实验三 图像的正交变换
图像变换实验报告

图像变换实验报告实验三图像变换⼀、实验⽬的1、结合实例学习⼏种常见的图像变换,并通过实验体会图像变换的效果;2、理解和掌握图像旋转、缩放、离散傅⾥叶变换和离散余弦变换的原理和应⽤,掌握利⽤MATLAB编程实现图像变换的⽅法。
⼆、实验内容1、图像的⼏何变换,主要实现图像的缩放与旋转,要求变换中⽤最近邻插值算法实现,或⽤双线性变换法实现并⽐较;2、图像的正交变换,主要实现离散傅⾥叶变换(DFT)与离散余弦变换(DCT)。
三、实验要求1、独⽴完成;2、编写MATLAB程序,并对程序中所调⽤函数的功能进⾏必要的说明(可⽤“help 函数名”进⾏查询);3、调试运⾏后保存实验结果(注意保存的⽂件格式);4、完成实验报告。
四、实验原理(⼀)图像的⼏何运算(变换)1、⽐例缩放⽐例缩放是指将给定的图像在x轴⽅向按⽐例缩放fx倍,在y轴⽅向按⽐例缩放fy倍,从⽽获得⼀副新的图像。
在MATLAB中,进⾏图像⽐例缩放的函数是imresize,它的常见调⽤⽅法如下:B=imresize(A,scale)B=imresize(A,[mrows ncols])B=imresize(A,scale,method)其中,A是要进⾏缩放的图像矩阵,scale是进⾏缩放的倍数,如果scale⼩于1,则进⾏缩⼩操作,如果scale⼤于1,则进⾏放⼤操作。
[mrows ncols]⽤于指定缩放后图像的⾏数和列数,method ⽤于指定的图像插值⽅法,有nearest、bilinear、bicubic 等算法。
2、图像旋转⼀般的旋转是以图像的中⼼为原点,将图像上的所有像素都旋转⼀个相同的⾓度。
在MATLAB中,进⾏图像旋转的函数是imrotate,它的常见调⽤⽅法如下:B=imrotate(A,angle)B=imrotate(A,angle,method)B=imrotate(A,angle,method,bbox)其中,A是要旋转的图像,angle是旋转的⾓度;method是插值⽅法,可以为nearest、bilinear、bicublic等;bbox是指旋转后的显⽰⽅式,有两种选择,⼀种是crop,旋转后的图像效果跟原图像⼀样⼤⼩,⼀种是loose,旋转后的图像包含原图。
图像变换实验报告

在 MATLAB 中,进行图像旋转的函数是 imrotate,它的常见 调用方法如下:
B=imrotate(A,angle)
B= imrotate(A,angle,method)
B= imrotate(A,angle,method,bbox)
通过离散余弦变换可以看到图像的重要可是信息都集中在 DCT 变换的左上角一小部分系数中,其余大部分接近零,将幅值 小于 10 的 DCT 系数置为零后进行反 DCT 得到的压缩的图像,比 较变换前后的图像,可以发现视觉效果相差很小,压缩的效果比 较理想。 (三)选做实验:频域滤波
因为 Butterworth 低通滤波器在带通和带阻之间有平滑的过 渡带,高频信号没有完全滤除,在抑噪效果良好的同时,图像变 得更加模糊了。
其中,A 是要进行缩放的图像矩阵,scale 是进行缩放的倍数, 如果 scale 小于 1,则进行缩小操作,如果 scale 大于 1,则进 行放大操作。[mrows ncols]用于指定缩放后图像的行数和列数, method 用于指定的图像插值方法,有 nearest、bilinear、bicubic 等算法。 2、图像旋转
cos
2������
2������
������ = 0������ = 0
其中,f(x,y)是二维空间向量元素,F(u,v)是变换系数矩阵之元 素。
在 MATLAB 中,提供两种进行图像处理的 DCT 变换函数: B=dct2(A)
B=dct2(A,[m,n]) B=dct2(A,[m n]) 其中,A 是输入的图像,B 是返回的 DCT 的变换系数,m、n 分别 是返回的 DCT 变换系数 B 的行数和列数。
图象变换1正交变换傅立叶变换

2024年10月13日
第三章 图像变换
31
W的定义表达式W=e-j2π/N,由欧拉公式知系数W是以N为周
期的。这样,W阵中很多系数就是相同的, 且由于W的对称性,
即
N
W2
j 2 N
e N 2
ux N
1,W 2
N
W ux W 2
W ux
因此可进一步减少计算工作量。
例如,对于N=4, W阵为
W 0 W 0 W 0 W 0
2024年10月13日
第三章 图像变换
11
一维傅立叶变换的定义
f(x)为连续可积函数,其傅立叶变换定义为:
F (u) f (x)e j2uxdx
其反变换为:
f (x) F (u)e j2uxdu
式中:j 1 ,x称为时域变量,u为频域变量。
通常傅立叶变换为复数形式F(u)=R(u)+jI(u)
1 N 1
2ux
2ux
f (x)(cos j sin ) (3 1)
N x0
N
N
完成全部DFT运算的计算量与N2成正比。特别是当N较大 时,其运算时间将迅速增长, 以至于无法容忍。
为此,研究离散傅立叶变换的快速算法(Fast Fourier Transform,FFT)非常必要。
2024年10月13日
1
幅度谱: F (u) R2 (u) I 2 (u) 2 相位谱: (u) arctan[I (u) / R(u)]
2024年10月13日
第三章 图像变换
12
变换分析的直观说明
2 1.299
1
h( t)
4
2
0
2
4
1
图像的正交变换

图像的正交变换1、二维傅立叶变换一维时间信号,可以看作是由多个单一频率的正弦信号叠加而成的,表达组成信号的每个正弦信号的频率及其幅值的空间称为频率域。
信号在时间域与频率域之间通过傅立叶变换与逆变换进行转换。
求时间信号在频率轴上的幅值分布函数过程为傅立叶变换,而由信号的在频率轴上的幅值分布函数求解时间信号的过程为傅立叶逆变换。
一维傅立叶变换的定义:()()2j t X j x t e dt π+∞-Ω-∞Ω=⋅⎰一维傅立叶逆变换定义:()()2j t x t X j e d π+∞Ω-∞=Ω⋅Ω⎰Ω为频率变量,它的连续变化使()X j Ω包含了无限个正弦和余弦项的和。
根据尤拉公式exp[2]cos 2sin 2j t t j t πππ-Ω=Ω-Ω傅立叶变换系数可以写成如下式的复数和极坐标形式:()()()()()j X j R jI X j e ϕΩΩ=Ω+Ω=Ω其中1222[()()]()RI X j =Ω+ΩΩ定义为傅立叶谱(幅值函数)1()()tan []()I R ϕ-ΩΩ=Ω为相角 而222()()()()E X j R I Ω=Ω=Ω+Ω能量谱二维平面图像是一种幅值沿纵坐标和横坐标两个方向变化的信号,其变化规律的分析也在频率域进行。
二维信号的正交变换由一维信号的正交变换扩展而得到。
连续二维函数的傅立叶变换对定义二维函数的傅立叶正变换 ()()()⎰⎰∞∞-∞∞-+-=dxdy e y x f v u F vy ux j π2,, 二维函数的傅立叶逆变换 ()()()⎰⎰∞∞-∞∞-+=dudv e v u F y x f vy ux j π2,, 二维函数的傅立叶谱 21)],(),([),(22v u I v u R v u F +=二维函数的傅立叶变换的相角 ]),(),([tan ),(1v u R v u I v u -=φ 二维函数的傅立叶变换的能量谱),(),(),(),(222v u I v u R v u F v u E +==2二维离散傅立叶变换对于一维信号()x t 及其傅立叶变换()X j Ω均进行离散(数字化),则离散的傅立叶变换定义如下:一维离散傅立叶正变换()()()11exp 2N x X k x n j kn N N π-==-∑一维离散傅立叶逆变换()()()10exp 2N u x t X k j kn N π-==∑对于N M ⨯图象,其二维离散傅立叶变换定义为:()()∑∑-=-=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-=10102exp ,1,M x N y N vy M ux j y x f MN v u F π ∑=∑=⎪⎭⎫⎝⎛+=--1100]2exp[),(),(M N N M u v vy ux j v u F y x f π对于N N ⨯图象()()∑∑-=-=⎪⎭⎫ ⎝⎛+-=10122exp ,1,N x N y N vy ux j y x f Nv u F π∑=∑=⎪⎭⎫⎝⎛+=--1100]2exp[),(),(N N N u v vy ux j v u F y x f π1.3二维离散傅立叶变换的性质 性质1:线性性质如果:11(,)(,)f x y F u v ⇔ 22(,)(,)f x y F u v ⇔ 则有:()()()()v u bF v u aF y x bf y x af ,2,1,2,1+⇔+性质2:尺度性质1(,), 1(,)(,)u v f ax by F a b F x y F u v ab a b ⎛⎫⇔==-→--⇔-- ⎪⎝⎭当时,性质3:可分离性()()()()∑∑∑∑∑-=-=-=-=-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=11102101022exp ,12exp ,2exp 12exp ,1,N x N x N y N x N y N ux j v x F NN vy j y x f N ux j N N vy ux j y x f Nv u F ππππ 二维傅立叶变换可分解成了两个方向的一维变换顺序执行。
第三章 图像信号的正交变换.

x(t)
X (k0 )e jk0t
k
1
X (k0 ) T
T / 2 x(t )e jk0t dt
T / 2
• 二、一维傅立叶变换
• 定义:
f (t) F(s)e j2stds
F(s) f (t)e j2stdt
• 来源:由傅立叶级数在无穷区间上得到。 • 存在性:被积函数满足 具有有限个间断点;具有有限个极值点;绝对可积。 一般情况下的函数满足上述条件,但对于周期函数和常值函数,上
p(t) (x n) n
f (t) p(t) f (t) (t nT ) n
• 时域的相乖相当于频域卷积,因此,时域信号的采样相 当于在频域信号与冲激函数卷积,即时域的离散化导致 频域的周期化。
• 内插:在频域用一个矩形窗截断,消除其他的复制品, 逆变换就得到原来的信号。相当于在时域和一个sinc函 数作卷积。
f (x, y)e N
N x0 y0
f (x, y)
1
N 1 N 1
j 2 (uxvy )
F (u, v)e N
N u0 v0
• 2、性质:
• 可分离性:
F (u, v)
1 N
N 1 N 1
j 2 uy j 2u x
f (x, y)e N e N
x0 y0
f (x, y)
( f (t) g(t)) F(s) G(s)
3、位移定理
[ f (t a)] e j2asF(s)
• 4、卷积定理
[ f (t) g(t)] F(s)G(s) 1(F (s) G(s) f (t)g(t)
• 通过卷积定理可得出,一些在一个域中不好处理的问题, 可变换到另一个域中作处理。
[教育]图像处理中的正交变换小波
![[教育]图像处理中的正交变换小波](https://img.taocdn.com/s3/m/5c208f376edb6f1aff001f32.png)
变宽,频窗变窄,从而实现了时-频窗口的自
动自适应变化。
从滤波的观点来看, a,b (t ) 的频谱 a,b () 具有带通特性,中心频率
0 0
,带
a ,b
宽
BW 2a ,b
。
图3—23示出了加窗的Fourier分析和小波分析 的时频特性比较。
图 3—23加窗Fourier分析和小波分析的时频特性比较
在小波变换中,时间窗口的宽度与频率窗口的 宽度是尺度参数a的函数,但其乘积 ( )
a ,b a ,b
由Heisenberg测不准原理限定为一常数,因此,
高频分量在时域局部化分辨率提高是以频域局
域化由
的不确定性加大换取的。
a ,b
分析高频分量时(a减小),时窗自动变窄,
频窗加宽,分析低频分量时(a增大),时窗
, C 是有限值
它意味着 0 处 ( )
连续可积
(0)
(t )dt 0
(3—222)
由上式可以看出,小波 (t ) 在 t 轴上取值有 正有负才能保证式(3—222)积分为零。所以 (t )
应有振荡性。
上面两个条件可概括为,小波应是一个具有振
荡性和迅速衰减的波。
在实际过程中,时变信号是常见的,如语音信号、 地震信号、雷达回波等。在这些信号的分析中,希 望知道信号在突变时刻的频率成份,显然利用 Fourier变换处理这些信号,这些非平稳的突变成份 往往被Fourier变换的积分作用平滑掉了。因此,不 能用于局部分析。在实际应用中,也不乏不同的时 间过程却对应着相同的频谱的例子。
a:a<1; b: a=1; c: a>1。
a ,b (t ) 2,15 (t )
图像的正交变换.

g (3)
x(2)
g(N
)
g(N 1)
g(1) x(N )
• 对于一个线性系统,对于输入信号矢量
与信号输出矢量间的关系矩阵若是正交
的且满足逆矩阵与共轭矩阵的转置相等,
则该处理过程为酉变换,关系矩阵为酉
矩阵。
若一组向量集合
a11
•
for(int fi=0;fi<fftWidth;fi++) {
•
fRData[fi]=0; fIData[fi]=0;
•
}
•
for(DWORD j=0;j<fftWidth;j++){
•
fRData[j]=ptrRData[i+j*fftWidth];
•
fIData[j]=ptrIData[i+j*fftWidth];
一般用“*”表示卷积,写为:y(t) g(t) * x(t)
卷积的离散形式为: y(i) g(i) * x(i) g( j)x(i j)
j
卷积的矩阵形式为: g(1) g(N ) g(2) x(1)
y(i)
g(i) *
x(i)
G
x
g (2)
g (1)
F(u) 1 N1 f (x) exp j2ux / N
N x0
N 1
f (x) F(u) exp j2ux / N u0
其中:x 0,1,2, N 1 0,1,2, N 1
F(u) F(uu) u 0,1,2,, N 1
数字图像处理图像变换实验报告

实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。
图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。