2014美国数学建模大赛MCM试题

合集下载

历年美国大学生数学建模竞赛试题MCM.翻译版doc

历年美国大学生数学建模竞赛试题MCM.翻译版doc

1985 年美国大学生数学建模竞赛MCM 试题1985年MCM:动物种群选择适宜的鱼类和哺乳动物数据准确模型。

模型动物的自然表达人口水平与环境相互作用的不同群体的环境的重要参数,然后调整账户获取表单模型符合实际的动物提取的方法。

包括任何食物或限制以外的空间限制,得到数据的支持。

考虑所涉及的各种数量的价值,收获数量和人口规模本身,为了设计一个数字量代表的整体价值收获。

找到一个收集政策的人口规模和时间优化的价值收获在很长一段时间。

检查政策优化价值在现实的环境条件。

1985年MCM B:战略储藏管理钴、不产生在美国,许多行业至关重要。

(国防占17%的钴生产。

1979年)钴大局部来自非洲中部,一个政治上不稳定的地区。

1946年的战略和关键材料储藏法案需要钴储藏,将美国政府通过一项为期三年的战争。

建立了库存在1950年代,出售大局部在1970年代初,然后决定在1970年代末建立起来,与8540万磅。

大约一半的库存目标的储藏已经在1982年收购了。

建立一个数学模型来管理储藏的战略金属钴。

你需要考虑这样的问题:库存应该有多大?以什么速度应该被收购?一个合理的代价是什么金属?你也要考虑这样的问题:什么时候库存应该画下来吗?以什么速度应该是画下来吗?在金属价格是合理出售什么?它应该如何分配?有用的信息在钴政府方案在2500万年需要2500万磅的钴。

美国大约有1亿磅的钴矿床。

生产变得经济可行当价格到达22美元/磅(如发生在1981年)。

要花四年滚动操作,和thsn六百万英镑每年可以生产。

1980年,120万磅的钴回收,总消费的7%。

1986 年美国大学生数学建模竞赛MCM 试题1986年MCM A:水文数据下表给出了Z的水深度尺外表点的直角坐标X,Y在码(14数据点表省略)。

深度测量在退潮。

你的船有一个五英尺的草案。

你应该防止什么地区的矩形(75200)X(-50、150)?1986年MCM B:Emergency-Facilities位置迄今为止,力拓的乡牧场没有自己的应急设施。

2014年美国大学生数学建模竞赛A题论文综述

2014年美国大学生数学建模竞赛A题论文综述

数学建模综述2014年美国大学生数学建模竞赛A题论文综述我们小组精读两篇14年美赛A题论文,选择了其中一篇来进行学习,总结。

1、问题分析The Keep-Right-Except-To-Pass Rule除非超车否则靠右行驶的交通规则问题:建立数学模型来分析这条规则在低负荷和高负荷状态下的交通路况的表现。

这条规则在提升车流量的方面是否有效?如果不是,提出能够提升车流量、安全系数或其他因素的替代品(包括完全没有这种规律)并加以分析。

在一些国家,汽车靠左形式是常态,探讨你的解决方案是否稍作修改即可适用,或者需要一些额外的需要。

最后,以上规则依赖于人的判断,如果相同规则的交通运输完全在智能系统的控制下,无论是部分网络还是嵌入使用的车辆的设计,在何种程度上会修改你前面的结果论文:基于元胞自动机和蒙特卡罗方法,我们建立一个模型来讨论“靠右行”规则的影响。

首先,我们打破汽车的运动过程和建立相应的子模型car-generation的流入模型,对于匀速行驶车辆,我们建立一个跟随模型,和超车模型。

然后我们设计规则来模拟车辆的运动模型。

我们进一步讨论我们的模型规则适应靠右的情况和,不受限制的情况, 和交通情况由智能控制系统的情况。

我们也设计一个道路的危险指数评价公式。

我们模拟双车道高速公路上交通(每个方向两个车道,一共四条车道),高速公路双向三车道(总共6车道)。

通过计算机和分析数据。

我们记录的平均速度,超车取代率、道路密度和危险指数和通过与不受规则限制的比较评估靠右行的性能。

我们利用不同的速度限制分析模型的敏感性和看到不同的限速的影响。

左手交通也进行了讨论。

根据我们的分析,我们提出一个新规则结合两个现有的规则(靠右的规则和无限制的规则)的智能系统来实现更好的的性能。

该论文在一开始并没有作过多分析,而是一针见血的提出了自己对于这个问题的做法。

由于题目给出的背景只有一条交通规则,而且是题目很明确的提出让我们建立模型分析。

2014美赛数学建模A题翻译

2014美赛数学建模A题翻译

在规定靠右侧驾驶的国家(比如美国、中国还有许多国家除了英国、澳大利亚和早期英国殖民国家),多车道高速公路通常规定驾驶员在最右侧的车道驾驶,除了要超过另一辆车的情况(此时,他们移动到左侧车道,超车,然后回到先前的驾驶车道。


建立并分析一个数学模型来分析这一规定在轻型(顺畅)和重型(拥挤)交通下的表现。

你可能需要权衡交通流量和交通安全,关于低于限速或超速驾驶部分(即限速过低或过高),还有其他没有在问题陈述中提到的方面。

这个规则能有效地提高车流量吗?如果没有,提出并分析可以提高车流量,交通安全,和其他你认为重要的因素的替代选项。

(也有可能包括完全没有规则这种情况)。

在规定靠左驾驶的国家,你的解决方案是否能够通过一个简单的方向改变来使用,还是有其他的要求。

最后,上述的规则是来自于人的判断。

如果在相同的道路上,运输车辆的完全受智能系统控制下(不管是道路网络或者是车辆对道路的使用设计)在多大程度上会改变你刚才的分析结果?。

美国数学建模竞赛1985-2013试题

美国数学建模竞赛1985-2013试题

1985~2013年美国大学生数学建模竞赛题目集锦目录1985 MCM A: Animal Populations (3)1985 MCM B: Strategic Reserve Management (3)1986 MCM A: Hydrographic Data (4)1986 MCM B: Emergency-Facilities Location (4)1987 MCM A: The Salt Storage Problem (5)1987 MCM B: Parking Lot Design (5)1988 MCM A: The Drug Runner Problem (5)1988 MCM B: Packing Railroad Flatcars (6)1989 MCM A: The Midge Classification Problem (6)1989 MCM B: Aircraft Queueing (6)1990 MCM A: The Brain-Drug Problem (6)1990 MCM B: Snowplow Routing (7)1991 MCM A: Water Tank Flow (8)1991 MCM B: The Steiner Tree Problem (8)1992 MCM A: Air-Traffic-Control Radar Power (8)1992 MCM B: Emergency Power Restoration (9)1993 MCM A: Optimal Composting (10)1993 MCM B: Coal-Tipple Operations (11)1994 MCM A: Concrete Slab Floors (11)1994 MCM B: Network Design (12)1995 MCM A: Helix Construction (13)1995 MCM B: Faculty Compensation (13)1996 MCM A: Submarine Tracking (13)1996 MCM B: Paper Judging (13)1997 MCM A: The Velociraptor Problem (14)1997 MCM B: Mix Well for Fruitful Discussions (15)1998 MCM A: MRI Scanners (16)1998 MCM B: Grade Inflation (17)1999 MCM A: Deep Impact (17)1999 MCM B: Unlawful Assembly (18)2000 MCM A: Air Traffic Control (18)2000 MCM B: Radio Channel Assignments (19)2001 MCM A: Choosing a Bicycle Wheel (20)2001 MCM B: Escaping a Hurricane's Wrath (An Ill Wind...). (21)2002 MCM A: Wind and Waterspray (23)2002 MCM B: Airline Overbooking (23)2003 MCM A: The Stunt Person (24)2003 MCM B: Gamma Knife Treatment Planning (24)2004 MCM A: Are Fingerprints Unique? (25)2004 MCM B: A Faster QuickPass System (25)2005 MCM A: Flood Planning (26)2005 MCM B: Tollbooths (26)2006 MCM A: Positioning and Moving Sprinkler Systems for Irrigation (27)2006 MCM B: Wheel Chair Access at Airports (28)2007 MCM A: Gerrymandering (29)2007 MCM B: The Airplane Seating Problem (29)2008 MCM A: Take a Bath (30)2008 MCM B: Creating Sudoku Puzzles (30)2009 MCM A: Designing a Traffic Circle (30)2009 MCM B: Energy and the Cell Phone (30)2010 MCM A: The Sweet Spot (32)2010 MCM B: Criminology (32)2011 MCM A: Snowboard Course (33)2011 MCM B: Repeater Coordination (33)2012 MCM A: The Leaves of a Tree (33)2012 MCM B: Camping along the Big Long River (34)2013 MCM A: The Ultimate Brownie Pan (34)2013 MCM B: Water, Water, Everywhere (35)1985 MCM A: Animal PopulationsChoose a fish or mammal for which appropriate data are available to model it accurately. Model the animal's natural interactions with its environment by expressing population levels of different groups in terms of the significant parameters of the environment. Then adjust the model to account for harvesting in a form consistent with the actual method by which the animal is harvested. Include any outside constraints imposed by food or space limitations that are supported by the data.Consider the value of the various quantities involved, the number harvested, and the population size itself, in order to devise a numerical quantity that represents the overall value of the harvest. Find a harvesting policy in terms of population size and time that optimizes the value of the harvest over a long period of time. Check that the policy optimizes that value over a realistic range of environmental conditions.1985 MCM B: Strategic Reserve ManagementCobalt, which is not produced in the US, is essential to a number of industries. (Defense accounted for 17% of the cobalt production in 1979.) Most cobalt comes from central Africa, a politically unstable region. The Strategic and Critical Materials Stockpiling Act of 1946 requires a cobalt reserve that will carry the US through a three-year war. The government built up a stockpile in the 1950s, sold most of it off in the early 1970s, and then decided to build it up again in the late 1970s, with a stockpile goal of 85.4 million pounds. About half of this stockpile had been acquired by 1982.Build a mathematical model for managing a stockpile of the strategic metal cobalt. You will need to consider such questions as:▪How big should the stockpile be?▪At what rate should it be acquired?▪What is a reasonable price to pay for the metal?You will also want to consider such questions as:▪At what point should the stockpile be drawn down?▪At what rate should it be drawn down?▪At what price is it reasonable to sell the metal?▪How should it be allocated?Useful Information on CobaltThe government has projected a need ot 25 million pounds of cobalt in 1985.The U.S. has about 100 million pounds of proven cobalt deposits. Production becomes economically feasible when the price reaches $22/lb (as occurred in 1981). It takes four years to get operations rolling, and thsn six million pounds per year can be produced.In 1980, 1.2 million pounds of cobalt were recycled, 7% of total consumption.1986 MCM A: Hydrographic DataThe table below gives the depth Z of water in feet for surface points with rectangular coordinates X, Y in yards [table of 14 data points omitted]. The depth measurements were taken at low tide. Your ship has a draft of five feet. What region should you avoid within the rectangle (75,200) x (-50, 150)?1986 MCM B: Emergency-Facilities LocationThe township of Rio Rancho has hitherto not had its own emergency facilities. It has secured funds to erect two emergency facilities in 1986, each of which will combine ambulance, fire, and police services. Figure 1 indicates the demand [figure omitted], or number of emergencies per square block, for 1985. The ―L‖ region in the north is an obstacle, while the rectangle in the south is a part with shallow pond. It takes an emergency vehicle an average of 15 seconds to go one block in the N-S direction and 20 seconds in the E-W direction. Your task is to locate the two facilities so as to minimize the total response time.Assume that the demand is concentrated at the center of the block and that the facilities will be located on corners.▪Assume that the demand is uniformly distributed on the streets bordering each block and that the facilities may be located anywhere on the streets.1987 MCM A: The Salt Storage ProblemFor approximately 15 years, a Midwestern state has stored salt used on roads in the winter in circular domes. Figure 1 shows how salt has been stored in the past. The salt is brought into and removed from the domes by driving front-end loaders up ramps of salt leading into the domes. The salt is piled 25 to 30 ft high, using the buckets on the front-end loaders.Recently, a panel determined that this practice is unsafe. If the front-end loader gets too close to the edge of the salt pile, the salt might shift, and the loader could be thrown against the retaining walls that reinforce the dome. The panel recommended that if the salt is to be piled with the use of the loaders, then the piles should be restricted to a matimum height of 15 ft.Construct a mathematical model for this situation and find a recommended maximum height for salt in the domes.1987 MCM B: Parking Lot DesignThe owner of a paved, 100' by 200' , corner parking lot in a New England town hires you to design the layout, that is, to design how the ``lines are to be painted. You realize that squeezing as many cars into the lot as possible leads to right-angle parking with the cars aligned side by side. However, inexperienced drivers have difficulty parking their cars this way, which can give rise to expensive insurance claims. To reduce the likelihood of damage to parked vehicles, the owner might then have to hire expert drivers for ``valet parking. On the other hand, most drivers seem to have little difficulty in parking in one attempt if there is a large enough ``turning radius'' from the access lane. Of course, the wider the access lane, the fewer cars can be accommodated in the lot, leading to less revenue for the parking lot owner.1988 MCM A: The Drug Runner ProblemTwo listening posts 5.43 miles apart pick up a brief radio signal. The sensing devices were oriented at 110 degrees and 119 degrees, respectively, when the signal was detected; and they are accurate to within 2 degrees. The signal came from a region of active drug exchange, and it is inferred that there is a powerboat waiting for someone to pick up drugs. it is dusk, the weather is calm, and there are no currents. A small helicopter leaves from Post 1 and is able to fly accurately along the 110 degree angle direction. The helicopter's speed is three times the speed of the boat. The helicopter will be heard when it gets within 500 ft of the boat. This helicopter has only one detection device, a searchlight. At 200 ft, it can just illuminate a circular region with a radius of 25 ft.▪Develop an optimal search method for the helicopter.▪Use a 95% confidence level in your calculations.1988 MCM B: Packing Railroad FlatcarsTwo railroad flatcars are to be loaded with seven types of packing crates. The crates have the same width and height but varying thickness (t, in cm) and weight (w, in kg). Table 1 gives, for each crate, the thickness, weight, and number available [table omitted]. Each car has 10.2 meters of length available for packing the crates (like slices of toast) and can carry up to 40 metric tons. There is a special constraint on the total number of C_5, C_6, and C_7 crates because of a subsequent local trucking restriction: The total space (thickness) occupied by these crates must not exceed 302.7 cm. Load the two flatcars (see Figure 1) so as to minimize the wasted floor space [figure omitted].1989 MCM A: The Midge Classification ProblemTwo species of midges, Af and Apf, have been identified by biologists Grogan and Wirth on the basis of antenna and wing length (see Figure 1). It is important to be able to classify a specimen as Af of Apf, given the antenna and wing length.1. Given a midge that you know is species Af or Apf, how would you go about classifying it?2. Apply your method to three specimens with (antenna, wing) lengths(1.24,1.80),(1.28,1.84),(1.40,2.04).3. Assume that the species is a valuable pollinator and species Apf is a carrier of adebilitating disease. Would you modify your classification scheme and if so, how?1989 MCM B: Aircraft QueueingA common procedure at airports is to assign aircraft (A/C) to runways on a first-come-first-served basis. That is, as soon as an A/C is ready to leave the gate (―push-back‖), the pilot calls ground control and is added to the queue. Suppose that a control tower has access to a fast online database with the following information for each A/C:▪the time it is scheduled for pushback;▪the time it actually pushes back; the number of passengers who are scheduled to make a connection at the next stop, as well as the time to make that connection; and▪the schedule time of arrival at its next stop Assume that there are seven types of A/C with passenger capacities varying from 100 to 400 in steps of 50. Develop and analyze amathematical model that takes into account both the travelers' and airlines' satisfaction.1990 MCM A: The Brain-Drug ProblemResearches on brain disorders test the effects of the new medical drugs – for example, dopamine against Parkinson's disease – with intracerebral injections. To this end, they must estimate the size and the sape of the spatial distribution of the drug after the injection, in order to estimate accurately the region of the brain that the drug has affected.The research data consist of the measurements of the amounts of drug in each of 50 cylindrical tissue samples (see Figure 1 and Table 1). Each cylinder has length 0.76 mm and diameter 0.66 mm. The centers of the parallel cylinders lie on a grid with mesh 1mm X 0.76mm X 1mm, so that the sylinders touch one another on their circular bases but not along their sides, as shown in the accompanying figure. The injection was made near the center of the cylinder with the highest scintillation count. Naturally, one expects that there is a drug also between the cylinders and outside the region covered by the samples.Estimate the distribution in the region affected by the drug.One unit represents a scintillation count, or 4.753e-13 mole of dopamine. For example, the table shows that the middle rear sylinder contails 28353 units.Table 1. Amounts of drug in each of 50 cylindrical tissue samples.Rear vertical sectionFront vertical section1990 MCM B: Snowplow RoutingThe solid lines of the map (see Figure 1) represent paved two-lane county roads in a snow removal district in Wicomico County, Maryland [figure omitted]. The broken lines are state highways. After a snowfall, two plow-trucks are dispatched from a garage that is about 4 miles west of each of the two points (*) marked on the map. Find an efficient way to use the two trucks to sweep snow from the county roads. The trucks may use the state highways to access the county roads. Assume that the trucks neither break down nor get stuck and that the road intersections require no special plowing techniques.1991 MCM A: Water Tank FlowSome state water-right agencies require from communities data on the rate of water use, in gallons per hour, and the total amount of water used each day. Many communities do not have equipment to measure the flow of water in or out of the municipal tank. Instead, they can measure only the level of water in the tank, within 0.5% accuracy, every hour. More importantly, whenever the level in the tank drops below some minimum level L, a pump fills the tank up to the maximum level, H; however, there is no measurement of the pump flow either. Thus, one cannot readily relate the level in the tank to the amount of water used while the pump is working, which occurs once or twice per day, for a couple of hours each time. Estimate the flow out of the tank f(t) at all times, even when the pump is working, and estimate the total amount of water used during the day. Table 1 gives real data, from an actual small town, for one day[ table omitted]. The table gives the time, in, since the first measurement, and the level of water in the tank, in hundredths of a foot. For example, after 3316 seconds, the depth of water in the tank reached 31.10 feet. The tank is a vertical circular cylinder, with a height of 40 feet and a diameter of 57 feet. Usually, the pump starts filling the tank when the level drops to about 27.00 feet, and the pump stops when the level rises back to about 35.50 feet.1991 MCM B: The Steiner Tree ProblemThe cost for a communication line between two stations is proportional to the length of the line. The cost for conventional minimal spanning trees of a set of stations can often be cut by introducing―phantom‖ stations and then constructing a new Steiner tree. This device allows costs to be cut by up to 13.4% (= 1- sqrt(3/4)). Moreover, a network with n stations never requires more than n-2 points to construct the cheapest Steiner tree. Two simple cases are shown in Figure 1.For local networks, it often is necessary to use rectilinear or ―checker-board‖ distances, instead of straight Euclidean lines. Distances in this metric are computed as shown in Figure 2.Suppose you wish to design a minimum costs spanning tree for a local network with 9 stations. Their rectangular coordinates are: a(0,15), b(5,20), c(16,24), d(20,20), e(33,25), f(23,11), g(35,7), h(25,0) i(10,3). You are restricted to using rectilinear lines. Moreover, all ―phantom‖ stations must be located at lattice points (i.e., the coordinates must be integers). The cost for each line is its length.1. Find a minimal cost tree for the network.2. Suppose each stations has a cost w*d^(3/2), where d=degree of the station. If w=1.2, find aminimal cost tree.3. Try to generalize this problem1992 MCM A: Air-Traffic-Control Radar PowerYou are to determine the power to be radiated by an air-traffic-control radar at a major metropolitan airport. The airport authority wants to minimize the power of the radar consistent with safety andcost. The authority is constrained to operate with its existing antennae and receiver circuitry. The only option that they are considering is upgrading the transmitter circuits to make the radar more powerful. The question that you are to answer is what power (in watts) must be released by the radar to ensure detection of standard passenger aircraft at a distance of 100 kilometers.1992 MCM B: Emergency Power RestorationPower companies serving coastal regions must have emergency response systems for power outages due to storms. Such systems require the input of data that allow the time and cost required for restoration to be estimated and the ―value‖ of the outage judged by objective criteria. In the past, Hypothetical Electric Company (HECO) has been criticized in the media for its lack of a prioritization scheme.You are a consultant to HECO power company. HECO possesses a computerized database with real time access to service calls that currently require the following information:▪time of report,▪type of requestor,▪estimated number of people affected, and▪location (x,y).Cre sites are located at coordinates (0,0) and (40,40), where x and y are in miles. The region serviced by HECO is within -65 < x < 60 and -50 < y < 50. The region is largely metropolitan with an excellent road network. Crews must return to their dispatch site only at the beginning and end of shift. Company policy requires that no work be initiated until the storm leaves the area, unless the facility is a commuter railroad or hospital, which may be processed immediately if crews are available.HECO has hired you to develop the objective criteria and schedule the work for the storm restoration requirements listed in Table 1 using their work force described in Table 2. Note that the first call was received at 4:20 A.M. and that the storm left the area at 6:00 A.M. Also note that many outages were not reported until much later in the day.HECO has asked for a technical report for their purposes and an ―executive summary‖ i n laymen's terms that can be presented to the media. Further, they would like recommendations for the future. To determine your prioritized scheduling system, you will have to make additional assumptions. Detail those assumptions. In the future, you may desire additional data. If so, detail the information desired.Table 1. Storm restoration requirements. (table incomplete)Table 2. Crew descriptions.1993 MCM A: Optimal CompostingAn environmentally conscious institutional cafeteria is recycling customers' uneaten food into compost by means of microorganisms. Each day, the cafeteria blends the leftover food into a slurry, mixes the slurry with crisp salad wastes from the kitchen and a small amount of shredded newspaper, and feeds the resulting mixture to a culture of fungi and soil bacteria, which digest slurry, greens, and papers into usable compost. The crisp green provide pockets of oxygen for the fungi culture, and the paper absorbs excess humidity. At times, however, the fungi culture is unable or unwilling to digest as much of the leftovers as customers leave; the cafeteria does not blame the chef for the fungi culture's lack of appetite. Also, the cafeteria has received offers for the purchase of large quantities of it compost. Therefore, the cafeteria is investigating ways to increase its production of compost. Since it cannot yet afford to build a new composting facility, the cafeteria seeks methods to accelerate the fungi culture's activity, for instance, by optimizing the fungiculture's environment (currently held at about 120 F and 100% humidity), or by optimizing the composition of the moisture fed to the fungi culture, or both.Determine whether any relation exists between the proportions of slurry, greens, and paper in the mixture fed to the fungi culture, and the rate at which the fungi culture composts the mixture. if no relation exists, state so. otherwise, determine what proportions would accelerate the fungi culture's activity. In addition to the technical report following the format prescribed in the contest instructions, provide a one-page nontechnical recommendation for implementation for the cafeteria manager. Table 1 shows the composition of various mixtures in pounds of each ingredient kept in separate bins, and the time that it took the fungi to culture to compost the mixtures, from the date fed to the date completely composted [table omitted].1993 MCM B: Coal-Tipple OperationsThe Aspen-Boulder Coal Company runs a loading facility consisting of a large coal tipple. When the coal trains arrive, they are loaded from the tipple. The standard coal train takes 3 hours to load, and the tipple's capacity is 1.5 standard trainloads of coal. Each day, the railroad sends three standard trains to the loading facility, and they arrive at any time between 5 A.M. and 8 P.M. local time. Each of the trains has three engines. If a train arrives and sits idle while waiting to be loaded, the railroad charges a special fee, called a demurrage. The fee is $5,000 per engine per hour. In addition, a high-capacity train arrives once a week every Thursday between 11 A.M. and 1 P.M. This special train has five engines and holds twice as much coal as a standard train. An empty tipple can be loaded directly from the mine to its capacity in six hours by a single loading crew. This crew (and its associated equipment) cost $9,000 per hour. A second crew can be called out to increase the loading rate by conducting an additional tipple-loading operation at the cost of $12,000 per hour. Because of safety requirements, during tipple loading no trains can be loaded. Whenever train loading is interrupted to load the tipple, demurrage charges are in effect.The management of the Coal Company has asked you to determine the expected annual costs of this tipple's loading operations. Your analysis should include the following considerations:▪How often should the second crew be called out?▪What are the expected monthly demurrage costs?▪If the standard trains could be scheduled to arrive at precise times, what daily schedule would minimize loading costs? Would a third tipple-loading crew at $12,000 per hour reduce annual operations costs?▪Can this tipple support a fourth standard train every day?1994 MCM A: Concrete Slab FloorsThe U.S. Dept. of Housing and Urban Development (HUD) is considering constructing dwellings of various sizes, ranging from individual houses to large apartment complexes. A principal concern is to minimize recurring costs to occupants, especially the costs of heating and cooling. The region inwhich the construction is to take place is temperate, with a moderate variation in temperature throughout the year.Through special construction techniques, HUD engineers can build dwellings that do not need to rely on convection- that is, there is no need to rely on opening doors or windows to assist in temperature variation. The dwellings will be single-story, with concrete slab floors as the only foundation. You have been hired as a consultant to analyze the temperature variation in the concrete slab floor to determine if the temperature averaged over the floor surface can be maintained within a prescribed comfort zone throughout the year. If so, what size/shape of slabs will permit this?Part 1, Floor Temperature: Consider the temperature variation in a concrete slab given that the ambient temperature varies daily within the ranges given Table 1. Assume that the high occurs at noon and the low at midnight. Determine if slabs can be designed to maintain a temperature averaged over the floor surface within the prescribed comfort zone considering radiation only. Initially, assume that the heat transfer into the dwelling is through the exposed perimeter of the slab and that the top and bottom of the slabs are insulated. Comment on the appropriateness and sensitivity of these assumptions. If you cannot find a solution that satisfies Table 1, can you find designs that satisfy a Table 1 that you propose?Part 2, Building Temperature: Analyze the practicality of the initial assumptions and extend the analysis to temperature variation within the single-story dwelling. Can the house be kept within the comfort zone?Part 3, Cost of Construction: Suggest a design that considers HUD's objective of reducing or eliminating heating and cooling costs, considering construction restrictions and costs.1994 MCM B: Network DesignIn your company, information is shared among departments on a daily basis. This information includes the previous day's sales statistics and current production guidance. It is important to get this information out as quickly as possible. [Network diagram (with 5 nodes and 7 capacitated edges) omitted.]We are interested in scheduling transfers in an optimal way to minimize the total time it takes to complete them all. This minimum total time is called the makespan. Consider the three following situations for your company: [Three more network diagrams (on roughly 20 nodes each) omitted.]1995 MCM A: Helix ConstructionA small biotechnological company must design, prove, program and test a mathematical algorithm to locate ―in real time‖ all the intersections of a helix and a plane in general positions in space. Design, justify, program and test a method to compute all the intersections of a plane and a helix, both in general positions (at any locations and with any orientations) in space. A segment of the helix may represent, for example, a helicoidal suspension spring or a piece of tubing in a chemical or medical apparatus. Theoretical justification of the proposed algorithm is necessary to verify the solution from several points of view, for instance, through mathematical proofs of parts of the algorithm, and through tests of the final program with known examples. Such documentation and tests will be required by government agencies for medical use.1995 MCM B: Faculty CompensationAluacha Balaclava College, and undergraduate facility, has just hired a new Provost whose first priority is the institution of a fair and reasonable faculty-compensation plan. She has hired your consulting team to design a compensation system that reflects the following circumstances and principles: [Three paragraphs of details omitted] Design a new pay system, first withoutcost-of-living increases. Incorporate cost-of-living increases, and then finally, design a transition process for current faculty that will move all salaries towards your system without reducing anyone's salary. The Provost requires a detailed compensation system plan for implementation, as well as a brief, clear, executive summary outlining the model, its assumptions, strengths, weaknesses and expected results, which she can present to the Board and faculty. [A detailed table of current salaries is omitted.]1996 MCM A: Submarine TrackingThe world's oceans contain an ambient noise field. Seismic disturbances, surface shipping, and marine mammals are sources that, in different frequency ranges, contribute to this field. We wish to consider how this ambient noise might be used to detect large maving objects, e.g., submarines located below the ocean surface. Assuming that a submarine makes no intrinsic noise, develop a method for detecting the presence of a moving submarine, its speed, its size, and its direction of travel, using only information obtained by measuring changes to the ambient noise field. Begin with noise at one fixed frequency and amplitude.1996 MCM B: Paper JudgingWhen determining the winner of a competition like the Mathematical Contest in Modeling, there are generally a large number of papers to judge. Let's say there are P=100 papers. A group of J judges is collected to accomplish the judging. Funding for the contest contrains both the number of judges that can be obtained and the amount of time they can judge. For example if P=100, then J=8 is typical.。

历届美国数学建模竞赛赛题(汉语版)

历届美国数学建模竞赛赛题(汉语版)

历届美国数学建模竞赛赛题, 1985-2006AMCM1985问题-A 动物群体的管理AMCM1985问题-B 战购物资储备的管理AMCM1986问题-A 水道测量数据AMCM1986问题-B 应急设施的位置AMCM1987问题-A 盐的存贮AMCM1987问题-B 停车场AMCM1988问题-A 确定毒品走私船的位置AMCM1988问题-B 两辆铁路平板车的装货问题AMCM1989问题-A 蠓的分类AMCM1989问题-B 飞机排队AMCM1990问题-A 药物在脑内的分布AMCM1990问题-B 扫雪问题AMCM1991问题-A 估计水塔的水流量AMCM1992问题-A 空中交通控制雷达的功率问题AMCM1992问题-B 应急电力修复系统的修复计划AMCM1993问题-A 加速餐厅剩菜堆肥的生成AMCM1993问题-B 倒煤台的操作方案AMCM1994问题-A 住宅的保温AMCM1994问题-B 计算机网络的最短传输时间AMCM1995问题-A 单一螺旋线AMCM1995问题-B A1uacha Balaclava学院AMCM1996问题-A 噪音场中潜艇的探测AMCM1996问题-B 竞赛评判问题AMCM1997问题-A Velociraptor(疾走龙属)问题AMCM1997问题-B为取得富有成果的讨论怎样搭配与会成员AMCM1998问题-A 磁共振成像扫描仪AMCM1998问题-B 成绩给分的通胀AMCM1999问题-A 大碰撞AMCM1999问题-B “非法”聚会AMCM1999问题- C 大地污染AMCM2000问题-A空间交通管制AMCM2000问题-B: 无线电信道分配AMCM2000问题-C:大象群落的兴衰AMCM2001问题- A: 选择自行车车轮AMCM2001问题-B:逃避飓风怒吼(一场恶风…)AMCM2001问题-C我们的水系-不确定的前景AMCM2002问题-A风和喷水池AMCM2002问题-B航空公司超员订票AMCM2002问题-C蜥蜴问题AMCM2003问题-A: 特技演员AMCM2003问题-C航空行李的扫描对策AMCM2004问题-A:指纹是独一无二的吗?AMCM2004问题-B:更快的快通系统AMCM2004问题-C:安全与否?AMCM2005问题-A:.水灾计划AMCM2005问题-B:TollboothsAMCM2005问题-C:.Nonrenewable ResourcesAMCM2006问题-A:用于灌溉的自动洒水器的安置和移动调度AMCM2006问题-B:通过机场的轮椅AMCM2006问题-C:在与HIV/爱滋病的战斗中的交易AMCM85问题-A 动物群体的管理在一个资源有限,即有限的食物、空间、水等等的环境里发现天然存在的动物群体。

美赛习题答案

美赛习题答案

美赛习题答案美赛习题答案在数学建模领域,美国大学生数学建模竞赛(MCM)是一项备受关注的赛事。

每年,来自全球各地的大学生们都会参与其中,挑战各种实际问题并提出解决方案。

这项竞赛不仅考察了参赛者的数学水平,更重要的是培养了他们的团队合作和创新思维能力。

本文将探讨一些典型的美赛习题,并给出相应的解答。

第一题是关于城市交通流量的问题。

题目给出了一个城市的道路网络图,要求我们计算出每条道路的平均交通量。

首先,我们可以通过收集实际交通数据来估计每条道路上的车辆数量。

然后,根据道路的长度和车辆数量,我们可以计算出每条道路的平均交通量。

最后,将结果绘制成热力图,可以清晰地显示出城市交通的拥堵情况。

第二题是关于电力系统的问题。

题目给出了一个电力系统的拓扑结构图,要求我们设计一种最优的电力传输方案,以最大化系统的可靠性和效率。

首先,我们可以使用图论的方法对电力系统进行建模,并计算出各个节点之间的电力传输路径。

然后,根据节点之间的电力传输损耗和供电能力,我们可以通过线性规划等数学方法得到最优的电力传输方案。

最后,我们可以通过模拟实验来验证我们的方案,并对其进行优化。

第三题是关于航空公司的问题。

题目给出了一家航空公司的航班数据,要求我们设计一种最优的航班调度方案,以最大化公司的利润和乘客满意度。

首先,我们可以使用图论的方法对航班网络进行建模,并计算出各个航班之间的飞行时间和成本。

然后,根据乘客的需求和航班的运营成本,我们可以通过线性规划等数学方法得到最优的航班调度方案。

最后,我们可以通过模拟实验来验证我们的方案,并对其进行优化。

以上只是美赛习题中的几个例子,实际上还有许多其他有趣的问题,涉及到经济、环境、医疗等领域。

解决这些问题需要我们具备扎实的数学基础和创新的思维能力。

在解题过程中,我们需要灵活运用数学模型和工具,结合实际情况进行分析和判断。

同时,团队合作也是解决问题的关键,每个人都应发挥自己的优势,共同努力达到最佳的解决方案。

数学建模美国赛历年试题

历年美国大学生数学建模赛题目录MCM85问题-A 动物群体的管理 (3)MCM85问题-B 战购物资储备的管理 (3)MCM86问题-A 水道测量数据 (4)MCM86问题-B 应急设施的位置 (4)MCM87问题-A 盐的存贮 (4)MCM87问题-B 停车场 (5)MCM88问题-A 确定毒品走私船的位置 (5)MCM88问题-B 两辆铁路平板车的装货问题 (5)MCM89问题-A 蠓的分类 (5)MCM89问题-B 飞机排队 (6)MCM90-A 药物在脑内的分布 (6)MCM90问题-B 扫雪问题 (6)MCM91问题-B 通讯网络的极小生成树 (6)MCM 91问题-A 估计水塔的水流量 (7)MCM92问题-A 空中交通控制雷达的功率问题 (7)MCM 92问题-B 应急电力修复系统的修复计划 (7)MCM93问题-A 加速餐厅剩菜堆肥的生成 (7)MCM93问题-B 倒煤台的操作方案 (8)MCM94问题-A 住宅的保温 (8)MCM 94问题-B 计算机网络的最短传输时间 (9)MCM-95问题-A 单一螺旋线 (9)MCM95题-B A1uacha Balaclava学院 (10)MCM96问题-A 噪音场中潜艇的探测 (10)MCM96问题-B 竞赛评判问题 (10)MCM97问题-A Velociraptor(疾走龙属)问题 (11)MCM97问题-B为取得富有成果的讨论怎样搭配与会成员 (11)MCM98问题-A 磁共振成像扫描仪 (12)MCM98问题-B 成绩给分的通胀 (13)MCM99问题-A 大碰撞 (13)MCM99问题-B “非法”聚会 (13)MCM2000问题-A空间交通管制 (13)MCM2000问题-B: 无线电信道分配 (14)MCM2001问题- A: 选择自行车车轮 (14)MCM2001问题-B 逃避飓风怒吼(一场恶风...) .. (15)MCM2001问题-C我们的水系-不确定的前景 (15)MCM2002问题-A风和喷水池 (15)MCM2002问题-B航空公司超员订票 (16)MCM2002问题-C (16)MCM2003问题-A: 特技演员 (17)MCM2003问题-B: Gamma刀治疗方案 (18)MCM2003问题-C航空行李的扫描对策 (18)MCM2004问题-A:指纹是独一无二的吗? (18)MCM2004问题-B:更快的快通系统 (18)MCM2004问题-C安全与否? (19)MCM2005问题A.水灾计划 (19)MCM2005B.Tollbooths (19)MCM2005问题C:不可再生的资源 (20)MCM2006问题A: 用于灌溉的自动洒水器的安置和移动调度 (20)MCM2006问题B: 通过机场的轮椅 (20)MCM2006问题C : 抗击艾滋病的协调 (21)MCM2008问题A:给大陆洗个澡 (23)MCM2008问题B:建立数独拼图游戏 (23)MCM85问题-A 动物群体的管理在一个资源有限,即有限的食物、空间、水等等的环境里发现天然存在的动物群体。

美国数学建模比赛历年试题Word 文档

2003 MCM ProblemsPROBLEM A: The Stunt PersonAn exciting action scene in a movie is going to be filmed, and you are the stunt coordinator! A stunt person on a motorcycle will jump over an elephant and land in a pile of cardboard boxes to cushion their fall. You need to protect the stunt person, and also use relatively few cardboard boxes (lower cost, not seen by camera, etc.).Your job is to:•determine what size boxes to use•determine how many boxes to use•determine how the boxes will be stacked•determine if any modifications to the boxes would help•generalize to different combined weights (stunt person & motorcycle) and different jump heightsNote that, in "Tomorrow Never Dies", the James Bond character on a motorcycle jumps over a helicopter.PROBLEM B: Gamma Knife Treatment PlanningStereotactic radiosurgery delivers a single high dose of ionizing radiation to a radiographically well-defined, small intracranial 3D brain tumor without delivering any significant fraction of the prescribed dose to the surrounding brain tissue. Three modalities are commonly used in this area; they are the gamma knife unit, heavy charged particle beams, and external high-energy photon beams from linear accelerators.The gamma knife unit delivers a single high dose of ionizing radiation emanating from 201 cobalt-60 unit sources through a heavy helmet. All 201 beams simultaneously intersect at the isocenter, resulting in a spherical (approximately) dose distribution at the effective dose levels. Irradiating the isocenter to deliver dose is termed a “shot.” Shots can be represented as different spheres. Four interchangeable outer collimator helmets with beam channel diameters of 4, 8, 14, and 18 mm are available for irradiating different size volumes. For a target volume larger than one shot, multiple shots can be used to cover the entire target. In practice, most target volumes are treated with 1 to 15 shots. The target volume is a bounded, three-dimensional digital image that usually consists of millions of points.The goal of radiosurgery is to deplete tumor cells while preserving normal structures.Since there are physical limitations and biological uncertainties involved in this therapy process, a treatment plan needs to account for all those limitations and uncertainties. In general, an optimal treatment plan is designed to meet the following requirements.1.Minimize the dose gradient across the target volume.2.Match specified isodose contours to the target volumes.3.Match specified dose-volume constraints of the target and critical organ.4.Minimize the integral dose to the entire volume of normal tissues or organs.5.Constrain dose to specified normal tissue points below tolerance doses.6.Minimize the maximum dose to critical volumes.In gamma unit treatment planning, we have the following constraints:1.Prohibit shots from protruding outside the target.2.Prohibit shots from overlapping (to avoid hot spots).3.Cover the target volume with effective dosage as much as possible. But at least90% of the target volume must be covered by shots.e as few shots as possible.Your tasks are to formulate the optimal treatment planning for a gamma knife unit as a sphere-packing problem, and propose an algorithm to find a solution. While designing your algorithm, you must keep in mind that your algorithm must be reasonably efficient.2002 Contest ProblemsProblem AAuthors: Tjalling YpmaTitle: Wind and WatersprayAn ornamental fountain in a large open plaza surrounded by buildings squirts water high into the air. On gusty days, the wind blows spray from the fountain onto passersby. The water-flow from the fountain is controlled by a mechanism linked to an anemometer (which measures wind speed and direction) located on top of an adjacent building. The objective of this control is to provide passersby with an acceptable balance between an attractive spectacle and a soaking: The harder the wind blows, the lower the water volume and height to which the water is squirted, hence the less spray falls outside the pool area.Your task is to devise an algorithm which uses data provided by the anemometer to adjust the water-flow from the fountain as the wind conditions change.Problem BAuthors: Bill Fox and Rich WestTitle: Airline OverbookingYou're all packed and ready to go on a trip to visit your best friend in New York City. After you check in at the ticket counter, the airline clerk announces that your flight has been overbooked. Passengers need to check in immediately to determine if they still have a seat.Historically, airlines know that only a certain percentage of passengers who have made reservations on a particular flight will actually take that flight. Consequently, most airlines overbook-that is, they take more reservations than the capacity of the aircraft. Occasionally, more passengers will want to take a flight than the capacity of the plane leading to one or more passengers being bumped and thus unable to take the flight for which they had reservations.Airlines deal with bumped passengers in various ways. Some are given nothing, some are booked on later flights on other airlines, and some are given some kind of cash or airline ticket incentive.Consider the overbooking issue in light of the current situation:Less flights by airlines from point A to point BHeightened security at and around airportsPassengers' fearLoss of billions of dollars in revenue by airlines to dateBuild a mathematical model that examines the effects that different overbooking schemes have on the revenue received by an airline company in order to find an optimal overbooking strategy, i.e., the number of people by which an airline should overbook a particular flight so that the company's revenue is maximized. Insure that your model reflects the issues above, and consider alternatives for handling "bumped" passengers. Additionally, write a short memorandum to the airline's CEO summarizing your findings and analysis.MCM2000Problem A Air traffic ControlTo improve safety and reduce air traffic controller workload, the Federal Aviation Agency (FAA) is considering adding software to the air traffic control system that would automatically detect potential aircraft flight path conflicts and alert the controller. To that end, an analyst at the FAA r traffic control system that would automatically detect potential aircraft flight path conflicts and alert the controller. To that end, an analyst at the FAA has posed the following problemsRequirement A: Given two airplanes flying in space, when should the air traffic controller ld the air traffic controller consider the objects to be too close and to require intervention?Requirement B: An airspace sector is the section of three-dimensional airspace that one air traffic controller controls. Given any airspace sector, how we measure how complex it is from an air traffic workload perspective? To what extent is complexity determined by the number of we measure how complex it is from an air traffic workload perspective? To what extent is complexity determined by the number of aircraft simultaneously passing through that sector (1) at any one instant? (2) During any given interval of time? (3) During particular time of day? How does the number of potential conflicts arising during those periods affect complexity?Does the presence of additional software tools to automatically predict conflicts and alert the controller reduce or add to this complexity?In addition to the guidelines for your report, write a summary (no more than two pages) that the FAA analyst can present to Jane Garvey, the FAA Administrator, to defend your conclusionsProblem B Radio Channel AssignmentsWe seek to model the assignment of radio channels to a symmetric network of transmitter locations over a large planar area, so as to avoid interference. One basic approach is to partition the region into regular hexagons in a grid (honeycomb-style), as shown in Figure 1, where a transmitter is located at the center of each hexagon.An interval of the frequency spectrum is to be allotted for transmitter frequencies. The interval will be divided into regularly spaced channels, which we represent by integers 1, 2, 3, ... . Each transmitter will be assigned one positive integer channel. The same channel can be used at many locations, provided that interference from nearby transmitters is avoided. Our goal is to minimize the width of the interval in the frequency spectrum that is needed to assign channels subject to some constraints. This is achieved with the concept of a span. The span is the minimum, over all assignments satisfying the constraints, of the largest channel used at any location. It is not required that every channel smaller than the span be used in an assignment that attains the span.Let s be the length of a side of one of the hexagons. We concentrate on the case that there are two levels of interferenceRequirement A: There are several constraints on frequency assignments. First, no two transmitters within distance of each other can be given the same channel. Second, due to spectral spreading, transmitters within distance 2s of each other must not be given the same or adjacent channels: Their channels must differ by at least 2. Under these constraints, what can we say about the span in,Requirement B: Repeat Requirement A, assuming the grid in the example spreads arbitrarily far in all directions.Requirement C: Repeat Requirements A and B, except assume now more generally that channels for transmitters within distance differ by at least some given integer k, while those at distance at most must still differ by at least one. What can we say about the span and about efficient strategies for designing assignments, as a function of k?Requirement D: Consider generalizations of the problem, such as several levels of interference or irregular transmitter placements. What other factors may be important to consider?Requirement E: Write an article (no more than 2 pages) for the local newspaper explaining your findingsMCM2000问题A 空间交通管制为加强安全并减少空中交通指挥员的工作量,联邦航空局(FAA)考虑对空中交通管制系统添加软件,以便自动探测飞行器飞行路线可能的冲突,并提醒指挥员。

美国大学生数学建模竞赛试题AB题中文

A 题热水澡一个人进入浴缸洗澡放松。

浴缸的热水由一个水龙头放出。

然而浴缸不是一个可以水疗泡澡的缸,没有辅助加热系统和循环喷头,仅仅就是一个简单的盛水容器。

过一会,水温就会显著下降。

因此必须从热水龙头里面反复放水以加热水温。

浴缸的设计就是当水达到浴缸的最大容量,多余的水就会通过一个溢流口流出。

做一个有关浴缸水温的模型,从时间和地点两个方面来确定在浴缸中泡澡的人能采用的最佳策略,从而泡澡过程中能保持水温并在不浪费太多水的情况下使水温尽量接近最初的水温。

用你的模型来确定你的策略多大程度上依赖于浴缸的形状和容量,浴缸中的人的体型/体重/体温,以及这个人在浴缸中做出的动作。

如果这个人在最开始放水的时候加入了泡泡浴添加剂,这将会对你的模型结果有什么影响?要求提交一页MCM的总结,此外你的报告必须包括一页给浴缸用户看的非技术性的解释,其中描述了你的策略并解释了在泡澡过程中为什么保持平均的水温会非常困难。

B题太空垃圾地球轨道周围的小碎片的数量受到越来越多的关注。

据估计,目前大约有超过50万片太空碎片被视为是宇宙飞行器的潜在威胁并受到跟踪,这些碎片也叫轨道碎片。

2009年2月10号俄罗斯卫星科斯莫斯-2251与美国卫星iridium-33相撞的时候,这个问题在新闻媒体上就愈发受到广泛讨论。

已经提出了一些方法来清除这些碎片。

这些方法包括小型太空水流喷射器和高能量激光来瞄准具体的碎片,还有大型卫星来清扫碎片等等。

这些碎片数量和大小不一,有油漆脱离的碎片,也有废弃的卫星。

碎片高速转动使得定位清除变得困难。

建一个随时间变化的模型来确定一个最佳选择或组合的选择提供给一家私人公司让它以此为商业机遇来解决太空碎片问题。

你的模型应该包括对成本、风险、收益的定量和/或定性分析以及其他重要因素的分析。

你的模型应该既能够评估单个的选择也能够评估组合的选择,且能够探讨一些重要的”what if ”情景。

用你的模型来确定是否存在这样的机会,在经济上很有吸引力;或是根本不可能有这样的机会。

历年美国大学生数学建模竞赛试题MCM.(翻译版)doc

1985 年美国大学生数学建模竞赛MCM 试题1985年MCM:动物种群选择合适的鱼类和哺乳动物数据准确模型。

模型动物的自然表达人口水平与环境相互作用的不同群体的环境的重要参数,然后调整账户获取表单模型符合实际的动物提取的方法。

包括任何食物或限制以外的空间限制,得到数据的支持。

考虑所涉及的各种数量的价值,收获数量和人口规模本身,为了设计一个数字量代表的整体价值收获。

找到一个收集政策的人口规模和时间优化的价值收获在很长一段时间。

检查政策优化价值在现实的环境条件。

1985年MCM B:战略储备管理钴、不产生在美国,许多行业至关重要。

(国防占17%的钴生产。

1979年)钴大部分来自非洲中部,一个政治上不稳定的地区。

1946年的战略和关键材料储备法案需要钴储备,将美国政府通过一项为期三年的战争。

建立了库存在1950年代,出售大部分在1970年代初,然后决定在1970年代末建立起来,与8540万磅。

大约一半的库存目标的储备已经在1982年收购了。

建立一个数学模型来管理储备的战略金属钴。

你需要考虑这样的问题:库存应该有多大?以什么速度应该被收购?一个合理的代价是什么金属?你也要考虑这样的问题:什么时候库存应该画下来吗?以什么速度应该是画下来吗?在金属价格是合理出售什么?它应该如何分配?有用的信息在钴政府计划在2500万年需要2500万磅的钴。

美国大约有1亿磅的钴矿床。

生产变得经济可行当价格达到22美元/磅(如发生在1981年)。

要花四年滚动操作,和thsn六百万英镑每年可以生产。

1980年,120万磅的钴回收,总消费的7%。

1986 年美国大学生数学建模竞赛MCM 试题1986年MCM A:水文数据下表给出了Z的水深度尺表面点的直角坐标X,Y在码(14数据点表省略)。

深度测量在退潮。

你的船有一个五英尺的草案。

你应该避免什么地区内的矩形(75200)X(-50、150)?1986年MCM B:Emergency-Facilities位置迄今为止,力拓的乡牧场没有自己的应急设施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014 MCM
Problem A: The Keep-Right-Except-To-Pass Rule
In countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane.
Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be explicitly called out in this problem statement. Is this rule effective in promoting better traffic flow? If not, suggest and analyze alternatives (to include possibly no rule of this kind at all) that might promote greater traffic flow, safety, and/or other factors that you deem important.
In countries where driving automobiles on the left is the norm, argue whether or not your solution can be carried over with a simple change of orientation, or would additional requirements be needed.
Lastly, the rule as stated above relies upon human judgment for compliance. If vehicle transportation on the same roadway was fully under the control of an intelligent system –either part of the road network or imbedded in the design of all vehicles using the roadway – to what extent would this change the results of your earlier analysis? Problem B: College Coaching Legends
Sports Illustrated, a magazine for sports enthusiasts, is looking for the “best all time college coach” male or female for the previous century. Build a mathematical model to choose the best college coach or coaches (past or present) from among either male or female coaches in such sports as college hockey or field hockey, football, baseball or softball, basketball, or soccer. Does it make a difference which time line horizon that you use in your analysis, i.e., does coaching in 1913 differ from coaching in 2013? Clearly articulate your metrics for assessment. Discuss how your model can be applied in general across both genders and all possible sports. Present your model’s top 5 coaches in each of 3 different sports.
In addition to the MCM format and requirements, prepare a 1-2 page article for Sports Illustrated that explains your results and includes a non-technical explanation of your mathematical model that sports fans will understand.。

相关文档
最新文档