反渗透分离
反渗透原理讲解

反渗透原理反渗透是用足够的压力使溶液中的溶剂(一般指水)通过反渗透(或称半透膜)而分离出来,因为它和自然渗透的方向相反,故称反渗透,根据各种物料的不同渗透压,就可以使用大于渗透压的反渗透法达到进行分离、提取、纯化和浓缩的目的。
反渗透主要对象是分离溶液中的离子范围,反渗透法由于分离过程不需加热,没有相的变化,具有耗能少,操作简单适应性强,应用范围广等特点,在水处理中应用范围日益扩大,成为水处理技术的重要方法之一,卷式元件是根据反渗透原理,将半透膜、导流层、格网按一定的排列粘和在有派孔的中心管上形成元件。
原水从元件一端进入格网层,在经过格网时,在外界压力作用下,一部分水通过半透膜的孔,渗透到导流层内,在顺导流层的水道流到中心管的排孔,经中心管排出。
剩余部分(称为浓水)从格网另一端排出。
一、运行条件1、设备进水温度10-35℃,适应最低进水温度10℃最高进水温度35℃.2、原水供水压力范围1-3KG/㎡,供电电压为380V±5%3、PH值运行最佳范围在5—8.4、根据水质及水量,可做多级串联或并联,但最终出水膜元件浓水与淡水流量之比不大于5:1,作为纯净水处理比例可作相应调整。
5、每只膜元件的最大压降为0.7KG/㎡。
6、新装RO膜元件设备运行开始,必须进行冲洗,将新膜元件内的保护液冲洗干净,新装RO膜元件开始运行时,膜元件运行压力控制5-10KG/㎡,水利用率在50%为最佳状态,当原水水温低于5℃,原水应加换热器,以提高原水温度,降低第一段膜元件的压力,来提高产水量。
最佳进水温度为25℃。
二、反渗透有关计算公式1、脱盐率 cf---cpR=----------------100%Cf2回收率 QPY=-----------QP+QM式中:CF—给水电导(US/CM)CP—产水电导率(US/CM)QP---淡水流量(CM3/H)QM—浓水流量(CM3/H)三、运行操作1、在任何条件下反渗透装置周围的环境温度不低于0℃,不得高于35℃,水温控制在20-25℃为宜。
反渗透膜分离制高纯水实验报告

反渗透膜分离制高纯水实验报告一、实验目的1.掌握反渗透膜的基本原理,学会使用反渗透膜分离制高纯水。
2.掌握反渗透膜的组成结构及其影响因素。
3.通过实验,了解反渗透膜在水处理中的应用和优点。
二、实验器材实验器材包括:反渗透膜分离装置、超纯水制备设备、PH计、计时器、天平、移液管、量筒、实验用水、电导率计等。
三、实验原理反渗透膜是由多层薄膜复合而成,具有微孔结构,可使水分子透过,而截留其中的微小杂质和病原菌等物质,从而实现水的纯化。
在反渗透膜分离制高纯水时,首先要将原水通过机械过滤器等装置除去较大的悬浮颗粒物和粗大的杂物,然后由加压泵将原水压入反渗透膜分离器中,靠分离膜对浓缩水进行截留和去除。
经过反渗透膜的过滤,就可以得到高纯水。
四、实验操作1.准备工作(1)检查并确认实验器材是否完好无损。
(2)将反渗透膜分离装置竖放于实验台上,并插上电源。
(3)将清洁后的实验用水放入水箱内,并将水箱置于实验台下方平台上。
(4)确保反渗透膜分离器滤芯已清洗干净,各连接管路已连接牢固。
(5)开启水泵,排出风管内的气体,压缩空气排除干净。
2.实验操作(1)通过机械过滤器等装置处理掉原水中较大的悬浮颗粒和杂物。
(2)将原水通过电动加压泵压入反渗透膜装置。
(3)待反渗透膜分离器排出的浓缩液为淡紫色时,关闭仪器电源,取出所制备的高纯水做PH值和电导率测试,记录测试结果。
(4)根据需要,可将所制备的高纯水进行二次及三次甚至更多次处理,以获得更高纯度的水。
五、实验结果分析通过实验操作可以得到较高纯度的水,对于实验、工业等领域具有一定的应用前景。
实验操作需要严格按照操作规程进行,不然会影响实验结果的正确性。
在实验操作过程中应注意实验用水的处理,将水质保持在清洁的状态,才能获得较高纯度的水。
反渗透水处理原理

反渗透水处理原理
反渗透(Reverse Osmosis,RO)是一种利用半透膜分离技术进行水
处理的方法,主要用于去除水中的溶解性固体、膜溶质和大部分有机物质
的处理过程。
本文将详细介绍反渗透水处理的原理。
反渗透的基本原理是通过将水推入半透膜,使溶液中的溶质被隔离,
从而使溶液变稀。
当两个液体之间存在浓度差时,浓度较高的一方液体会
渗透到浓度较低的一方。
然而,如果这两个液体之间存在一个半透膜,也
就是可让水通过但不让溶质通过的膜,那么水分子就会通过膜的微小孔隙,使溶液变稀。
半透膜是反渗透水处理的核心部分,它由多层薄膜组成,能够让水通
过但阻止溶质通过。
典型的反渗透膜有两个主要的种类:螺旋卷绕膜和平
板膜。
螺旋卷绕膜由一层在中空支撑管周壁上涂有半透膜材料的膜带形成,而平板膜则由一层叠合在一起的平板膜单元组成。
反渗透的过程涉及两个主要的阻力:膜表面阻力和膜内阻力。
膜表面
阻力是指在半透膜表面上膜溶液的滞留和短路效应引起的阻力。
膜内阻力
是指膜内溶液穿透孔洞和通道时受到的阻力。
综上所述,反渗透水处理是一种通过半透膜分离技术进行水处理的方法,能够有效去除水中的溶解性固体、膜溶质和有机物质。
它的基本原理
是通过提供足够的压力,使水穿过半透膜,从而实现水质的净化。
反渗透
水处理在饮用水、工业用水和海水淡化等方面具有广泛的应用前景。
ro膜反渗透处理工艺

ro膜反渗透处理工艺RO(Reverse Osmosis,反渗透)膜是一种分离技术,通过压力将溶液逆向渗透,使溶质从高浓度一侧通过半透膜到低浓度一侧,从而实现溶质的分离纯化。
RO膜反渗透处理工艺包括预处理、反渗透膜组件和后处理等步骤。
预处理是指对原水进行净化,主要包括颗粒物过滤和活性炭吸附。
颗粒物过滤通过滤网去除悬浮颗粒物、悬浮物和大颗粒物质,以防止损坏或阻塞RO膜。
活性炭吸附是通过活性炭吸附处理原水中的氯、有机物和部分重金属等,以减少RO膜的污染风险和延长RO膜寿命。
反渗透膜组件是关键的处理单元,它由半透膜和支持层构成。
半透膜是用高分子聚合物制成的,具有高选择性的孔径,可以阻隔细小溶质和离子,同时允许水分子通过。
支持层是半透膜的支撑层,可以增加半透膜的机械强度。
在RO膜组件中,水通过膜孔,离子和溶质被阻隔,形成纯净的过滤液。
后处理是指RO膜处理后的浓水(浓缩液)的处理。
浓水中含有被RO膜排除的溶质和溶解离子,需要进行处理再利用或处理排放。
后处理包括二次浓缩、中和、离子交换和混床处理等。
二次浓缩是将浓水经过蒸发,使其溶质浓度进一步提高,从而达到溶质的回收利用。
中和是将浓水与酸、碱反应,使其pH值回中性,并稳定溶解离子。
离子交换是通过离子交换树脂,将离子从溶液中去除以实现水的纯化。
混床处理是将阳离子交换树脂和阴离子交换树脂按一定比例混合,以去除溶液中的离子。
RO膜反渗透处理工艺具有以下优点:高效能、高回收率、操作简单、无化学添加剂、节约能源和环保等。
因此,RO膜反渗透处理工艺被广泛应用于饮用水处理、工业废水处理、海水淡化、制药工艺水等领域。
总之,RO膜反渗透处理工艺是一种效果优良的水处理技术,通过预处理、反渗透膜组件和后处理等步骤,实现对水的纯化和回收利用。
其优点包括高效能、高回收率、操作简单、无化学添加剂、节约能源和环保等。
反渗透

反Hale Waihona Puke 透(RO)技术l 反渗透膜分离的原理:借助于反渗透膜对溶液中 溶质的截留作用,在高于溶液渗透压的压力推动下,使 溶剂反渗透通过半透膜,达到溶剂和溶质的分离。
l 反渗透膜分离技术的特点: 1)常温下操作,适用于热敏感物质。 2)不发生相变,所以能耗较低。 3)去除范围广(粒径几个纳米以上的物质,如:溶解 的无机盐,低分子有机物)。 4)截盐率较高。 5)装置简单,但要高压泵;容易操作、控制和维修。 6)为了延长反渗透膜的寿命,进入RO器之前的液体要 预处理;反渗透膜要定期清洗。
反渗透膜的发展史
1748年 Nollet发现渗透现象。 1920年 建立了稀溶液的完整理论。 1953年 发现醋酸纤维素类具有良好的半透性。 1960年 人类首次制成醋酸纤维素反渗透膜。 1970年 杜邦公司发明了芳香族聚酰胺中空纤维反渗透器。 1980年 全芳香族聚酰胺复合膜及其卷式元件问世。 1990年 中压、低压、及超低压高脱盐聚酰胺复合膜进入 市场,从而为反渗透技术的发展开辟了广阔前景。 1998年 低污染膜研发成功,进一步扩大了反渗透的应用 范围。
反渗透
主要内容
三种静压差膜分离 反渗透(RO) 超滤(UF)和微滤(MF) 压力驱动膜过程中的浓差极化 膜污染和膜的清洗
静压差膜分离
微滤(MF)、超滤(UF)、纳滤(NF)和反渗 透(RO)分离类似于过滤,用以分离悬浮微粒 或含溶解的溶质的液体。 1) 微滤 2) 超滤 3) 纳滤 4)反渗透
反渗透膜的发展方向
• 就反渗透膜的结构形式而言,中空膜、管式膜、板式膜的市
场相对狭窄,致使美国杜邦公司(Du Pont)已经停止其中空膜 的生产,日本东洋纺(Toyobo)的中空膜在国内的销量也极其有 限。卷式膜的预处理要求低、处理水源范围宽、应用范围广
反渗透(RO)详解

反渗透过程中的浓差极化
• 浓差极化 在反渗透过程中,大部分溶质被截留并在 膜的表面积累,故从料液主体到膜表面建立一层有溶质浓 度梯度的边界层,溶质在膜表面的浓度高于在料液主体的 浓度,这种现象叫浓差极化。
边界层l 料液侧
溶质浓度变化
膜
透过 液侧
反渗透的分离机理
1.溶解扩散理论(Lonsdale和Riley) 该模型假设膜是完美无缺的理想无孔膜,高压侧浓溶
液中各组分先溶于膜中,再以分子扩散方式通过厚度为δ
的膜,最后在低压侧进入稀溶液。溶质和溶剂在扩散中服 从Fick定律。
该模型基本上可定量的描述水和盐透过膜的传递,但 推导中的一些假设并不符合真实情况,另外,传递过程中 水、盐和膜之间相互作用也没有考虑。
提高分离效率,需定期对膜进行清洗。
• 反渗透过程可以分为三类:
高压反渗透(5.6~10.5MPa), 低压反渗透(1.0~4.2MPa), 纳滤(0.3~1.0MPa)。
• 反渗透膜上的微孔孔径约为 0.5nm,而无 机盐离子的直径仅为0.1~0.3nm,水合离 子的直径为0.3~0.6nm,略小于孔径,无 法用分子筛分原理来解释RO分离现象。
5、自由体积理论(Yasuda安田)
• 该理论认为:膜的自由体积包括聚合物的 自由体积和水的自由体积。
• 聚合物的自由体积指无水溶胀的由无规则 高分子线团堆积而成的膜中,未被高分子 占据的空间。
• 水的自由体积指水溶胀的膜中,纯水所占 据的空间。
• 该理论假设:水可以在整个膜的自由体积中 迁移,而盐只能在水的自由体积中迁移,从 而使膜具有选择透过性。
•渗透压是溶液的一个性质,与膜无关。
反渗透工艺原理及特点

反渗透脱盐工艺原理及特点1反渗透的工艺原理反渗透膜分离技术的原理通过对如下几个专业名词的解释来描述:半透膜:只能允许溶剂分子通过,而不允许溶质的分子通过的膜称为理想半渗透。
渗透:在相同的外压下,当溶液与纯溶剂为半透膜隔开时,纯溶剂会通过半透膜是溶液变稀的现象称为渗透。
渗透平衡:渗透过程中,单位时间内溶剂分子从两个相反方向穿过半透膜的数目彼此相等,即达到渗透平衡。
渗透压:当半透膜隔开溶液与纯溶剂时,加在原溶液上使其恰好能阻止纯溶剂进入溶液的额外压力称为渗透压。
通常溶液越浓,溶液的渗透压越大。
反渗透:如果加在溶液上的压力超过了渗透压,则反而使溶液中的溶剂向纯溶剂方向流动,这个过程叫做反渗透。
反渗透是利用反渗透膜选择性地只能透过溶剂(通常是水)而截留离子物质的性质,以膜两侧静压差为推动力,克服溶剂的渗透压,使溶剂通过反渗透膜而实现对液体混合物进行分离的膜过程。
它的操作压差一般为1.5~10.5MPa,截留组分的大小为1~10Å的小分子溶质。
除此之外,还可以从液体混合物中去除其他全部的悬浮物、溶解物和胶体。
2反渗透工艺的技术特点在常温不发生相变化的条件下,可以对溶质和水进行分离,适用于对热敏感物质的分离、浓缩、并且与有相变化的分离方法相比,能耗较低。
杂质去除范围广,不仅可以去除溶解的无机盐类、还可以去除各类有机杓杂质。
较高的除盐率和水的回用率、可截留粒径几纳米以上的溶质。
由于只是利用压力作为膜分离的推动力、因此分离装置简单,容易操作、自控和维修。
反渗透装置要求进水达到一定的指标才能正常运行,医此原水在进入反渗透装置之前要采用一定的预处理措施。
为了延长膜的使用寿命,还要定期对膜进行清洗,以清除污垢。
3反渗透工艺设计、计算典型工艺流程:反渗透系统一般包括三大主要部分:预处理、反渗透装置、后处理。
与微滤和超滤过程类似,良好的预处理对反渗透装置长期稳定运行十分必要。
预处理目的:a.去除悬浮固体和胶体,降低浊度;b.控制微生物的生长;c.抑制与控制微溶盐的沉积;d.进水温度和pH值的调整;e.有机物的去除;f.旧金属氧化物和硅的沉淀控制;等等。
反渗透技术及工艺流程图

反渗透技术及工艺流程图
来源:山东科宇水处理有限公司
反渗透技术是当今最先进和最节能有效的膜分离技术。
反渗透是一种以压力为推动力,通过选择性透过膜将溶液中的溶质和溶剂分离的应用技术。
由于反渗透膜的膜孔径非常小(仅为10-10米左右),因此能够有效地去除水中的溶解盐类、胶体、微生物、有机物等(去除率高达97%-98%)。
反渗透是目前高纯水设备中应用最广泛的一种脱盐技术,它的分离对象是溶液中的离子范围和分子量几百的有机物。
反渗透工艺流程如图1所示:
图反渗透工艺流程图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反渗透分离的技术及应用
反渗透是利用反渗透膜选择性地只能透过溶剂(通常是水)的性
质,对溶液施加压力,克服溶剂的渗透压,使溶剂通过反渗透膜而从
溶液中分离出来的过程。海水和苦咸水的淡化是其最主要的应用。
一、反渗透分离技术的历史
人类发现渗透现象尽管已有250多年历史,但反渗透作为一项新
型的膜分离技术最早是1953年由美国C.E.Reid教授在佛罗里达大学
首先发现醋酸纤维素类具有良好的半透性为标志。同年,反渗透研究
在Reid的建议下被列入美国国家计划。70年代初,反渗透法开始作
为经济实用的海水和苦咸水的淡化技术进入实用和装置的研制阶段。
80年代初,全芳香族聚酰胺复合膜及其卷式元件(装置图)问世,
高脱盐全芳香族聚酰胺复合膜工业化,90年代中超低压高脱盐全芳
香族聚酰胺复合膜也开始进入市场,为反渗透技术的进一步发展开辟
了广阔的前景。反渗透目前已成为海水和苦咸水淡化最经济的技术,
已成为超纯水和纯水制备的优选技术;另外在各种料液的分离,纯化
和浓缩,锅炉水的软化,废液的再生回用,以用对微生物、细菌和病
毒进行分离控制等方面都发挥着应有的作用。
二、反渗透的原理及条件
反渗透基本原理是利用反渗透膜选择性的透过作用,以膜两侧静
压差为推动力,克服溶剂的渗透压,使溶剂通过反渗透膜而实现对液
体混合物进行分离的膜过程。
反渗透过程必须满足二个条件:一是有一种高选择性和高透过率
(一般是透水)的选择性透过膜;二是操作压力必须高于溶液的渗透
压。反渗透同NF、UF、MF一样均属于压力驱动型膜分离技术。其
操作压差一般为1.5~10.5 MPa,截留组分为(1~10) 10-10 m小
分子溶质。
合理先进的制膜工艺和最优的工艺参数是制作优良性能分离膜
的重要保证。目前工艺应用的反渗透膜可分三类:高压海水脱盐反渗
透膜;低压苦咸水脱盐反渗透膜及超低压反渗透膜。
三、反渗透膜的种类
典型的反渗透膜有:
(1)醋酸纤维膜:它是目前研究得最多反渗透或超滤膜材料,
在纤维素分子中引入不同酯基后,得到的具有不同亲水性和反应官能
团的纤维素衍生物。
(2)芳香聚酰胺膜:良好的透水性,较高的脱盐率,优良的机
械强度和高温稳定性,能在pH值3~11宽范围内应用,但对氯很敏
感。
(3)复合膜:是将超薄皮层经不同方法附载在微孔支撑体上制
成膜,并分别使超薄脱盐层和多孔支撑层最佳化。能克服醋酸纤维素
类反渗透膜有易压实的过渡层,通量下降率大,应用pH范围较窄,
不耐生物降解等缺点,以及芳香聚酰胺膜对氯很敏感的缺点。
四、反渗透膜的应用
反渗透的截留对象是所有的离子,仅让水透过膜,对NaCl的截
留率在98%以上,出水为无离子水。反渗透法能够去除可溶性的金属
盐、有机物、细菌、胶体粒子、发热物质,也即能截留所有的离子,
在生产纯净水、软化水、无离子水、产品浓缩、废水处理方面反渗透
膜已经应用广泛。
由于反渗透分离技术的先进、高效和节能的特点,在国民经济各
个部门都得到了广泛的应用,主要应用于水处理和热敏感性物质的浓
缩,主要应用领域包括以下:食品工业、牛奶工业、饮料工业、植物
(农产品)深加工、生物医药、生物发酵、制备饮用水、纯水、超纯
水、海水、苦咸水淡化、电力、电子、半导体工业用水、医药行业工
艺用水、制剂用水、注射用水、无菌无热源纯水、食品饮料工业、化
工及其它工业的工艺用水、锅炉用水、洗涤用水及冷却用水。