20180130函数及一次函数培优专题
第四讲培优竞赛辅导一次函数的图象与性质

第四讲 一次函数的图象与性质培优竞赛辅导知识点:一、一次函数和正比例函数的概念正比例函数的一般形式是 ,一次函数的一般形式是 正比例函数与一次函数的关系是二、 一次函数y kx b =+的图象与性质一次函数y kx b =+的图象是经过( )和( )两点的一条直线. 1、正比例函数y=kx (k ≠0)的性质: 2、一次函数y kx b =+(k ≠0)的性质(1)k 的正负决定直线的倾斜方向:(2)|k|大小决定直线的倾斜程度: |k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;(4)由于k ,b 的符号不同,直线所经过的象限也不同;(5)由于|k|决定直线与x 轴相交的锐角的大小,k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x +1可以看作是正比例函数y=x 向上平移一个单位得到的.k 相同,b 不同,它们是平行的;k 不相同,b 相同,相交于y 轴的同一点。
如:已知一次函数y kx b =+(k ≠0),求字母k 、b 为何值时:(1)y 随x 的增大而增大 ; (2)图象经过第一二三象限 ; (3图象不经过第二象限 ; (4)图象经过原点 ; (5)图象平行于直线y=-4x+1 ;(6)图象与y 轴交点不在x 轴上方 .【思想方法】数形结合【例题精讲】例1. 当m 、n 为何值时,函数25(2)()m y m x n m -=-++ (1)是正比例函数? (2)是一次函数?例2.求一次函数的解析式已知一次函数y =kx +b ,当自变量取值范围是2≤x ≤6时,函数值的取值范围5≤y ≤9.求此函数的解析式.【变式题组】1、直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________。
2、已知一次函数y =ax +b 的图象经过点(0,1),它与坐标轴围成的图是等腰直角三角形,则此函数的解析式 .3、已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1. (1)应用:已知y=2x+1与y=kx ﹣1垂直,求k ; (2)直线经过A (2,3),且与y=-2x+3垂直,求解析式.4、如图,直线y =-5x -5与x 轴交于A ,与y 轴交于B ,直线y =kx +b 与x 轴交于 C ,与y 轴交于B 点,CD ⊥AB 交y 轴于E .若CE =AB ,求直线BC 的解析式.例3. 一次函数y kx b =+的图象与性质函数y =ax +b ①和y =bx +a ②(ab ≠0)在同一坐标系中的图象可能是( )【变式题组】1、下列图象中,表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 为常数,则mn ≠0)的图象是()2、直线y 1=kx +b 过第一、二、四象限,则直线y 2=bx -k 不经过()A . 第一象限B .第二象限C .第三象限D .第四象限3、已知一次函数y =(1-2m )x +m -2,函数y 随着x 的增大而减小,且其图象不经过第一象限,则m的取值范围是( ) A .m >21 B .m ≤2 C .21<m <2 D . 21<m ≤2 4、已知abc ≠0,且bac a c b c b a +=+=+=t ,则直线y =tx +t 一定通过( ) A .第一、二象限 B .第二、三象限C .第三、四象限D .第一、四象限例4、一次函数与面积有关的问题如图,直线l 1的解析式为y =-3x +3,l 1与x 轴交于点D ,直线l 2经过点A (4,0),B (3,32-).⑴求直线l 2的解析式;⑵求S △ADC ;⑶在直线l 1上存在异于点C 的另一点P ,使得S △ADP =S △ADC ,求P 点坐标.【变式题组】1、如图,在平面直角坐标系中,点P (x ,y )是直线y =-x +6第一象限上的点,点A (5,0),O是坐标原点,△PAO 的面积S .⑴求S 与x 的函数关系式,并写出x 的取值范围; ⑵探究:当P 点运动到什么位置时△PAO 的面积为10.2、如图,直线l :y =-21x +2与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.⑴求A 、B 两点的坐标;⑵求△COM 的面积S 与M 的移动时间t 之间的函数关系式; ⑶当t 为何值时,△COM ≌△AOB ,并求此时M 点的坐标.例5、一次函数最值问题l 2已知:三点A (a ,1)、B (3,1)、C (6,0),点A 在正比例函数y =21x 的图象上. ⑴求a 的值;⑵点P 为x 轴上一动点,当△OAP 与△CBP 周长的和取得最小值时,求点P 的坐标;【变式题组】如图,在平面直角坐标系xOy ,已知直线AC 的解析式为y =-21x +2,直线AC 交x 轴于点C ,交于y 轴于点A .⑴若一个等腰直角三角形OBD 的顶点D 与点C 重合,直角顶点B 在第一象限内,请直接写出点B 的坐标; ⑵过点B 作x 轴的垂线l ,在l 上是否存一点P ,使得△AOP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;⑶试在直线AC 上求出到两坐标轴距离相等的所有点的坐标.培优升级·奥赛检测1、(芜湖)关于x 的一次函数y =kx +k 2+1的图象可能正确的是( )2、一次函数y =kx -b 和正比例函数y =kbx 在同一直角坐标系内的大致图象不可能的是()3、如图,点A 、B 、C 、D 在一次函数y =-2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A . 1B .3C .3(m -1)D .23(m -2)4、(绍兴)如图,在x 轴上有五个点,它们横坐标依次为1,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y =ax ,y =(a +1)x ,y =(a +2)x 相交,其中a >0,则图中阴影部分的面积是( )A . 12.5 B .25 C .12.5a D . 25a 5、(重庆)如图,在矩形ABCD 中,AB =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是( )6、一次函数y =(m -1)x +m 2+2的图象与y 轴的交点的纵坐标是3,则m 的值是_______ 7、(日照)如图,点A 的坐标为(-2,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为________ 8、(十堰)直线y =kx +b 经过点A (-2,0)和y 轴上的一点B ,如果△ABO (O 为坐标原点)的面积为2,则b 的值为________.9、点P 为直线y =-3x +6上的一点,且点P 到两坐标轴距离相等,则P 点坐标为_____. 10、定义[]q p ,为一次函数y =px +q 的特征数.⑴求一次函数y =-2(x -1)的特征数;⑵若特征数是[]2,2-k 的一次函数为正比例函数,求k 的值.11.已知一次函数y =kx +b 的图象经过点P (0,-3),且与函数y =21x +1的图象相交于点A (a ,38).⑴求a 的值;⑵若函数y =kx +b 的图象与x 轴的交点是B ,函数y =21x +1的图象与y 轴的交点是C ,求四边形ABOC 的面积(其中O 为坐标原点).12、如图,已知直线y =-x +2与x 轴、y 轴分别交于点A 和点B .另一条直线y =kx +b (k ≠0)经过(1,0),且把△AOB 分成两部分.⑴若△AOB 被分成的两部分面积相等,求k 和b 的值;⑵若△AOB 被分成的两部分的面积比为1:5,求k 和b 的值.。
2018年人教版八年级级下期一次函数的培优(2)

一次函数的培优(精品)知识点一:一次函数与坐标轴交点和面积问题1:交点问题一次函数b kx y +=的图象是经过(0,b )和(-kb ,0)两点。
【典型例题】1.直线y=-x+2与x 轴的交点坐标是 ,与y 轴的交点坐标是2.直线y=-2x-4交x 轴、y 轴于点A 、B ,O 为坐标原点,则S △AOB = 。
3.若直线y=3x+b 与两坐标轴所围成的三角形的面积是6个单位,则b 的值是 。
2:面积问题面积:一次函数y=kx+b 与x 、y 轴所交的两点与原点组成的三角形的面积为2b k(1):两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解。
(2):复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形)。
(3):往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高。
1.. 已知一个正比例函数与一个一次函数的图象交于点A (4,3),且OA=OB(1)求两个函数的解析式;(2)求△AOB 的面积;2. 已知:m x y l +=2:1经过点(-3,-2),它与x 轴,y 轴分别交于点B 、A ,直线b kx l +=:2经过点(2,-2),且与y 轴交于点C (0,-3),它与x 轴交于点D(1)求直线21,l l 的解析式;(2)若直线1l 与2l 交于点P ,求ACD ACP S S ∆∆:的值。
3. 如图1,在平面直角坐标系中,O 为坐标原点,直线l :m x y +-=21与x 、y 轴的正半轴分别相交于点A 、B ,过点C (-4,-4)画平行于y 轴的直线交直线AB 于点D ,CD=10.(1)求点D 的坐标和直线l 的解析式;(2)求证:△ABC 是等腰直角三角形;(3)如图2,将直线l 沿y 轴负方向平移,当平移适当的距离时,直线l 与x 、y 轴分别相交于点A′、B′,在直线CD 上存在点P ,使得△A′B′P 是等腰直角三角形.请直接写出所有符合条件的点P 的坐标.(不必书写解题过程)知识点二:一次函数应用题一次函数解决实际问题的步骤:(1)认真分析实际问题中变量之间的关系;(2)若具有一次函数关系,则建立一次函数的关系式;(3)利用一次函数的有关知识解题。
第八讲(培优竞赛班)培优竞赛一次函数的综合问题辅导

第八讲 (精品)一次函数综合类问题培优竞赛专题辅导 一、一次函数与几何综合1、一次函数表达式:y =kx +b (k ,b 为常数,k ≠0) ①k 是斜率,表示倾斜程度; ②b 表示与y 轴交点的坐标。
2、设直线l 1:y 1=k 1x +b 1,直线l 2:y 2=k 2x +b 2,其中k 1,k 2≠0.①若k 1=k 2,且b 1≠b 2,则直线l 1∥l 2;②若k 1·k 2=-1,则直线l 1⊥l 2. 3、一次函数与几何综合解题思路从关键点出发,关键点是信息汇聚点,通常是函数图象与几何图形的交点.通过点的坐标和横平竖直的线段长的互相转化将函数特征与几何特征结合起来进行研究,最后利用函数特征或几何特征解决问题.精讲精练1、如图,点B ,C 分别在直线y =2x 和y =kx 上,点A ,D 是x 轴上的两点,已知四边形ABCD 是正方形,则k 的值为______.第1题图 第2题图 第3题图 第4题图 第5题图2、如图,直线l 1交x 轴、y 轴于A ,B 两点,OA =m ,OB =n ,将△AOB 绕点O 逆时针旋转90°得到△COD .CD 所在直线l 2与直线l 1交于点E ,则l 1____l 2; 若直线l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=_______.3、如图,在平面直角坐标系中,函数y =x 的图象l 是第一、三象限的角平分线. 探索:若点A 的坐标为(3,1),则它关于直线l 的对称点A'的坐标为____________; 猜想:若坐标平面内任一点P 的坐标为(m ,n ),则它关于直线l 的对称点P ′的坐标为____; 应用:已知两点B (-2,-5),C (-1,-3),试在直线l 上确定一点Q ,使点Q 到B ,C 两点的距离之和最小,则此时点Q 的坐标为____________.4、如图,直线y =-x +4与x 轴、y 轴分别交于点A ,点B ,点P 的坐标为(-2,2),则 S △P AB =___________.5、如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,过定点Q (0,2)和动点P (a ,0)的直线与矩形ABCD 的边有公共点.(1)a 的取值范围是________________;(2)若设直线PQ 为y =kx +2(k ≠0),则此时k 的取值范围是___________;(3)点P (a ,0)在边AB 上运动,若过点P 、Q 的直线将矩形ABCD 的周长分成3:1两部分,求出此时a 的值.y=kxy=2xA CB D O xyA O C D EB l 1l 2xylA'AyO xO ByA Px6、如图,在平面直角坐标系中,点A ,B 的坐标分别为A (4,0),B (0,-4),P 为y 轴上B 点下方一点,PB =m(m >0),以点P 为直角顶点,AP 为腰在第四象限内作等腰Rt △APM .(1)求直线AB 的解析式;(2)用含m 的代数式表示点M 的坐标;(3)若直线MB 与x 轴交于点Q ,求点Q 的坐标.一次函数之存在性问题存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查运动的结果.一次函数背景下解决存在性问题的思考方向: 1. 把函数信息(坐标或表达式)转化为几何信息; 2. 分析特殊状态的形成因素,画出符合题意的图形;3. 结合图形(基本图形和特殊状态下的图形相结合)的几何特征建立等式来解决问题.精讲精练1、如图,直线122y x =+与x 轴、y 轴分别交于A ,B 两点,点C 的坐标为 (-3,0),P (x ,y )是直线122y x =+上的一个动点(点P 不与点A 重合). (1)在点P 的运动过程中,试写出△OPC 的面积S 与x (2)当点P 运动到什么位置时,△OPC 的面积为278(3)过P 作AB 的垂线与x 轴、y 轴分别交于E ,F 使△EOF ≌△BOA ?若存在,求出点P2、如图,直线y =kx -4与x 轴、y 轴分别交于B ,C 两点,且43OC OB =. (1)求点B 的坐标和k 的值.(2)若点A 是第一象限内直线y =kx -4上的一个动点,则当点A 运动到什么位置时,△AOB 的面积是6?(3)在(2)成立的情况下,x 轴上是否存在一点P ,使△POA 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.与△AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由.(1)求直线y=kx+3的解析式;(2)当点C 运动到什么位置时△AOC 的面积是6;(3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使△BCD 与△AOB全等?若存在,请求出点C 的坐标;若不存在,请说明理由.一次函数之动点问题动点问题的特征是速度已知,主要考查运动的过程.解决具体问题时会涉及线段长的表达,需要注意两点:①路程即线段长,可根据s=vt直接表达已走路程或未走路程;②根据研究几何特征需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.精讲精练1、如图,在平面直角坐标系中,O为坐标原点,直线334y x=-+与x轴、y轴分别交于A,B两点.点P从点A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA,OB的长.(2)过点P与直线AB垂直的直线与y轴交于点E,在点P的运动过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.2、如图在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,11),C(0,5),CB的中点D的纵坐标为7.动点P从点O出发,以每秒1个单位的速度,沿折线OA—AB的路线运动,至点B停止,设运动时间为t秒.(1)求直线BC的解析式.(2)若动点P在线段OA上运动,当t为何值时,四边形OPDC的面积是梯形COAB面积的14?(3)在动点P的运动过程中,设△OPD的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围.(4)求S的最大值;(5)当9≤t<12时,求S的范围.3、如图,直线y=-2x+10与x轴交于点A,与直线y=0.5x交于点P.(1)求点P的坐标.(2)求△OP A的面积.(3)动点E从原点O出发,以每秒1个单位的速度沿OA方向向终点A运动,过点E作EF⊥x轴交线段OP或线段P A于点F,FB⊥y轴于点B.设运动时间为t秒,矩形OEFB与△OP A重叠部分的面积为S,求S与t之间的函数关系式.培优升级奥赛检测1、如图,直线112y x=-+与x轴、y轴分别交于A,B两点,C(1,2),坐标轴上是否存在点P,使S△ABP =S△ABC?若存在,求出点P的坐标;若不存在,请说明理由.2、如图,直线122y x =+与x 轴、y 轴分别交于A ,B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动. (1)求A 、B 两点的坐标;(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式; (3)当t 为何值时△COM ≌△AOB ,并求此时M 点的坐标.3、已知:如图,直线与x 轴相交于点A ,与直线相交于点P 。
一次函数(培优篇)专项练习5 含答案

一次函数(培优篇)专项练习5一、单选题1.函数y =中,自变量x 的取值范围()A .x >﹣4B .x >1C .x≥﹣4D .x≥12.直线y =kx +b 过点(2,2)且与直线y =-3x 相交于点(1,a ),则两直线与x 轴所围成的面积为()A .2B .2.4C .3D .4.83.如图,在R △ABC 中,∠ACB=90°,D 为斜边AB 的中点,动点P 从点B 出发,沿B→C→A 运动,如图(1)所示,设DPB S y =△,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则a 的值为A .3B .4C .5D .64.如图,已知△ABC 的三个顶点A (a ,0)、B (b ,0)、C (0,2a )(b >a >0),作△ABC 关于直线AC 的对称图形△AB 1C ,若点B 1恰好落在y 轴上,则ab的值为()A .13B .49C .12D .385.直线y =kx +b 过点(2,2)且与直线y =-3x 相交于点(1,a ),则两直线与x 轴所围成的面积为()A .2B .2.4C .3D .4.86.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .7.在平面直角坐标系中,过点(1,2)作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是()A .5B .4C .3D .28.已知k=a b c a b c a b cc b a+--+-++==+n 2+9=6n ,则关于自变量x 的一次函数y=kx+m+n 的图象一定经过第()象限.A .一、二B .二、三C .三、四D .一、四9.如图,在直角坐标系中,等腰直角△ABO 的O 点是坐标原点,A 的坐标是(﹣4,0),直角顶点B 在第二象限,等腰直角△BCD 的C 点在y 轴上移动,我们发现直角顶点D 点随之在一条直线上移动,这条直线的解析式是()A .y=﹣2x+1B .y=﹣12x+2C .y=﹣3x ﹣2D .y=﹣x+210.如图,正方形OABC 中,点B(4,4),点E ,F 分别在边BC ,BA 上,OE=EOF=45°,则OF 的解析式为()A .y=43x B .y=13xC .y=3x D .y=5x 二、填空题11.关于x 的一次函数y=kx+b (k≠0),我们称函数y [m]=()()kx b x m kx b x m +≤⎧⎨-->⎩,为它的m 分函数(其中m 为常数).例如,y=﹣x+1的4分函数为:当x≤4时,y [4]=﹣x+1;当x >4时,y [4]=x ﹣1,若y=﹣3x+2的2分函数为y [2]=5时,x=_____.12.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =___________________,△APE 的面积等于6.13.矩形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示放置.点A 1,A 2,A 3,A 4…和点C 1,C 2,C 3,C 4…,分别在直线y kx b =+(k >0)和x 轴上,若点B 1(1,2),B 2(3,4),且满足2334n 1122334451n n n A A A A A A A A A A A A A A A A -+==== ,则直线y kx b =+的解析式为________________,点3B 的坐标为_______________,点n B 的坐标为_____________.14.对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为d 1,到y 轴的距离为d 2,若d 1≥d 2,则称d 1为点P 的最大距离;若d 1<d 2,则称d 2为点P 的最大距离.例如:点P (-3,4)到到x 轴的距离为4,到y 轴的距离为3,因为3<4,所以点P 的最大距离为4.若点C 在直线y=-x-2上,且点C 的最大距离为5,则点C 的坐标是______.15.新定义:[a ,b]为一次函数y ax b =+(a≠0,,a 、b 为实数)的“关联数”.若“关联数”为[3,m-2]的一次函数是正比例函数,则点(1-m ,1+m)在第_____象限.16.已知直线l 1:y=(k ﹣1)x+k+1和直线l 2:y=kx+k+2,其中k 为不小于2的自然数.(1)当k=2时,直线l 1、l 2与x 轴围成的三角形的面积S 2=______;(2)当k=2、3、4,……,2018时,设直线l 1、l 2与x 轴围成的三角形的面积分别为S 2,S 3,S 4,……,S 2018,则S 2+S 3+S 4+……+S 2018=______.17.如图,过点()2,0A 作x 轴的垂线与正比例函数y x =和3y x =的图象分别相交于点B ,C ,则OCB 的面积为________.18.已知k 为正整数,无论k 取何值,直线1:1l y kx k =++与直线2:(1)2l y k x k =+++都交于一个固定的点,这个点的坐标是_________;记直线1l 和2l 与x 轴围成的三角形面积为k S ,则1S =_____,123100S S S S ++++ 的值为______.19.如图,直线AB 的解析式为y=43x+4,与y 轴交于点A ,与x 轴交于点B ,点P 为线段AB 上的一个动点,作PE ⊥y 轴于点E ,PF ⊥x 轴于点F ,连接EF ,则线段EF 的最小值为_____.20.如图,在平面直角坐标系中,直线l :y=3x+1交x 轴于点A ,交y 轴于点B ,点A 1、A 2、A 3,…在x 轴的正半轴上,点B 1、B 2、B 3,…在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,则△A 6B 7A 7的周长是______.21.如图,在平面直角坐标系中,点()A 12,0,点()B 0,4,点P 是直线y x 1=--上一点,且ABP 45∠= ,则点P 的坐标为______.22.如图,平面直角坐标系中,已知直线y x =上一点P (1,1),C 为y 轴上一点,连接PC ,线段PC 绕点P 顺时针旋转900至线段PD ,过点D 作直线AB ⊥x 轴.垂足为B ,直线AB 与直线y x =交于点A ,且BD=2AD ,连接CD ,直线CD 与直线y x =交于点Q ,则点Q 的坐标为_______.三、解答题23.如图,已知一次函数y kx b =+的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式(2)△AOB 的面积24.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 在x 轴上,AB =AC ,∠BAC =90°,且A (2,0)、B (3,3),BC 交y 轴于M ,(1)求点C 的坐标;(2)连接AM ,求△AMB 的面积;(3)在x 轴上有一动点P ,当PB +PM 的值最小时,求此时P 的坐标.25.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.26.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为278,并说明理由.27.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.x+b 28.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.参考答案1.B【解析】根据二次根式有意义的条件和分式有意义的条件,即x+4≥0,x-1>0,即x >1.故选:B.2.B解:点(2,2)在直线y=-3x 上,∴a=-3,又y=kx+b 过点(2,2),(1,-3)∴22{3k b k b +=+=-,解得5{8k b ==-,所以,直线为y=5x-8,令y=0,则5x-8=0,解得x=85,所以,与x 轴的交点坐标为(805,),∵直线y=-3x 经过坐标原点,两直线与x 轴所围成的面积=1825⨯×3=2.4.故选B .3.A【分析】根据已知条件和图象可以得到BC 、AC 的长度,当x =4时,点P 与点C 重合,此时△DPC 的面积等于△ABC 面积的一半,从而可以求出y 的最大值,即为a 的值.解:根据题意可得,BC =4,AC =7−4=3,当x =4时,点P 与点C 重合,∵∠ACB =90°,点D 为AB 的中点,∴S △BDP =12S △ABC ,∴y =12×12×3×4=3,即a 的值为3,故选:A .【点拨】本题考查动点问题的函数图象,解题的关键是明确题意,利用数形结合的思想解决问题.4.D【分析】由B (b ,0)、C (0,2a ),可得,△ABC 关于直线AC 的对称图形△AB 1C ,且点B 1恰好落在y 轴上,即可确定B 1的坐标,进而确定BB 1的中点D 的坐标;△ABC 关于直线AC 的对称图形△AB 1C ,则段BB 1的中点D 在直线AC 上;再由A (a ,0)、C (0,2a )确定直线AC 的解析式,最后将D 点坐标代入求解即可.解:∵B (b ,0)、C (0,2a )∴∵△ABC 关于直线AC 的对称图形△AB 1C ,且点B 1恰好落在y 轴上∴B 1的坐标为(0,∴BB 1的中点D 的坐标为(2b ,22a)∵A (a ,0)、C (0,2a )∴直线AC 的解析式为:y=-2x+2a ∵△ABC 关于直线AC 的对称图形△AB 1C ,∴段BB 1的中点D 在直线AC 上∴22222a ba =-⨯+,即22323240a b ab +-=∴2322430a a b b ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭且a b >0解得:a b =38故答案为D .【点拨】本题考查了轴对称变换、勾股定理、线段的中点坐标、一次函数解析式等在知识点,考查知识点较多,灵活应用相关知识成为解答本题的关键.5.B【解析】解:点(2,2)在直线y=-3x 上,∴a=-3,又y=kx+b 过点(2,2),(1,-3)∴22{3k b k b +=+=-,解得5{8k b ==-,所以,直线为y=5x-8,令y=0,则5x-8=0,解得x=85,所以,与x 轴的交点坐标为(805,),∵直线y=-3x 经过坐标原点,两直线与x 轴所围成的面积=1825⨯×3=2.4.故选B .6.C【分析】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选C.【点拨】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.7.C【分析】设直线l解析式为:y=kx+b,由l与x轴交于点A(-bk,0),与y轴交于点B(0,b),依题可得关于k和b的二元一次方程组,代入消元即可得出k的值,从而得出直线条数.【详解】设直线l解析式为:y=kx+b,则l与x轴交于点A(-bk,0),与y轴交于点B(0,b),∴2142AOBk bbS bk+=⎧⎪⎨=⨯-⨯=⎪⎩,∴(2-k)2=8|k|,∴k2-12k+4=0或(k+2)2=0,∴k=-2,∴满足条件的直线有3故选C.【点睛】本题考查了一次函数图象与坐标轴交点问题,三角形的面积等,解本题的关键是确定出直线y=kx+b 与x轴、y轴的交点坐标.8.A【解析】2+9=6n,(n-3)2=0,∴m=5,n=3,m+n=8,k=a b c a b c a b cc b a+--+-++==ck=a+b-c,bk=a-b+c,ak=-a+b+c,k(a+b+c)=a+b-c+a-b+c-a+b+c=a+b+c, a+b+c0≠,k=1,a+b+c=0,k=-2,y=x+8,y=-2x+8所以图象一定过1,2象限.选B.9.D【分析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b 的值,即可确定出所求直线解析式.解:当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=12OA=2,OF=DG=BG=CG=12BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=2,即D(0,2),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:32k bb-+=⎧⎨=⎩,解得:12kb=-⎧⎨=⎩.则这条直线解析式为y=﹣x+2.故选D.【点拨】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.10.B【解析】分析:作辅助线,构建全等三角形,证明△OCE≌△OAD和△EOF≌△DOF,得EF=FD,设AF=x,在直角△EFB中利用勾股定理列方程求出x=43,根据正方形的边长写出点F的坐标,并求直线OF的解析式.详解:延长BF至D,使AD=CE,连接OD.∵四边形OABC是正方形,∴OC=OA,∠OCB=∠OAD,∴△OCE≌△OAD,∴OE=OD,∠COE=∠AOD.∵∠EOF=45°,∴∠COE+∠FOA=90°﹣45°=45°,∴∠AOD+∠FOA=45°,∴∠EOF=∠FOD.∵OF=OF,∴△EOF≌△DOF,∴EF=FD,由题意得:OC=4,OE CE,∴BE=2,设AF=x,则BF=4﹣x,EF=FD=2+x,∴(2+x)2=22+(4﹣x)2,解得:x=43,∴F(4,43),设OF的解析式为:y=kx,4k=43,k=13,∴OF的解析式为:y=13x.故选B.点睛:本题是利用待定系数法求一次函数的解析式,考查了正方形的性质及全等三角形的性质与判定,作辅助线构建全等三角形是本题的关键,利用全等三角形的对应边相等设一未知数,找等量关系列方程,求出点F 的坐标,才能运用待定系数法求直线OF 的解析式.11.﹣1或73.【解析】分析:根据阅读材料,先由函数的2分函数,代入即可,注意,函数值时5时分两种情况代入.详解:依题意得:﹣3x+2=5或3x ﹣2=5.解得x=﹣1或x=73.故答案是:﹣1或73.点睛:此题是二次函数综合题,主要考查了新定义,函数图象的交点坐标的求法,点到直线的距离,解本题的关键是理解新定义的基础上借助已学知识解决问题.12.1.5或5或9在AC 上时:当点P 在BC 上时,根据三角形的面积公式建立方程求出其解即可.解:如图1,当点P 在AC 上.∵△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,∴CE =4,AP =2t .∵△APE 的面积等于6,∴S △APE =12AP •CE =12AP ×4=6.∵AP =3,∴t =1.5.如图2,当点P 在BC 上.则t >3∵E 是DC 的中点,∴BE =CE =4.∵PE ()43=7-PE t t =--,∴S =12EP •AC =12•EP ×6=6,∴EP =2,∴t =5或t =9.总上所述,当t =1.5或5或9时,△APE 的面积会等于6.故答案为1.5或5或9.【点拨】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.13.22y x =+;(7,8);(21, 2n n -).解:试题分析:∵B 1(1,2),B 2(3,4),∴A 1(0,2),A 2(1,4).∵A 1,A 2在直线y kx b =+(k >0)上,∴22{{42b k k b b ==⇒+==.∴直线y kx b =+的解析式为22y x =+.∵A 3的横坐标与B 2的横坐标相同,为3,且A 3在直线22y x =+上,∴A 3(3,8).∵21A B ∥32A B ,11221, 2A B A B ==,∴1211232212A A AB A A A B ==.∵23122334A A A A A A A A =,∴233412A A A A =.∴23323234431, 42A A AB A B A A A B ===,∴438A B =.∴3416C A =.∵A 4在直线22y x =+上,∴16227x x =+⇒=.∴B 3(7,8).同理,可得B 4(15,16),B 5(31,32),…可见:B n (n=1,2,…)的横坐标为1,3,7,15,31,…,21n -;B n (n=1,2,…)的纵坐标为2,4,8,16,32,…,2n .∴B n (21, 2n n -).考点:1.探索规律题(图形的变化类);2.一次函数图象上点的坐标特征;3.矩形的性质.14.(-5,3)或(3,-5)【分析】根据点C 的“最大距离”5,可得点C 的横坐标5x =±或点C 的纵坐标5y =±,代入求出结果即可.解:设点C 的坐标()x y ,∵点C 的“最大距离”为5∴5x =±或5y =±当5x =时,7y =-当5x =-时,3y =当5y =时,7x =-当5y =-时,3x =∴点()53C -,或()35-,故答案为:()53-,或()35-,.【点拨】本题是阅读材料题,考查了一次函数的应用,理解新定义的信息并结合所学知识解决问题是解题关键,将距离转化为点的坐标是重点.15.二.【分析】根据新定义列出一次函数解析式,再根据正比例函数的定义确定m 的值,进而确定坐标、确定象限.解:∵“关联数”为[3,m ﹣2]的一次函数是正比例函数,∴y =3x+m ﹣2是正比例函数,∴m ﹣2=0,解得:m =2,则1﹣m =﹣1,1+m =3,故点(1﹣m ,1+m )在第二象限.故答案为:二.【点拨】本题属于新定义和正比例函数的定义,解答的关键运用新定义和正比例函数的概念确定m 的值.16.120171009【解析】分析:利用一次函数图象上点的坐标特征可求出两直线与x 轴的交点坐标,进而可得出两点间的距离,联立两直线解析式成方程组,通过解方程组可求出两直线的交点坐标.(1)代入k=2,可得出d 的值,利用三角形的面积公式可求出S 2的值;(2)分别代入k=2、3、4、…、2018求出S 2、S 3、S 4、…、S 2018值,将其相加即可得出结论.详解:当y=0时,有(k-1)x+k+1=0,解得:x=-1-21k -,∴直线l 1与x 轴的交点坐标为(-1-21k -,0),同理,可得出:直线l 2与x 轴的交点坐标为(-1-2k ,0),∴两直线与x 轴交点间的距离d=-1-2k-(-1-21k -)=21k --2k .联立直线l 1、l 2成方程组,得:()112y k x k y kx k ⎧-++⎨++⎩==,解得:12x y -⎧⎨-⎩==,∴直线l 1、l 2的交点坐标为(-1,-2).(1)当k=2时,d=21k --2k =1,∴S 2=12×|-2|d=1.故答案为:1.(2)当k=3时,S 3=2223-;当k=4时,S 4=2234-;…;S 2018=2220172018-,∴S 2+S 3+S 4+……+S 2018=2222222212233420172018-+-+-++- ,=2212018-,=2-11009,=20171009.故答案为:20171009.点睛:本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x 轴交点间的距离是解题的关键.17.4.【分析】把点A (2,0)的横坐标分别代入正比例函数y=x 和y=3x ,求得B 、C 点的坐标,进一步求得BC 的长度,利用三角形的面积求得答案即可.解:把2x =分别代入y x =和3y x =中,可得点B 的坐标是()2,2,点C 的坐标是()2,6,所以624BC =-=.因为点()2,0A ,所以2OA =,所以1142422OCB S BC OA =⋅=⨯⨯= .【点拨】此题考查两条直线的交点问题,三角形的面积,利用代入的方法求得B 、C 两点的坐标是解决问题的关键.18.()1,1-1450101【分析】联立直线1l 和2l 成方程组,通过解方程组,即可得到交点坐标;分别表示出直线1l 和2l 与x 轴的交点,求得交点坐标即可得到三角形的边长与高,根据三角形面积公式进行列式并化简,即可得到直线1l 和2l 与x 轴围成的三角形面积为k S 的表达式,从而可得到1S 和123100S S S S ++++ ,再依据分数的运算方法即可得解.解:联立直线1:1l y kx k =++与直线2:(1)2l y k x k =+++成方程组,1(1)2y kx k y k x k =++⎧⎨=+++⎩,解得11x y =-⎧⎨=⎩,∴这两条直线都交于一个固定的点,这个点的坐标是()1,1-;∵直线1:1l y kx k =++与x 轴的交点为1,0k k +⎛⎫- ⎪⎝⎭,直线2:(1)2l y k x k =+++与x 轴的交点为2,01k k +⎛⎫- ⎪+⎝⎭,∴12111112211k k k k k k S k ++--+⎛⎫=⨯⨯= ⎪⎝⎭+,∴114S =,12310011111111223341001011111111111223341001112222011110150,1011212S S S S -----+-⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪⎪ ⎪+-+++++++ ⎝⎭⎝-⎭⎝⎭⎝⎭⎛⎫= ⎪⎝⎭⎛⎫= ⎪⎝⎭=+- 故答案为:()1,1-;14;50101【点拨】本题考查了一次函数y kx b =+(k≠0,b 为常数)的图象与两坐标轴的交点坐标特点,与x 轴的交点的纵坐标为0,与y 轴的交点的横坐标为0;也考查了坐标与线段的关系、三角形的面积公式以及分数的特殊运算方法.解题的关键是熟练掌握一次函数y kx b =+(k≠0,b 为常数)的图象与性质,能灵活运用分数的特殊运算方法.19.125【分析】在一次函数y=43x+4中,分别令x=0,y=0,解相应方程,可求得A 、B 两点的坐标,由矩形的性质可知EF=OP ,可知当OP 最小时,则EF 有最小值,由垂线段最短可知当OP ⊥AB 时,满足条件,根据直角三角形面积的不同表示方法可求得OP 的长,即可求得EF 的最小值.解:∵一次函数y=43x+4中,令x=0,则y=4,令y=0,则x=-3,∴A (0,4),B (-3,0),∵PE ⊥y 轴于点E ,PF ⊥x 轴于点F ,∴四边形PEOF 是矩形,且EF=OP ,∵O 为定点,P 在线段上AB 运动,∴当OP ⊥AB 时,OP 取得最小值,此时EF 最小,∵A (0,4),点B 坐标为(-3,0),∴OA=4,O B=3,由勾股定理得:,∵AB·OP=AO·BO=2S △OAB ,∴OP=·431255OA OB AB ⨯==,故答案为:125.【点拨】本题考查了一次函数图象上点的坐标特点,勾股定理、矩形的判定与性质、最值问题等,熟练掌握相关知识、确定出OP 的最小值是解题的关键.20.【解析】试题解析:当x=0时,y=1,则B (0,1),当y=0时,x=A 0),∴,OB=1,∵tan ∠OAB=OB OA =∴∠OAB=30°,∵△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,∴∠A 1OB 1=∠A 2A 1B 2=∠A 3A 2B 3=60°,∴∠OB 1A=∠AB 2A 1=∠AB 3A 2=30°,∴OB 1=OA=,A 1B 2=AA 1,A 2B 3=AA 2,则OA 1=OB 1A 1B 2=AA 1,∴A 1A 2=A 1B 2=AA 1=2OA 1同理:A 2A 3=A 2B 3=2A 1A 2A3A 4=2A 2A 3A4A 5=2A 3A 4A5A 6=2A 4A 5∴A 6A 7=2A 5A 6∴△A 6B 7A 7的周长是:21.()5,6-【分析】由于题目中给出45ABP ∠= ,则可考虑构造等腰直角三角形进行解决,将AB 顺时针旋转90 得到线段BC ,求出点C 的坐标,连接AC ,则AC 与BP 的交点M 即为线段AC 的中点,可求出M 的坐标,则直线BP 的解析式亦可求的,再将直线1y x =--与直线BP 的解析式联立成方程组,即可求出点P 的坐标.解:如图所示,将线段AB 绕点B 顺时针旋转90 得到线段BC ,则点C 的坐标为()4,8--,由于旋转可知,ABC 为等腰直角三角形,令线段AC 和线段BP 交于点M ,则M 为线段AC 的中点,所以点M 的坐标为()4,4-,又B 为()0,4,设直线BP 为y kx b =+,将点B 和点M 代入可得{4k b 4b 4+=-=,解得k 2=-,b 4=,可得直线BP 为y 2x 4=-+,由于点P 为直线BP 和直线y x 1=--的交点,则由y 2x 4y x 1=-+⎧=--⎨⎩解得{x 5y 6==-,所以点P 的坐标为()5,6-,故答案为()5,6-.【点拨】本题考查函数图象的变换,并根据待定系数法求函数解析式及利用方程组求直线的交点坐标,把握函数的基本知识是解题的关键.22.9944⎛⎫⎪⎝⎭,解:如图,过点P 作EF ∥x 轴,交y 轴与点E ,交AB 于点F ,则易证△CEP ≌△PFD (ASA ),∴EP=DF ,∵P (1,1),∴BF=DF=1,BD=2,∵BD=2AD ,∴BA=3∵点A 在直线y x =上,∴点A 的坐标为(3,3),∴点D 的坐标为(3,2),∴点C 的坐标为(0,3),设直线CD 的解析式为y kx b =+,则3k b 2{b 3+==解得:1k {3b 3=-=∴直线CD 的解析式为1y x 33=-+,联立1y x 3{3y x =-+=可得9x 4{9y 4==∴点Q 的坐标为9944⎛⎫⎪⎝⎭ ,.23.(1)4533y x =+;(2)52【分析】(1)先把A 点和B 点坐标代入y =kx +b 得到关于k 、b 的方程组,解方程组得到k 、b 的值,从而得到一次函数的解析式;(2)令y =0,即可确定D 点坐标,根据三角形面积公式和△AOB 的面积=S △AOD +S △BOD 进行计算即可.解:(1)把A (-2,-1),B (1,3)代入y =kx +b 得213k b k b -+=-⎧⎨+=⎩,解得4k=35b=3⎧⎪⎪⎨⎪⎪⎩,所以一次函数解析式为4533y x =+;(2)把x =0代入4533y x =+得53y =,所以D 点坐标为(0,53),所以△AOB 的面积=S △AOD +S △BOD 1515=2+12323⨯⨯⨯⨯5=2.【点拨】本题考查了待定系数法求一次函数解析式:①先设出函数的一般形式,如求一次函数的解析式时,先设y =kx +b ;②将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.24.(1)C 的坐标是(﹣1,1);(2)154;(3)点P 的坐标为(1,0).【分析】(1)作CD ⊥x 轴于D ,BE ⊥x 轴于E ,证明CDA ≌AEB △,根据全等三角形的性质得到CD =AE ,AD =BE ,求出点C 的坐标;(2)利用待定系数法求出直线BC 的解析式,得到OM 的长,根据梯形的面积公式、三角形的面积公式计算,得到答案;(3)根据轴对称的最短路径问题作出点P ,求出直线B M '的解析式,根据x 轴上点的坐标特征求出点P 的坐标.解:(1)如图,作CD ⊥x 轴于D ,BE ⊥x 轴于E,∴∠CAD +∠DCA =90°,∵∠BAC =90°,∴∠CAD +∠BAE =90°,∴∠BAE =∠ACD ,在CDA 和AEB △中,ACD BAE ADC BEA CA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴CDA ≌AEB △(AAS ),∴CD =AE ,AD =BE ,∵A (2,0)、B (3,3),∴OA =2,OE =BE =3,∴CD =AE =1,OD =AD ﹣OA =1,∴C 的坐标是(﹣1,1);(2)如图,作BE ⊥x 轴于E ,设直线BC 的解析式为y =kx +b ,∵B 点的坐标为(3,3),C 点的坐标是(﹣1,1),∴331k b k b +=⎧⎨-+=⎩,解得,1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为y =12x +32,当x =0时,y =32,∴OM =32,∴AMB 的面积=梯形MOEB AOM 的面积﹣AEB △的面积=12×(32+3)×3﹣12×2×32﹣12×1×3=154;(3)如图,作M 关于x 轴的对称点M '(0,﹣32),连接B M ',交x 轴于点P ,此时PB +PM =PB +P M '=B M '的值最小,设直线B M '的解析式为y =mx +n ,则3332m n n +=⎧⎪⎨=-⎪⎩,解得,3232m n ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线B M '的解析式为y =32x ﹣32,点P 在x 轴上,当y =0时,x =1,∴点P 的坐标为(1,0).【点拨】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质、求一次函数解析式和求两线段和的最小值,掌握等腰直角三角形的性质、全等三角形的判定及性质、利用待定系数法求一次函数解析式和轴对称的最短路径问题是解决此题的关键.25.(1)y=x+1;(2)C (0,1);(3)1解:试题分析:(1)首先根据正比例函数解析式求得m 的值,再进一步运用待定系数法求得一次函数的解析式;(2)根据(1)中的解析式,令x=0求得点C 的坐标;(3)根据(1)中的解析式,令y=0求得点D 的坐标,从而求得三角形的面积.试题解析:(1)∵正比例函数y=2x 的图象与一次函数y=kx+b 的图象交于点A (m ,2),∴2m=2,m=1.把(1,2)和(-2,-1)代入y=kx+b ,得221k b k b +⎧⎨-+-⎩==解得:11k b ⎧⎨⎩==则一次函数解析式是y=x+1;(2)令x=0,则y=1,即点C (0,1);(3)令y=0,则x=-1.则△AOD 的面积=11212⨯⨯=.【点睛】运用了待定系数法求函数解析式、直线与坐标轴的交点的求法.26.(1)k=34;(2)△OPA 的面积S=94x+18(﹣8<x <0);(3)点P 坐标为(−132,98)或(−192,−98)时,三角形OPA 的面积为278.【分析】(1)将点E 坐标(﹣8,0)代入直线y=kx+6就可以求出k 值,从而求出直线的解析式;(2)由点A 的坐标为(﹣6,0)可以求出OA=6,求△OPA 的面积时,可看作以OA 为底边,高是P 点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出△OPA .从而求出其关系式;根据P 点的移动范围就可以求出x的取值范围.(3)分点P 在x 轴上方与下方两种情况分别求解即可得.解:(1)∵直线y=kx+6过点E (﹣8,0),∴0=﹣8k+6,k=34;(2)∵点A 的坐标为(﹣6,0),∴OA=6,∵点P (x ,y )是第二象限内的直线上的一个动点,∴△OPA 的面积S=12×6×(34x+6)=94x+18(﹣8<x <0);(3)设点P 的坐标为(m ,n ),则有S △AOP =12O·,即62=278,解得:n=±98,当n=98时,98=34x+6,解得x=−132,此时点P 在x 轴上方,其坐标为(−132,98);当n=-98时,-98=34x+6,解得x=−192,此时点P 在x 轴下方,其坐标为(−192,−98),综上,点P 坐标为:(−132,98)或(−192,−98).【点拨】本题考查了待定系数法、三角形的面积、点坐标的求法,熟练掌握待定系数法、正确找出各量间的关系列出函数解析式,分情况进行讨论是解题的关键.27.(1)y =-350x +63000.(2)安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.【分析】(1)根据题意可知x 人参加采摘蓝莓,则(20-x )人参加加工,可分别求出直接销售和加工销售的量,然后乘以单价得到收入钱数,列出函数的解析式;(2)根据采摘量和加工量可求出x 的取值范围,然后根据一次函数的增减性可得到分配方案,并且求出其最值.解:(1)根据题意得:()()70203540203513035063000y x x x x ⎡⎤=--⨯⨯+-⨯⨯=-+⎣⎦(2)因为7035(20)x x ≥-,解得203x ≥,又因为为正整数,且20x ≤.所以720x ≤≤,且为正整数.因为3500-<,所以y 的值随着x 的值增大而减小,所以当7x =时,取最大值,最大值为35076300060550-⨯+=.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.28.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t+272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或或9﹣6时,△APQ 为等腰三角形.解:分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =P A 时,则()()()2222(71)032103,t -++-=++-当AQ =P A 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+得,()1312b =⨯-+,解得72b =;(2)∵72b =∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A .C 之间时,AQ =2+7−t =9−t ,∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-;当Q 在A 的右边时,AQ =t −9,∴11327(9)32222S AQ yP t t =⋅=⨯-⨯=-即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =-②∵S <3,∴273322t -<或327 3.22t -<解得7<t <9或9<t <11.③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去),当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-,解得t =6.故当t 的值为3或9+或9-或6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.。
一次函数培优练习题(含答案)

一次函数培优练习题(含答案)一、选择题:1.y与x+3成正比例,即y=k(x+3),代入x=1,y=8,解得k=2,因此函数关系式为y=2(x+3)=2x+6,选项(C)。
2.直线y=kx+b经过一、二、四象限,说明k和b异号,因此直线y=bx+k经过三象限,选项(C)。
3.直线y=-2x+4与两坐标轴围成的三角形的底边分别为4和2,因此面积为1/2*4*2=4,选项(A)。
4.由于两弹簧的函数解析式分别为y=k1x+a1和y=k2x+a2,因此y1=k1*2+a1,y2=k2*2+a2,无法确定它们的大小关系,选项(D)。
5.两个函数的图象分别为斜率为b和a的直线,当b>a时,y=bx+a的图象在y=ax+b的图象上方,因此选项(D)。
6.同第二题,直线y=bx+k经过三象限,因此不经过第二象限,选项(B)。
7.当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小;当k=0时,y=2,因此选项(B)。
8.直线y=x+2m与y=-x+4的交点为(-2m+2,2m+2),当m>0时在第一象限,当m<0时在第二象限,因此选项(B)。
9.直线y=-x/2平移下移4个单位得到y=-x/2-4,即y=-33x-4,因此选项(D)。
10.XXX与x成正比例,则k=m-5=0,解得m=5,选项(D)。
11.直线y=3x-1与y=x-k的交点为(1/2,3/2-k/2),当k>1时在第四象限,因此选项(C)。
12.直线可以作4条,分别为y=-5x-2,y=5x-8,x=3,x=-1,选项(A)。
13.由于a+b/c+b/a+c=p,将其化简得到(a+b+c)/bc=p,因此直线y=px+p经过点(1/a,1/b,1/c),选项(D)。
改写后的文章:一、选择题:1.已知y与x+3成正比例,且当x=1时,y=8,求y与x 之间的函数关系式。
答案:y=2x+6.2.若直线y=kx+b经过一、二、四象限,求直线y=bx+k不经过的象限。
一次函数培优讲义精选全文完整版

可编辑修改精选全文完整版一次函数重点常考题型分析一、知识点复习二、经典常考题型分析【类型1】:根据函数定义与隐含条件求字母的值。
【例题】已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m值。
【练习】已知关于x的函数y=kx|-2k+3|—x+5是一次函数,求k值。
【类型2】:分类讨论题型。
【例1】已知一次函数y=kx+4的图像与坐标轴围成的三角形面积为16,求函数的表达式。
【例2】一次函数y=kx+b,当-3≤x≤1,对应的函数值的取值范围为1≤y≤9,求k+b的值。
【练习】在平面直角坐标系中,点P(2,a)到x轴的距离为4,且点p在直线y=-x+m上,求m 值。
【类型3】:利用直线和三角形面积求点坐标、线段长度或面积(数形结合)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求点C的坐标.(2)若直线AB上的点C在第一象限,且S△BOC【练习】一次函数y =(m-2)x+m2-1图象经过点A (0,3)。
(1)求m 的值,并写出函数解析式.(2)若(1)中的函数图象与x 轴交于B ,直线y =(m+2)x +m2-1也经过A (0,3)与x 轴交于C ,求线段BC 的长.【*类型4】:动态变量求解析式.已知y—4与x成正比例,且x=6时y=-4(1)求y与x的函数关系式.(2)此直线在第一象限上有一个动点P(x,y),在x轴上有一点C(-2,0).这条直线与x轴相交于点A.求△PAC的面积S与x之间的函数关系式,并写出自变量x的取值范围.【类型5】:利用一次函数与二元一次方程的关系解题.如图,已知函数的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.【练习】:如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A。
一次函数专题培优练习
()()()32100.0k ⎪⎩⎪⎨⎧<=><b b b 一次函数专题复习知识点结构:1.一次函数的概念:函数(,为常数,)叫做的一次函数。
(1)作为一次函数自变量的最高次数是1,且其系数,这两个条件缺一不可。
(2)函数()中可以为任意常数, 当时,一次函数就成正比例函数(为常数,且)因此正比例函数是一次函数的特例,但一次函数不一定是正比例函数。
2 一次函数的图象:(重点,请牢记)(1)正比例函数y=kx 的图象是经过(0,0),(1,k )的一条直线; (2)一次函数y=kx+b 的图象是经过(0,b )(—k/b ,0)的一条直线.3、一次函数的性质:(重点,请牢记)b=0b<0b>0k>0经过第一、三象限经过第一、三、四象限经过第一、二、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第二、四象限经过第二、三、四象限经过第一、二、四象限图象从左到右下降,y 随x 的增大而减小4. 待定系数法确定一次函数解析式5.有关平移问题6.一次函数图像的应用()()()321000.0k ⎪⎩⎪⎨⎧<=>>b b b考点例题分析及练习:考点一:函数定义1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为是x 的函数。
※判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应1、下列函数关系式中不是函数关系式的是( ) A. 21y x =+ B. 21y x =+ C. 1y x x=+D. 22y x = 2、下列各图中表示y 是x 的函数图像的是 ( )考点二:一次函数概念的相关题目1.函数:①y=-15x x;②y=2x -1;③y=12x;④y=x 2+3x-1;⑤y=x+4;⑥y=3. 6x, 一次函数有___ __;正比例函数有____________(填序号).2.函数y=(k 2-1)x+3是一次函数,则k 的取值范围是( )A.k ≠1B.k ≠-1C.k ≠±1D.k 为任意实数. 3.2(3)9y m x m =-+-是正比例函数,则m= 。
八年级数学培优专题一、一次函数培优训练经典题型精选全文完整版
可编辑修改精选全文完整版一次函数培优经典题型(最新)一、正比例函数的定义1、若y=(m+1)x+m2﹣1是关于x的正比例函数,则m的值为.2、已知函数y=(m+2)x﹣m2+4(m是常数)是正比例函数,则m=.二、一次函数的图象1、在同一平面直角坐标系中,函数y=kx﹣b与y=bx+k的图象不可能是()A.B.C.D.2、如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.3、一次函数y=kx+k的图象可能是()A.B.C.D.4、如图,三个正比例函数的图象分别对应的解析式是:①y=ax,②y=bx,③y=cx,请用“>”表示a,b,c的不等关系.三、一次函数的性质1、已知直线y=kx+b过点A(﹣3,y1),B(4,y2),若k<0,则y1与y2大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不能确定2、当1≤x≤10时,一次函数y=﹣3x+b的最大值为17,则b=.3、已知一次函数y=mx﹣2m(m为常数),当﹣1≤x≤3时,y有最大值6,则m的值为()A.﹣B.﹣2C.2或6D.﹣2或64、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定5、在平面直角坐标系中,已知一次函数y=kx+b(k,b为常数且k≠0).(1)当b=3k+6时,该函数恒经过一点,则该点的坐标为;(2)当﹣2≤x≤2时,﹣8≤y≤4,则该函数的解析式为.6、一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.四、一次函数图象与系数的关系1、若一次函数y=(m﹣2)x+m+1的图象经过一、二、四象限,则m的取值范围是()A.m<﹣1B.m<2C.﹣1<m<2D.m>﹣12、一次函数y=(2k﹣1)x+k的图象不经过第三象限,则k的取值范围是()A.k>0B.C.k≥0D.3、关于x的一次函数y=(k﹣2)x+k2﹣4k+4,若﹣1≤x≤1时,y>0总成立,则k的取值范围是()A.k<1或k>3B.k>1C.k<3D.1<k<34、一次函数y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:﹣|2﹣b|=.5、关于x的一次函数y=(2a+1)x+a﹣2,若y随x的增大而增大,且图象与y轴的交点在原点下方,则实数a的取值范围是.6、函数y=3x+k﹣2的图象不经过第二象限,则k的取值范围是.7、设,则一次函数y=kx﹣k的图象一定过第_________象限.五、一次函数图象与几何变换1、直线y=﹣5x向上平移2个单位长度,得到的直线的解析式为()A.y=5x+2B.y=﹣5x+2C.y=5x﹣2D.y=﹣5x﹣2 2、在平面直角坐标系中,将正比例函数y=﹣2x的图象向右平移3个单位长度得到一次函数y=kx+b(k≠0)的图象,则该一次函数的解析式为()A.y=﹣2x+3B.y=﹣2x+6C.y=﹣2x﹣3D.y=﹣2x﹣63、若直线l1:y=kx+b(k≠0)是由直线l2:y=4x+2向左平移m(m>0)个单位得到,则下列各点中,可能在直线l1上的是()A.(0,1)B.(2,﹣1)C.(﹣1,2)D.(3,0)4、在平面直角坐标系中,将函数y=x的图象绕坐标原点逆时针旋转90°,再向上平移1个单位长度,所得直线的函数表达式为()A.y=﹣x+1B.y=x+1C.y=﹣x﹣1D.y=x﹣15、若一次函数y=kx+b与y=﹣2x+1的图象关于y轴对称,则k、b的值分别等于.六、待定系数法求一次函数解析式1、P(8,m),A(2,4),B(﹣2,﹣2)三点在同一直线上,则m的值为.2、已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是.3、已知y﹣1与x成正比例,当x=﹣2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值.4、已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.5、已知y﹣3与2x+4成正比例,且当x=﹣1时,y=7.(1)求y与x的函数关系式;(2)求此函数图象与坐标轴围成的面积.七、一次函数与一元一次方程1、如图,直线y=x+5和直线y=ax+b相交于点P,观察其图象可知方程x+5=ax+b的解()A.x=15B.x=25B.C.x=10D.x=202、如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=43、如图,一次函数y=ax+b与正比例函数y=kx的图象交于点P(﹣2,﹣1),则关于x的方程ax+b=kx的解是.4、根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.八、一次函数中的面积问题1、若一次函数y=2x+b与坐标轴围成的三角形面积为9,则这个一次函数的解析式为.2、直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则k为.3、如图,一次函数y=x﹣4的图象与x轴,y轴分别交于点A,点B,过点A作直线l将△ABO分成周长相等的两部分,则直线l的函数解析式为.4、如图,在平面直角坐标系xOy中,A(2,0),B(2,4),C(0,4).若直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,则k的值为.5、如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.6、如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.九、一次函数的应用1、甲乙两人骑自行车分别从A,B两地同时出发相向而行,甲匀速骑行到B地,乙匀速骑行到A地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离y(米)和骑行的时间x(秒)之间的函数关系图象如图所示,现给出下列结论:①a=450;②b=150;③甲的速度为10米/秒;④当甲、乙相距50米时,甲出发了55秒或65秒.其中正确的结论有()A.①②B.①③C.②④D.③④2、甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?十、一次函数综合题1、如图,直线与x轴,y轴分别交于点A,B,点C,D分别是AB,AO的中点,点P是y轴上一动点,则PC+PD的最小值是.2、若直线AB:y=x+4与x轴、y轴分别交于点B和点A,直线CD:y=﹣x+2与x轴、y轴分别交于点D和点C,线段AB与CD的中点分别是M,N,点P为x轴上一动点.(1)点M的坐标为;(2)当PM+PN的值最小时,点P的坐标为.3、如图,在平面直角坐标系中,一次函数的图象分别与x、y轴交于点A、B,点C在y轴上,AC平分∠OAB,则线段BC=.4、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.5、如图,一次函数y=kx+b的图象经过点A(0,3)和点B(2,0),以线段AB为边在第一象限内作等腰直角△ABC使∠BAC=90°(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PC最小时,求点P的坐标.6、如图,直线l:y=kx+b(k≠0)与坐标轴分别交于点A,B,以OA为边在y=8.轴的右侧作正方形AOBC,且S△AOB(1)求直线l的解析式;(2)如图1,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE.①当AE+CE最小时,求E点的坐标;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请求出点H的坐标.。
初中数学 一次函数 专题知识点+培优提高练习题 含答案 有难度
一次函数【知识网络】基础知识梳理1、正比例函数一般地,形如kx y = (k 是常数,)0(≠k )的函数叫做正比例函数,其中k 叫做比例系数。
2、正比例函数图象和性质一般地,正比例函数kx y =(k 为常数,)0(≠k )的图象是一条经过原点和(1,k )的一条直线,我们称它为直线kx y =。
当k>0时,直线kx y =经过第一、三象限,从左向右上升,即随着x 的增大,y 也增大;当k<0时,直线kx y =经过第二、四象限,从左向右下降,即随着x 的增大y 反而减小. 3、正比例函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =)0(≠k 中的常数k ,其基本步骤是:(1)设出含有待定系数的函数解析式kx y =)0(≠k ;(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k 的一元一次方程;(3)解方程,求出待定系数k ; (4)将求得的待定系数的值代回解析式.4、一次函数一般地,形如b kx y += (k,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b=0时,b kx y +=即y=kx ,所以说正比例函数是一种特殊的一次函数.考点一:一次函数的概念例1、一根弹簧长15㎝,它所挂的物体质量不能超过18kg ,并且每挂1kg 就伸长21㎝.写出挂上物体后的弹簧长度y (㎝)与所挂物体质量x (kg )之间的函数关系式 例2、下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2.练习(1)当m 为何值时,函数y=-(m-2)x 32-m +(m-4)是一次函数?(2)当m 为何值时,函数y=-(m-2)x 32-m +(m-4)是正比例函数?5、一次函数的图象(1)一次函数b kx y += )0(≠k (的图象是经过(0,b )和(kb-,0)两点的一条直线,因此一次函数b kx y +=的图象也称为直线b kx y +=.(2)一次函数b kx y +=的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可。
(完整版)八年级数学一次函数提高练习与常考题和培优难题压轴题(含解析)
一次函数提升练习与常考题和培优难题压轴题( 含分析 ) 一.选择题(共9 小题)1.函数的自变量x的取值范围是()A.x≤2B.x≥2 且 x≠ 3 C.x≥2 D.x≤2 且 x≠32.对于函数 y=﹣x﹣2 的图象,有以下说法:①图象过点( 0,﹣ 2)②图象与 x 轴的交点是(﹣ 2,0)③由图象可知 y 随 x 的增大而增大④图象不经过第一象限⑤图象是与 y=﹣ x+2 平行的直线,此中正确说法有()A.5 个 B.4 个 C.3 个 D.2 个3.已知等腰三角形的周长为20cm,底边长为 y(cm),腰长为 x( cm),y 与 x 的函数关系式为y=20﹣2x,那么自变量 x 的取值范围是()A.x>0B.0<x<10C.0<x<5 D.5<x<104.如图,三个正比率函数的图象对应的分析式为①y=ax,②y=bx,③y=cx,则 a、b、c 的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a5.一辆慢车以50 千米 / 小时的速度从甲地驶往乙地,一辆快车以75 千米 / 小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500 千米,两车同时出发,则图中折线大概表示两车之间的距离y(千米)与慢车行驶时间t (小时)之间的函数图象是()A .B .C .D .6.以下语句不正确的选项是( )A .全部的正比率函数必定是一次函数B .一次函数的一般形式是 y=kx+bC .正比率函数和一次函数的图象都是直线D .正比率函数的图象是一条过原点的直线7.已知 x 对于的一次函数 y=mx+n 的图象如上图,则 | n ﹣m| ﹣ 可化简()A .nB .n ﹣2mC . mD .2n ﹣m8.假如一次函数 y=kx+b ,当﹣ 3≤x ≤1 时,﹣ 1≤y ≤7,则 kb 的值为( )A .10B .21C .﹣ 10 或 2D .﹣ 2 或 10.若函数 y=(2m+1)x 2+(1﹣2m )x+1(m 为常数)是一次函数,则m 的值为9 ()A .mB .m=C .mD .m=﹣二.填空(共 9 小)10.直 y=kx 向下平移 2 个位度后恰巧点(4,10), k= .11.已知直 y=kx+b 第一、二、四象限,那么直y= bx+k 第象限.12.已知点 A( 4,a)、B( 2, b)都在直 y= x+k(k 常数)上, a与 b 的大小关系是 a b.(填“>”“<”或“=)”13.已知正比率函数 y=(1 m)x|m﹣2|,且 y 随 x 的增大而减小, m 的是.14.如,点 A 的坐( 1,0),点 B( a, a),当段 AB 最短,点 B 的坐.15.已知一次函数y=( 3a+1)x+a 的象上两点A( x1,y1),B(x2,y2),当x1> x2, y1>y2,且象不第四象限, a 的取范是.16.如 1,在等腰 Rt△ ABC中, D 斜直角点,向外结构等腰 Rt△CDE.点沿着折 A D E 运.在运程中,△数象如 2 所示, BC的是.AC上一点,以 CD直角,点 CP 从点 A 出,以 1 个位 /s 的速度,BCP的面 S 与运 t(s)的函17.如,搁置的△ OAB1,△ B1A1 B2,△ B2A2B3,⋯都是 a 的等三角形,点 A 在 x 上,点 O,B1,B2,B3,⋯都在同一条直上,点 A2015的坐是.18.如图,在直角坐标系中,菱形ABCD 的极点坐标C(﹣ 1,0)、B(0,2),点 A 在第二象限.直线y=﹣x+5 与 x 轴、 y 轴分别交于点 N、M .将菱形 ABCD 沿 x 轴向右平移 m 个单位.当点 A 落在 MN 上时,则 m=.19.已知:函数 y=( m+1)x+2m﹣6(1)若函数图象过(﹣ 1,2),求此函数的分析式.(2)若函数图象与直线 y=2x+5 平行,求其函数的分析式.(3)求知足( 2)条件的直线与直线 y=﹣3x+1 的交点.20.如图,直线 l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点 A(4,0),B(﹣ 1,5),直线 l1与 l2订交于点 C,(1)求直线 l2的分析式;(2)求△ ADC的面积;(3)在直线 l2上存在一点 F(不与 C 重合),使得△ ADF和△ ADC的面积相等,恳求出 F 点的坐标;(4)在 x 轴上能否存在一点 E,使得△ BCE的周长最短?若存在恳求出 E 点的坐标;若不存在,请说明原因.21.已知一次函数 y=kx+b 的图象与 x 轴、y 轴分别交于点 A(﹣ 2,0)、B(0,4),直线 l 经过点 B,而且与直线 AB 垂直.点 P 在直线 l 上,且△ ABP是等腰直角三角形.(1)求直线 AB 的分析式;(2)求点 P 的坐标;(3)点 Q(a,b)在第二象限,且 S△QAB=S△PAB.①用含 a 的代数式表示 b;②若 QA=QB,求点 Q 的坐标.22.某库房甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时 6 吨,以以以下图是从清晨上班开始库存量y(吨)与时间 x(小时)的函数图象, OA 段只有甲、丙车工作, AB 段只有乙、丙车工作, BC段只有甲、乙工作.( 1)甲、乙、丙三辆车中,谁是进货车?( 2)甲车和丙车每小时各运输多少吨?( 3)因为库房接来暂时通知,要求三车在 8 小时后同时开始工作,但丙车在运送10 吨货物后出现故障而退出,问:8 小时后,甲、乙两车又工作了几小时,使库房的库存量为 6 吨.第 5页(共 77页)23.如图,直线 l1的分析表达式为: y=3x﹣3,且 l1与 x 轴交于点 D,直线 l2经过点 A,B,直线 l1,l2交于点 C.(1)求△ ADC的面积;(2)在直线 l2上存在异于点 C 的另一点 P,使得△ ADP 与△ ADC 的面积相等,则点 P 的坐标为;( 3)若点 H 为坐标平面内随意一点,在座标平面内能否存在这样的点H,使以A、D、C、 H 为极点的四边形是平行四边形?若存在,请直接写出点H 的坐标;若不存在,请说明原因.24.如图,在平面直角坐标系中,已知O 为原点,四边形ABCD为平行四边形,A、B、C 的坐标分别是 A(﹣ 5,1),B(﹣ 2,4),C(5,4),点 D 在第一象限.(1)写出 D 点的坐标;(2)求经过 B、D 两点的直线的分析式,并求线段 BD 的长;(3)将平行四边形ABCD先向右平移1 个单位长度,再向下平移1 个单位长度所得的四边形A1B1C1D1四个极点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.25.已知点 A、B 分别在 x 轴, y 轴上, OA=OB,点 C 为 AB 的中点, AB=12 (1)如图 1,求点 C 的坐标;(2)如图 2,E、F 分别为 OA 上的动点,且∠ ECF=45°,求证: EF2=OE2+AF2;(3)在条件( 2)中,若点 E 的坐标为( 3,0),求 CF的长.26.如图 1,点 A 的坐标是(﹣ 2,0),直线 y=﹣x+4 和 x 轴、 y 轴的交点分别为 B、C 点.(1)判断△ ABC的形状,并说明原因;(2)动点 M 从 A 出发沿 x 轴向点 B 运动,同时动点 N 从点 B 出发沿线段 BC向点C 运动,运动的速度均为每秒1 个单位长度.当此中一个动点抵达终点时,它们都停止运动.设 M 运动 t 秒时,△ MON 的面积为 S.①求 S 与 t 的函数关系式;并求当t 等于多少时, S 的值等于?②在运动过程中,当△ MON 为直角三角形时,求t 的值.27.如图,一次函数 y=﹣ x+6 的图象分别与 y 轴、 x 轴交于点 A、B,点 P 从点B 出发,沿 BA以每秒 1 个单位的速度向点 A 运动,当点 P 抵达点 A 时停止运动,设点 P 的运动时间为 t 秒.(1)点 P 在运动的过程中,若某一时辰,△ OPA的面积为 12,求此时 P 点坐标;(2)在( 1)的基础上,设点 Q 为 y 轴上一动点,当 PQ+BQ 的值最小时,求 Q点坐标;( 3)在整个运动过程中,当t 为什么值时,△ AOP为等腰三角形?28.如图,在平面直角坐标系中,已知点A( 0, 1)、D(﹣ 2, 0),作直线AD 并以线段 AD 为一边向上作正方形ABCD.( 1)填空:点 B 的坐标为,点C的坐标为.(2)若正方形以每秒个单位长度的速度沿射线DA 向上平移,直至正方形的极点C 落在y 轴上时停止运动.在运动过程中,设正方形落在y 轴右边部分的面积为S,求 S对于平移时间 t(秒)的函数关系式,并写出相应的自变量 t 的取值范围.29.有一根直尺,短边的长为 2cm,长边的长为 10cm,还有一块锐角为 45°的直角三角形纸板,它的斜边长 12cm.如图①,将直尺的短边 DE 与直角三角形纸板的斜边 AB 重合,且点 D 与点 A 重合,将直尺沿 AB 方向平移,如图②.设平移的长度为 x cm,且知足 0≤x≤10,直尺与直角三角形纸板重合部分的面积(即图中暗影部分)为Scm2.( 1)当 x=0 时, S=;当x=4时,S=;当x=10时,S=.( 2)能否存在一个地点,使暗影部分的面积为11cm2?若存在,求出此时x 的值.30.如图,在平面直角坐标系中,O 为坐标原点.△ ABC的边 BC在 x 轴上, A、C 两点的坐标分别为 A(0,m)、C(n,0),B(﹣ 5,0),且( n﹣ 3)2+ =0,点 P 从 B 出发,以每秒 2 个单位的速度沿射线BO 匀速运动,设点 P 运动时间为t秒.(1)求 A、C 两点的坐标;(2)连结 PA,用含 t 的代数式表示△ POA的面积;(3)当 P 在线段 BO 上运动时,能否存在一点 P,使△ PAC是等腰三角形?若存在,请写出知足条件的全部 P 点的坐标并求 t 的值;若不存在,请说明原因.31.如图,在平面直角坐标系中,△ABC为等腰三角形, AB=AC,将△ AOC沿直线 AC折叠,点 O 落在直线 AD 上的点 E 处,直线 AD 的分析式为,则( 1) AO=;AD=;OC=;( 2)动点 P 以每秒 1 个单位的速度从点 B 出发,沿着 x 轴正方向匀速运动,点 Q 是射线 CE上的点,且∠ PAQ=∠BAC,设 P 运动时间为 t 秒,求△ POQ的面积 S 与 t 之间的函数关系式;( 3)在( 2)的条件下,直线 CE上能否存在一点Q,使以点 Q、 A、D、P 为顶点的四边形是同样四边形?若存在,求出t值及Q点坐标;若不存在,说明原因.32.已知在平面直角坐标系中,A( a、 o)、B(o、b)知足+| a﹣3| =0,P 是线段 AB 上一动点, D 是 x 轴正半轴上一点,且PO=PD, DE⊥AB 于 E.(1)求 a、b 的值.(2)当 P 点运动时, PE的值能否发生变化?若变化,说明原因;若不变,恳求PE的值.( 3)若∠ OPD=45°,求点 D 的坐标.33.如图, ?ABCD在平面直角坐标系中, AD=6,若 OA、OB 的长是对于 x 的一元二次方程 x2﹣ 7x+12=0 的两个根,且 OA>OB.(1)求 AB 的长;(2)求 CD的所在直线的函数关系式;(3)若动点 P 从点 B 出发,以每秒 1 个单位长度的速度沿 B→A方向运动,过 P作 x 轴的垂线交 x 轴于点 E,若 S△PBE=,求此时点P的坐标.34.在平面直角坐标系xoy 中,对于随意两点P1(x1,y1)与 P2(x2,y2)的“非常距离”,给出以下定义:若| x1﹣ x2| ≥ | y1﹣ y2| ,则点 P1与点 P2的“特别距离”为| x1﹣x2| ;若| x1﹣ x2| < | y1﹣ y2| ,则点 P1与点 P2的“特别距离”为| y1﹣y2| .比方:点 P1(1,2),点 P2(3,5),因为 | 1﹣ 3| <| 2﹣5| ,所以点 P1与点 P2的“特别距离”为| 2﹣5| =3,也就是图1 中线段P1Q 与线段P2Q 长度的较大值(点 Q 为垂直于 y 轴的直线 P1Q 与垂直于 x 轴的直线 P2Q 的交点).( 1)已知点 A(﹣,0),B为y轴上的一个动点,①若点 A 与点 B 的“特别距离”为 2,写出一个知足条件的点B 的坐标;②直接写出点 A 与点 B 的“特别距离”的最小值;( 2)已知 C 是直线 y= x+3 上的一个动点,①如图 2,点 D 的坐标是( 0,1),求点 C 与点 D 的“特别距离”的最小值及相应的点 C 的坐标;②如图 3,E 是以原点 O 为圆心,1 为半径的圆上的一个动点,求点 C 与点 E的“特别距离”的最小值及相应的点 E 和点 C 的坐标.35.对于两个已知图形G1、G2,在 G1上任取一点 P,在 G2上任取一点 Q,当线段 PQ 的长度最小时,我们称这个最小的长度为图形G1、 2 的“密距”;当线段GPQ 的长度最大值时,我们称这个最大的长度为图形G1、 G2的“疏距”.请你在学习、理解上述定义的基础上,解决下边的问题;在平面直角坐标系 xOy 中,点 A 的坐标为(﹣ 3,4),点 B 的坐标为( 3,4),矩形 ABCD的对称中心为点 O.( 1)线段 AD 和 BC的“密距”是,“疏距”是;( 2)设直线 y= x+b(b>0)与 x 轴、 y 轴分别交于点 E、F,若线段 EF 与矩形ABCD的“密距”是 1,求它们的“疏距”;(3)平面直角坐标系 xOy 中有一个四边形 KLMN,将矩形 ABCD绕点 O 旋转一周,在旋转过程中,它与四边形 KLMN 的“疏距”的最大值为 7,①旋转过程中,它与四边形 KLMN 的“密距”的取值范围是;②求四边形 KLMN 的面积的最大值.36.在平面直角坐标系中,已知 A,B 两点分别在 x 轴,y 轴上, OA=OB=4,C 在线段 OA 上,AC=3,过点 A 作 AE⊥ BC,交 BC的延伸线于 E,直线 AE 交 y 轴于 D.(1)求点 D 坐标.(2)动点 P 从点 A 出发,沿射线 AO 方向以每秒 1 个单位长度运动,设点 P 的运动时间为 t 秒,△ POB的面积为 y,求 y 与 t 之间的函数关系式并直接写出自变量的取值范围.( 3)在(2)问的条件下,当 t=1,PB=5时,在 y 轴上能否存在一点Q,使△ PBQ 为以 PB 为腰的等腰三角形?若存在,求点Q 的坐标;若不存在,请说明原因.37.如图,四边形 OABC中, CB∥ OA,∠ OCB=90°,CB=1,OA=OC,O 为坐标原点,点 A 在 x 轴上,点 C 在 y 轴上,直线过A点,且与y轴交于D点.(1)求出 A、点 B 的坐标;(2)求证: AD=BO且 AD⊥BO;(3)若点 M 是直线 AD 上的一个动点,在 x 轴上能否存在另一个点 N,使以 O、B、M 、 N 为极点的四边形是平行四边形?若存在,恳求出点N 的坐标;若不存在,请说明原因.38.如图,一次函数 y=﹣x+的图象与坐标轴分别交于点 A 和 B 两点,将△AOB沿直线 CD 折起,使点 A 与点 B 重合,直线 CD 交 AB 于点D.( 1)求点 C 的坐标;( 2)在射线 DC上求一点 P,使得 PC=AC,求出点 P 的坐标;( 3)在座标平面内,能否存在点 Q(除点 C 外),使得以 A、 D、Q 为极点的三角形与△ ACD 全等?若存在,恳求出全部吻合条件的点Q 的坐标;若不存在,请说明理.39.已知,如,在平面直角坐系中,点 A、 B 的横坐恰巧是方程 x2 4=0 的解,点 C 的坐恰巧是方程 x2 4x+4=0 的解,点 P 从 C 点出沿 y 正方向以 1 个位 / 秒的速度向上运, PA、 PB,D AC的中点.1)求直 BC的分析式;2)点 P 运的 t 秒,:当 t 何, DP 与 DB 垂直且相等?3)如 2,若 PA=AB,在第一象限内有一点 Q, QA、QB、QP,且∠ PQA=60°,:当 Q 在第一象限内运,∠ APQ+∠ ABQ的度数和能否会生改?若不,明原因并求其.40.方成同学看到一资料,甲开汽,乙自行从 M 地出沿一条公路匀速前去 N 地,乙行的 t (h),甲乙两人之的距离 y(km), y 与 t 的函数关系如 1 所示,方成思虑后了 1 的部分正确信息,乙先出 1h,甲出 0.5h 与乙相遇,⋯你帮助方成同学解决以下:(1)分求出段 BC, CD所在直的函数表达式;(2)当 20<y< 30 ,求 t 的取范;(3)分求出甲、乙行的行程 S 甲、S 乙与 t 的函数表达式,并在 2 所的直角坐系中分画出它的象.数学初二一次函数提升练习与常考题和培优难题压轴题( 含分析 )参照答案与试题分析一.选择题(共9 小题)1.(2016 春?重庆校级月考)函数的自变量x的取值范围是()A.x≤2B.x≥2 且 x≠ 3 C.x≥2 D.x≤2 且 x≠3【分析】依据二次根式的性质和分式的意义,被开方数大于或等于 0,分母不等于0,可以求出 x 的范围.【解答】解:依据题意得: 2﹣x≥0 且 x﹣3≠0,解得: x≤2 且 x≠ 3,自变量的取值范围x≤2,应选 A.【谈论】本题察看了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不可以为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2016 春?南京校级月考)对于函数y=﹣x﹣2 的图象,有以下说法:①图象过点( 0,﹣ 2)②图象与 x 轴的交点是(﹣ 2,0)③由图象可知 y 随 x 的增大而增大④图象不经过第一象限⑤图象是与 y=﹣ x+2 平行的直线,此中正确说法有()A.5 个 B.4 个 C.3 个 D.2 个【分析】依据一次函数的性质和图象上点的坐标特色解答.【解答】解:①将(0,﹣ 2)代入分析式得,左侧 =﹣2,右边 =﹣2,故图象过(0,﹣ 2)点,正确;②当 y=0 时, y=﹣ x﹣ 2 中, x=﹣ 2,故图象过(﹣ 2, 0),正确;③因为 k=﹣1<0,所以 y 随 x 增大而减小,错误;④因为 k=﹣1<0,b=﹣ 2< 0,所以图象过二、三、四象限,正确;⑤因为 y=﹣x﹣2 与 y=﹣x 的 k 值(斜率)同样,故两图象平行,正确.应选 B.【谈论】本题察看了一次函数的性质和图象上点的坐标特色,要注意:在直线y=kx+b 中,当 k>0 时, y 随 x 的增大而增大;当 k<0 时, y 随 x 的增大而减小.3.(2016 春?农安县月考)已知等腰三角形的周长为 20cm,底边长为 y(cm),腰长为 x( cm),y 与 x 的函数关系式为 y=20﹣2x,那么自变量 x 的取值范围是()A.x>0B.0<x<10C.0<x<5 D.5<x<10【分析】依据三角形的三边关系:随意两边之和大于第三边,随意两边之差小于第三边,进行求解.【解答】解:依据三角形的三边关系,得则0<20﹣2x<2x,由20﹣ 2x>0,解得 x<10,由20﹣ 2x<2x,解得 x>5,则 5<x<10.应选 D.【谈论】本题察看了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的重点.4.(2012 秋?镇赉县校级月考)如图,三个正比率函数的图象对应的分析式为①y=ax,② y=bx,③ y=cx,则 a、 b、 c 的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【分析】依据所在象限判断出 a、 b、 c 的符号,再依据直线越陡,则 | k| 越大可得答案.【解答】解:∵ y=ax,y=bx,y=cx 的图象都在第一三象限,∴a> 0,b> 0, c>0,∵直线越陡,则 | k| 越大,∴c>b>a,应选: B.【谈论】本题主要察看了正比率函数图象的性质, y=kx 中,当 k>0 时,图象经过一、三象限, y 随 x 的增大而增大;当 k< 0 时,图象经过二、四象限, y 随 x 的增大而减小.同时注意直线越陡,则 | k| 越大.5.(2016 春?重庆校级月考)一辆慢车以50 千米 / 小时的速度从甲地驶往乙地,一辆快车以 75 千米 / 小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500 千米,两车同时出发,则图中折线大概表示两车之间的距离y(千米)与慢车行驶时间 t(小时)之间的函数图象是()A.B.C.D.【分析】分三段谈论,①两车从开始到相遇,这段时间两车距快速减小,②相遇后向相反方向行驶到特快抵达甲地,这段时间两车距快速增添,③特快抵达甲地至快车抵达乙地,这段时间两车距迟缓增大,联合实质选吻合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距快速减小;②相遇后向相反方向行驶到特快抵达甲地这段时间两车距快速增添;③特快抵达甲地至快车抵达乙地,这段时间两车距迟缓增大;联合图象可得 C 选项吻合题意.应选: C.【谈论】本题察看了函数的图象,解答本题重点是分段谈论,要联合实质解答,理解每条直线所代表的实质含义及拐点的含义.6.(2015 春?浠水县校级月考)以下语句不正确的选项是()A.全部的正比率函数必定是一次函数B.一次函数的一般形式是y=kx+bC.正比率函数和一次函数的图象都是直线D.正比率函数的图象是一条过原点的直线【分析】分别利用一次函数和反比率函数的定义以及其性质分析得出即可.【解答】解: A、全部的正比率函数必定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+b( k≠ 0),故此选项错误,吻合题意;C、正比率函数和一次函数的图象都是直线,正确,不合题意;D、正比率函数的图象是一条过原点的直线,正确,不合题意;应选: B.【谈论】本题主要察看了一次函数和反比率函数的定义,正确掌握其性质是解题重点.7.(2016 春?无锡校级月考)已知x 对于的一次函数y=mx+n 的图象如上图,则| n﹣m| ﹣可化简()A.n B.n﹣2m C. m D.2n﹣m【分析】依据一次函数图象与系数的关系,确立m、 n 的符号,此后由绝对值、二次根式的化简运算法例解得即可.【解答】解:依据图见告,对于x 的一次函数 y=mx+n 的图象经过第一、二、四象限,∴m<0,n>0;∴| n﹣m| ﹣=n﹣m﹣(﹣ m)+(n﹣m)=2n﹣ m.应选 D.【谈论】本题主要察看了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数 y=kx+b(k≠0,b≠0)的图象,当 k< 0, b> 0 时,经过第一、二、四象限.8.( 2015 秋?盐城校级月考)假如一次函数 y=kx+b,当﹣ 3≤x≤1 时,﹣1≤y≤7,则 kb 的值为()A.10 B.21 C.﹣10 或 2 D.﹣ 2 或 10【分析】由一次函数的性质,分k>0 和 k<0 时两种状况谈论求解.【解答】解:由一次函数的性质知,当k>0 时, y 随 x 的增大而增大,所以得,解得.即 kb=10;当 k<0 时, y 随 x 的增大而减小,所以得,解得.即 kb=﹣ 2.所以 kb 的值为﹣ 2 或 10.应选 D.【谈论】本题察看一次函数的性质,要注意依据一次函数图象的性质分状况谈论.9.(2015 秋?西安校级月考)若函数y=(2m+1)x2+(1﹣2m)x+1(m 为常数)是一次函数,则m 的值为()A.m B.m=C.m D.m=﹣【分析】依据一次函数的定义列出算式计算即可.【解答】解:由题意得, 2m+1=0,解得, m=﹣,应选: D.【谈论】本题察看的是一次函数的定义,一般地,形如 y=kx+b(k≠0,k、b 是常数)的函数,叫做一次函数.二.填空题(共9 小题)10.( 2014 春?邹平县校级月考)直线 y=kx 向下平移 2 个单位长度后恰巧经过点(﹣ 4,10),则 k= ﹣ 3 .【分析】依据一次函数与正比率函数的关系可得直线y=kx 向下平移 2 个单位后得y=kx﹣ 2,此后把(﹣ 4,10)代入 y=kx﹣2 即可求出 k 的值.【解答】解:直线 y=kx 向下平移 2 个单位后所得分析式为 y=kx﹣ 2,∵经过点(﹣ 4,10),∴10=﹣4k﹣2,解得: k=﹣ 3,故答案为:﹣ 3.【谈论】本题主要察看了一次函数图象与几何变换,平移后分析式有这样一个规律“左加右减,上加下减”.11.( 2016 春?南京校级月考)已知直线 y=kx+b 经过第一、二、四象限,那么直线 y=﹣bx+k 经过第二、三、四象限.【分析】依据直线 y=kx+b 经过第一、二、四象限可以确立k、b 的符号,则易求﹣b 的符号,由﹣ b,k 的符号来求直线 y=﹣bx+k 所经过的象限.【解答】解:∵直线 y=kx+b 经过第一、二、四象限,∴ k< 0,b>0,∴﹣b<0,∴直线 y=﹣bx+k 经过第二、三、四象限.故答案是:二、三、四.【谈论】本题主要察看一次函数图象在座标平面内的地点与 k、 b 的关系.解答本题注意理解:直线 y=kx+b 所在的地点与 k、 b 的符号有直接的关系. k> 0 时,直线必经过一、三象限. k< 0 时,直线必经过二、四象限. b> 0 时,直线与 y 轴正半轴订交. b=0 时,直线过原点; b<0 时,直线与 y 轴负半轴订交.12.(2016 春 ?大丰市校级月考)已知点 A(﹣ 4,a)、B(﹣ 2,b)都在直线 y=x+k ( k 为常数)上,则 a 与 b 的大小关系是 a < b.(填“>”“<”或“=)”【分析】先依据一次函数的分析式判断出一次函数的增减性,再依据﹣4<﹣ 2 即可得出结论.【解答】解:∵一次函数 y= x+k(k 为常数)中, k= >0,∴y 随 x 的增大而增大,∵﹣ 4<﹣ 2,∴a< b.故答案为:<.【谈论】本题察看的是一次函数图象上点的坐标特色,熟知一次函数图象上各点的坐标必定合适此函数的分析式是解答本题的重点..(2015 春建瓯市校级月考)已知正比率函数| m﹣2| ,且 y 随 x13 ? y=( 1﹣ m)x的增大而减小,则m 的值是3.【分析】先依据正比率函数的定义列出对于k 的不等式组,求出k 取值范围,再依据此正比率函数y 随 x 的增大而减小即可求出k 的值.【解答】解:∵此函数是正比率函数,∴,解得 m=3,故答案为: 3.【谈论】本题察看的是正比率函数的定义及性质,依据正比率函数的定义列出关于 k 的不等式组是解答本题的重点.14.( 2016 春?天津校级月考)如图,点 A 的坐标为(﹣ 1, 0),点 B(a,a),当线段 AB 最短时,点 B 的坐标为(﹣,﹣).【分析】过点 A 作 AD⊥OB 于点 D,过点 D 作 OE⊥x 轴于点 E,先依据垂线段最短得出当点 B 与点 D 重合时线段 AB 最短,再依据直线 OB 的分析式为 y=x 得出△AOD是等腰直角三角形,故 OE= OA= ,由此可得出结论.【解答】解:过点 A 作 AD⊥ OB 于点 D,过点 D 作 OE⊥x 轴于点 E,∵垂线段最短,∴当点 B 与点 D 重合时线段 AB 最短.∵直线 OB的分析式为 y=x,∴△ AOD是等腰直角三角形,∴OE= OA=1,∴D(﹣,﹣).故答案为:(﹣,﹣).【谈论】本题察看的是一次函数图象上点的坐标特色, 熟知一次函数图象上各点的坐标必定合适此函数的分析式是解答本题的重点.15.(2015 春 ?宜兴市校级月考)已知一次函数 y=(﹣ 3a+1)x+a 的图象上两点 A( x 1, 1 ), ( 2, 2),当 x 1> 2 时, 1> 2,且图象不经过第四象限,则a 的 y B x y x y y 取值范围是 0≤a <.【分析】 依据 y 随 x 的增大而增大可得 x 的系数大于 0,图象不经过第四象限,那么经过一三或一二三象限,那么此函数的常数项应为非负数.【解答】 解:∵ x 1> x 2 时, y 1 >y 2,∴﹣ 3a+1>0,解得 a < ,∵图象不经过第四象限,∴经过一三或一二三象限,∴ a ≥ 0,∴ 0≤ a < .故答案为: 0≤a < .【谈论】察看了一次函数图象上的点的坐标的特色; 获得函数图象可能经过的象限是解决本题的重点.16.( 2015 秋?靖江市校级月考)如图 1,在等腰 Rt △ ABC 中, D 为斜边 AC 边上一点,以 CD 为直角边,点 C 为直角极点,向外结构等腰 Rt △ CDE .动点 P 从点A 出,以 1 个位 /s 的速度,沿着折 A D E 运.在运程中,△BCP的面 S与运 t (s)的函数象如 2 所示, BC的是2.【分析】由函数的象可知点 P 从点 A 运到点 D 用了 2 秒,从而获得 AD=2,当点 P 在DE 上,三角形的面不,故此 DE=4,从而可求得 DC=2 ,于是获得 AC=2+2 ,从而可求得 BC的 2+ .【解答】解:由函数象可知: AD=1×2=2,DE=1×( 6 2)=4.∵△ DEC是等腰直角三角形,∴ DC===2.∴AC=2+2 .∵△ ABC是等腰直角三角形,∴ BC===.故答案:.【点】本主要考的是点的函数象,由函数象判断出 AD、DE的度是解的关.17.( 2016 春?城校月考)如,搁置的△ OAB1,△ B1 A1B2,△ B2A2B3,⋯都是 a 的等三角形,点 A 在 x 上,点 O,B1,B2,B3,⋯都在同一条直上,点 A2015的坐是(a,a).【分析】依据意得出直BB1的分析式: y= x,而得出A,A1,A2,A3 坐,而得出坐化律,而得出答案.【解答】解: B1向 x 作垂 B1C,垂足 C,由意可得:A(a,0),AO∥ A1 B1,∠ B1OC=60°,∴OC= a, CB1=OB1sin60 =° a,∴B1的坐:( a, a),∴点 B1,2,3,⋯都在直y= x 上,B B∵ B1(a,a),∴A1( a, a),∴A2(2a, a),⋯A n(a,).∴ A2015(a,a).故答案.【点】此主要考了一次函数象上点的坐特色以及数字化,得出 A点横纵坐标变化规律是解题重点.18.(2016 春 ?泰兴市校级月考)如图,在直角坐标系中,菱形ABCD的极点坐标C(﹣ 1, 0)、B(0,2),点 A 在第二象限.直线y=﹣x+5 与 x 轴、 y 轴分别交于点 N、M.将菱形 ABCD沿 x 轴向右平移 m 个单位.当点 A 落在 MN 上时,则m= 3.【分析】依据菱形的对角线相互垂直均分表示出点A 的坐标,再依据直线分析式求出点 A 挪动到 MN 上时的 x 的值,从而获得 m 的取值范围,再依据各选项数据选择即可.【解答】解:∵菱形 ABCD的极点 C(﹣ 1,0),点 B( 0, 2),∴点 A 的坐标为(﹣ 1,4),当y=4 时,﹣ x+5=4,解得 x=2,∴点 A 向右挪动 2+1=3 时,点 A 在 MN 上,∴m 的值为 3,故答案为 3.【谈论】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特色,菱形的性质,比较简单.三.解答题(共22 小题)19.( 2016 春?武城县校级月考)已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣ 1,2),求此函数的分析式.(2)若函数图象与直线 y=2x+5 平行,求其函数的分析式.(3)求知足( 2)条件的直线与直线 y=﹣3x+1 的交点.【分析】(1)依据一次函数图象上点的坐标特色,把(﹣1,2)代入 y=( m+1)x+2m﹣ 6 求出 m 的值即可获得一次函数分析式;(2)依据两直线平行的问题获得 m+1=2,解出 m=1,从而可确立一次函数分析式.(3)两直线的分析式联立方程,解方程即可求得.【解答】解:( 1)把(﹣1,2)代入 y=(m+1)x+2m﹣6 得﹣( m+1)+2m﹣6=2,解得 m=9,所以一次函数分析式为y=10x+12;(2)因为函数 y=( m+1)x+2m﹣ 6 的图象与直线 y=2x+5 平行,所以 m+1=2,解得 m=1,所以一次函数分析式为 y=2x﹣ 4.(3)解得,∴两直线的交点为( 1,﹣ 2).【谈论】本题察看了两直线订交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所构成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数同样,即k 值同样.20.( 2015 秋?兴化市校级月考)如图,直线 l1的函数关系式为,且l1与x 轴交于点 D,直线 l2经过定点 A(4,0),B(﹣ 1,5),直线 l1与 l2订交于点 C,(1)求直线 l2的分析式;(2)求△ ADC的面积;(3)在直线 l2上存在一点 F(不与 C 重合),使得△ ADF和△ ADC的面积相等,恳求出 F 点的坐标;(4)在 x 轴上能否存在一点 E,使得△ BCE的周长最短?若存在恳求出 E 点的坐标;若不存在,请说明原因.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数培优专题一、选择:1.(莆田)如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处2.(重庆綦江)如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ A BP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( ) A .3 B .4 C .5 D .63.(黔东南州)如图,在凯里一中学生耐力测试比赛中,甲、乙两学生测试的路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是( ) A 、乙比甲先到终点 B 、乙测试的速度随时间增加而增大C 、比赛进行到29.4秒时,两人出发后第一次相遇D 、比赛全程甲的测试速度始终比乙的测试速度快 4.(兰州)函数y =x -2+31-x 中自变量x 的取值范围是 A .x ≤2 B .x =3 C . x <2且x ≠3 D .x ≤2且x ≠35.(遂宁)已知整数x 满足-5≤x ≤5,y 1=x+1,y 2=-2x+4对任意一个x ,m 都取y 1,y 2中的较小值,则m 的最大值是A.1B.2C.24D.-9 6.(凉山州)若0ab <,则正比例函数y ax =与反比例函数by x=在同一坐标系中的大致图象可能是( ) 6.(牡丹江)如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )QM(图1)(图2)4 9yx O图1 2O5 x C P D 图2 y x O C .y x O y x O yx O B .7.(安徽)已知函数y kx b=+的图象如图,则2y kx b=+的图象可能是【】8A22229.(重庆)如图,在矩形ABCD中,AB=2,1BC=,动点P沿路线B C D→→作匀速运动,那么ABP△的面积S与点P)10.(衢州)P1(x1,y1),P2(x2,y2)是正比例函数y= -x图象上的两点,则下列判断正确的是A.y1>y2 B.y1<y2 C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2二、填空:1.(武汉)如图,直线y kx b=+经过(21)A,,(12)B--,两点,则不等式122x kx b>+>-的解集为.2.(常德市)一个函数的图象关于y轴成轴对称图形时,称该函数为偶函数.那么在下列四个函数①2y x=;②31y x=--;③6yx=;④21y x=+中,偶函数是(填出所有偶函数的序号).3.(桂林市、百色市)如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为.A.B.C.D.D CPBAA B3.(十堰市)已知函数1+-=x y 的图象与x 轴、y 轴分别交于点C 、B ,与双曲线xky =交于点A 、D ,若AB+CD= BC ,则k 的值为 .4.(日照)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是______________.5.已知关于x 、y 的一次函数()12y m x =--的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是6.(包头)如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为1,则AC 的长为 (保留根号). 三、解答:1.(重庆市江津区)如图,反比例函数xy 2=的图像与一次函数b kx y +=的图像交于点A(m,2),点B(-2, n ),一次函数图像与y 轴的交点为C 。
(1)求一次函数解析式;(2)求C 点的坐标;(3)求△AOC 的面积。
2.(济宁市)阅读下面的材料:yxOC 1B 2A 2 C 3B 1 A 3B 3A 1 C 2O y x 2-1 yO x AC B在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数222(0)y k x b k =+≠的图象为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;(2)设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.3.(黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。
(1)设每间包房收费提高x (元),则每间包房的收入为y 1(元),但会减少y 2间包房租出,请分别写出y 1、y 2与x 之间的函数关系式。
(2)为了投资少而利润大,每间包房提高x (元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y 与x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由。
4.(江苏省)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)5. (成都)已知一次函数2y x =+与反比例函数ky x=,其中一次函数2y x =+的图象经过点P(k ,5).(1)试确定反比例函数的表达式;(2)若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标. 6.(安顺)已知一次函数(0)y kx b k =+≠和反比例函数2ky x=的图象交于点A(1,1) (1) 求两个函数的解析式;(2) 若点B 是x 轴上一点,且△AOB 是直角三角形,求B 点的坐标。
7.(重庆綦江)如图,一次函数y kx b =+(0)k ≠的图象与反比例函数(0)my m x=≠的图象相交于A 、B 两点.(1)根据图象,分别写出点A 、B 的坐标; (2)求出这两个函数的解析式.8.(威海)一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数kyx=的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD . (1)若点A B ,在反比例函数ky x=的图象的同一分支上,如图1,试证明: ①AEDK CFBK S S =四边形四边形; ②AN BM =.(2)若点A B ,分别在反比例函数ky x=的图象的不同分支上,如图2,则AN 与BM 还相等吗?试证明你的结论. A 村投递,途中遇到县城中学的学生李明从A 村步行s (千米)和小王从县城出发后所用的时间t (分)之间 10万元,今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利? 11.(乌鲁木齐市)星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y (立方米)与时间x (小时)的函数关系如图2所示.(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?(2)当0.5x ≥时,求储气罐中的储气量y (立方米)与时间x (小时)的函数解析式;(3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.12.(湖北荆州)由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖.某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金。
他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控图15单位:cm 制在不低于34万元,但不高于40万元.若一年内该产品的售价y (万元/台)与月次x (112x ≤≤且为整数)满足关系是式:0.050.25(14)0.1(46)0.0150.01(612)x x y x x x ⎧-+≤<⎪=≤≤⎨⎪+<≤⎩,一年后发现实际..每月的销售量p (台)与月次x 之间存在如图所示的变化趋势. ⑴ 直接写出实际......每月的销售量p (台)与月次x 之间的函数关系式; ⑵ 求前三个月中每月的实际销售利润w (万元)与月次x 之间的函数关系式; ⑶ 试判断全年哪一个月的的售价最高,并指出最高售价; ⑷ 请通过计算说明他这一年是否完成了年初计划的销售量.13.(河北)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm,B 型板材规格是40 cm×30 cm.现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用. (1)上表中,m = ,n = ; (2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少张?14.(潍坊)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用1y (元)和蔬菜加工厂自己加工制作纸箱的费用2y (元)关于x (个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.15.(咸宁市)某车站客流量大,旅客往往需长时间排队等候购票.经调查统计发现,每天开始售票时,约有300名旅客排队等候购票,同时有新的旅客不断进入售票厅排队等候购票,新增购票人数y (人)与售票时间x (分)的函数关系如图①所示;每个售票窗口票数y (人)与售票时间x (分)的函数关系如图②所示.某天售票厅排队等候购票的人数y (人)与售票时间x (分)的函数关系如图③所示,已知售票的前a 分钟开放了两个售票窗口. (1)求a 的值;(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数; (3)该车站在学习实践科学发展观的活动中,本着“以人为本,方便旅客”的宗旨,决定增设售票窗口.若要在开始售票后半小时内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口? 16.(牡丹江)甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离y (千米)与乙车行驶时间x (小时)之间的函数图象.(1)请将图中的( )内填上正确的值,并直接写出甲车从A 到B 的行驶速度; (2)求从甲车返回到与乙车相遇过程中y 与x 之间的函数关系式,并写出自变量x 的取值范围.(3)求出甲车返回时行驶速度及A 、B 两地的距离. 17.(牡丹江)某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100台.经预算,两种冰箱全部型号 A 型B 型成本(元/台) 2200 2600 售价(元/台)28003000(1 (2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种. 18.(长春)某部队甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为y 甲(棵),乙班植树的总量为y 乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x (时),y 甲、y 乙分别与x 之间的部分函数图象如图所示.(1)当06x ≤≤时,分别求y 甲、y 乙与x 之间的函数关系式.(3分)(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当8x =时,甲、乙两班植树的总量之和能否超过260棵.(3分)(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当8x =时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.(4分)Oy (棵)x (时)36 812030 1 43 1 240300 78 a x /分 y /人 O O O (图①) (图②) (图③) x /分 /人x /分 y /人19. (锦州)某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润不超过40%.其中销售量y(件)与所售单价x(元)的关系可以近似的看作如图12所表示的一次函数.(1)求y与x之间的函数关系式,并求出x的取值范围;(2)设该公司获得的总利润(总利润=总销售额-总成本)为w元,求w与x之间的函数关系式.当销售单价为何值时,所获利润最大?最大利润是多少?20.(清远)某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;每千克饮料果汁含量果汁甲乙A 0.5千克0.2千克B 0.3千克0.4千克可使y值最小,最小值是多少?21.(白银市)23.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]鞋长(cm)16192124鞋码(号)22283238(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上?(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?22.(新疆)某公交公司的公共汽车和出租车每天从乌鲁木齐市出发往返于乌鲁木齐市和石河子市两地,出租车比公共汽车多往返一趟,如图表示出租车距乌鲁木齐市的路程y(单位:千米)与所用时间x(单位:小时)的函数图象.已知公共汽车比出租车晚1小时出发,到达石河子市后休息2小时,然后按原路原速返回,结果比出租车最后一次返回乌鲁木齐早1小时.(1)请在图中画出公共汽车距乌鲁木齐市的路程y(千米)与所用时间x(小时)的函数图象.(2)求两车在途中相遇的次数(直接写出答案)(3)求两车最后一次相遇时,距乌鲁木齐市的路程.23.(江西)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB 、OB 分别表示父、子俩送票、取票过程中,离体育馆的路程.......S (米)与所用时间t (分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)求点B 的坐标和AB 所在直线的函数关系式; (2)小明能否在比赛开始前到达体育馆?(第21题)。