铁氧体材料吸波性能及其测试 方法简介
铁氧体材料的吸波性能
铁氧体是由铁的氧化物及其他配料烧结而成。一般分 为永磁铁氧体和软磁铁氧体两种。
铁氧体材料是一种以吸收电磁波为主,反射、散射和透 射都很小的高科技功能性复合材料,其原理主要是在高分子 介质中添加电磁损耗性物质,当电磁波进入吸波材料内部时, 推动组成材料分子内的离子、电子运动或电子能级间跃迁, 产生高频介质损耗和磁滞损耗等,使电磁能转变成热能而发 散到空间消失掉,从而产生吸收作用。不发生反射而造成二 次污染,对镜面波和表面波都具有良好的吸收特性。广泛适 用于抑制电磁波干扰,改善天线方向图,提高雷达测向测距 准确性,雷达波RCS减缩等。
相关文档
最新文档