第四讲-立体几何题型归类总结
2024年高考数学立体几何知识点总结(2篇)

2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。
在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。
下面是对2024年高考数学立体几何知识点的总结,供考生参考。
一、空间几何1. 空间几何中的点、线、面的概念和性质。
点是没有长度、宽度和高度的,只有位置的大小,用字母表示。
线是由一组无限多个点构成的集合,用两个点的字母表示。
面是由无限多条线构成的,这些线共面且没有相交或平行关系。
2. 空间几何中的垂直、平行等概念和性质。
两条线在同一平面内,如果相交角为90°,则称两线垂直。
两条线没有相交关系,称两线平行。
3. 点到直线的距离的计算。
点到直线的距离等于该点在直线上的正交投影点的距离。
二、立体图形的面积与体积1. 立体图形的分类和性质。
立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。
各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。
2. 立体图形的面积计算。
(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。
(2)圆柱体的侧面积计算公式:S = 2πrh。
(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。
(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。
(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。
3. 立体图形的体积计算。
(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。
(2)圆柱体的体积计算公式:V = πr²h。
(3)圆锥体的体积计算公式:V = 1/3πr²h。
(4)棱柱体的体积计算公式:V = ph。
(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h 为高。
三、立体几何的一般理论1. 点、线、面的位置关系。
在空间中,点、线、面可以相互相交、平行、垂直等。
高三高考数学总复习《立体几何》题型归纳与汇总

(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,
立体几何大题题型总结

立体几何大题题型总结
立体几何大题包括以下几种题型:
1. 体积计算题:给定一个几何体的形状和尺寸,求其体积。
2. 表面积计算题:给定一个几何体的形状和尺寸,求其表面积。
3. 三视图综合题:给定一个几何体的三视图,通过推理和计算求出其体积和表面积。
4. 截面综合题:给定一个几何体的各个截面的形状和尺寸,通过推理和计算求出其体积和表面积。
5. 相似几何体综合题:给定多个几何体的形状和尺寸,在它们之间应用相似性质,求出它们各自的体积和表面积。
6. 空间几何关系题:给定多个几何体之间的位置关系,例如相切、相交、包含等,求出它们各自的体积和表面积。
7. 作图求解题:通过构造一些几何形状,例如放射形、圆锥、圆台等,求出特定几何体的体积和表面积。
8. 混合几何体综合题:将以上多种题型进行综合,考查学生的综合运用能力。
2024年高考数学立体几何知识点总结(2篇)

2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。
在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。
下面是对2024年高考数学立体几何知识点的总结,供考生参考。
一、空间几何1. 空间几何中的点、线、面的概念和性质。
点是没有长度、宽度和高度的,只有位置的大小,用字母表示。
线是由一组无限多个点构成的集合,用两个点的字母表示。
面是由无限多条线构成的,这些线共面且没有相交或平行关系。
2. 空间几何中的垂直、平行等概念和性质。
两条线在同一平面内,如果相交角为90°,则称两线垂直。
两条线没有相交关系,称两线平行。
3. 点到直线的距离的计算。
点到直线的距离等于该点在直线上的正交投影点的距离。
二、立体图形的面积与体积1. 立体图形的分类和性质。
立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。
各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。
2. 立体图形的面积计算。
(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。
(2)圆柱体的侧面积计算公式:S = 2πrh。
(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。
(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。
(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。
3. 立体图形的体积计算。
(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。
(2)圆柱体的体积计算公式:V = πr²h。
(3)圆锥体的体积计算公式:V = 1/3πr²h。
(4)棱柱体的体积计算公式:V = ph。
(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h 为高。
三、立体几何的一般理论1. 点、线、面的位置关系。
在空间中,点、线、面可以相互相交、平行、垂直等。
高中立体几何知识点总结

高中立体几何知识点总结高中立体几何知识点总结高中立体几何知识点总结1三角函数。
注意归一公式、诱导公式的正确性数列题。
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
概率问题。
1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样; 高中立体几何知识点总结2平面通常用一个平行四边形来表示。
平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC。
在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:a) A∈l—点A在直线l上;Aα—点A不在平面α内;b) lα—直线l在平面α内;c) aα—直线a不在平面α内;d) l∩m=A—直线l与直线m相交于A点;e) α∩l=A—平面α与直线l交于A点;f) α∩β=l—平面α与平面β相交于直线l。
立体几何归类总结

立体几何归类总结一、异面直线所成的角:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、直线和平面所成的角求直线与平面所成的角的一般步骤:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hl θ=(l 为斜线段长),进而可求得线面角; (3)通过建系,利用坐标系向量求解:直线与平面所成的角(射影角,也是夹角,[0.]2πϑ∈),m n ,是平面法向量sin |cos a |=b θ=,三、二面角的平面角角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角;(3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.【题型一】异面直线所成的角1: 平移直线法(中位线)【例1】如图∶已知A 是BCD △所在平面外一点,AD BC =,E 、F 分别是AB 、CD 的中点,若异面直线AD 与BC 所成角的大小为θ,AD 与EF 所成角的大小为_______________.【例2】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为菱形,60ABC ∠=且PA AB E =,为AP 的中点,则异面直线PC 与DE 所成的角的余弦值为( )A B C D 【例3】空间四边形ABCD 的对角线10AC =,6BD =,M ,N 分别为AB ,CD 的中点,7MN =,则异面直线AC 和BD 所成的角等于( )A .30°B .60°C .90°D .120°【例4】在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,在鳖臑 ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角为( )A .30°B .45°C .60°D .90°【题型二】异面直线所成的角2:平行四边形、梯形等【例1】已知六棱锥P ﹣ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA =2AB ,则异面直线CD 与PB 所成的角的余弦值为( )A B C D【例2】已知圆柱的母线长为2ABCD 为其轴截面,若点E 为上底面圆弧AB 的中点,则异面直线DE 与AB 所成的角为( )A .4πB .6πC .512πD .3π【例3】如图,在正方体1111ABCD A B C D -中,E ,F ,G ,H 分别为1AA ,AB ,1BB ,11B C 的中点,则异面直线EF 与GH 所成的角等于( )A .45︒B .60︒C .90︒D .120︒【例4】正方体1111ABCD A B C D -中,已知E 为1CC 的中点,那么异面直线1BC 与AE 所成的角等于( ) A .30 B .45︒ C .60︒ D .90︒【题型三】异面直线所成的角3:垂直【例1】如图,在三棱柱111ABC A B C -中,CA CB =,1AB AA =,1π3BAA ∠=,那么异面直线AB 与1A C 所成的角为A .6πB .π4C .π3D .π2【例2】在如图所示的正方体中,M ,N 分别为棱BC 和DD 1的中点,则异面直线AN 和B 1M 所成的角为( )A .30°B .45°C .90°D .60°【例3】菱形ABCD 的对角线AC 、BD 的交点为O ,P 是菱形所在平面外一点,PO ⊥平面ABCD ,则异面直线AC 与PD 所成角大小为______.【例4】若异面直线a ,b 所成的角为3π,且直线c a ⊥,则异面直线b ,c 所成角的范围是______.【题型四】 异面直线所成角的范围与最值(难点)【例1】如图,点M N 、分别是正四面体ABCD 棱AB CD 、上的点,设BM x =,直线MN 与直线BC 所成的角为θ,则( )A .当2ND CN =时,θ随着x 的增大而增大B .当2ND CN =时,θ随着x 的增大而减小C .当2CN ND =时,θ随着x 的增大而减小 D .当2CN ND =时,θ随着x 的增大而增大【例2】已知菱形ABCD ,60DAB ∠=︒,E 为边AB 上的点(不包括A B ,),将ABD △沿对角线BD 翻折,在翻折过程中,记直线BD 与CE 所成角的最小值为α,最大值为β( ) A .αβ,均与E 位置有关B .α与E 位置有关,β与E 位置无关C .α与E 位置无关,β与E 位置有关D .αβ,均与E 位置无关【例3】在正方体1111ABCD A B C D -中,已知,,E F G 分别为111,,CD D D A B 的中点,P 为平面11CDD C 内任一点,设异面直线GF 与PE 所成的角为α,则cos α的最大值为( )A .13BCD .1【例4】已知圆柱12O O 的底面半径和母线长均为1,A ,B 分别为圆2O 、圆1O 上的点,若2AB =,则异面直线1O B ,2O A 所成的角为( )A .6π B .3πC .23π D .56π【题型五】 异面直线所成角:综合【例1】在正方体ABCD ﹣A 1B 1C 1D 1中,过点C 做直线l ,使得直线l 与直线BA 1和B 1D 1所成的角均为70,则这样的直线l ( )A .不存在B .2条C .4条D .无数条【例2】在正方体1111ABCD A B C D -的所有面对角线中,所在直线与直线1A B 互为异面直线且所成角为60︒的面对角线的条数为( ) A .2 B .4 C .6 D .8【例3】1111ABCD A B C D -是棱长为1的正方体,一个质点从A 出发沿正方体的面对角线运动,每走完一条面对角线称“走完一段”,质点的运动规则如下:运动第i 段与第2i +所在直线必须是异面直线(其中i 是正整数).问质点走完的第2021段与第1段所在的直线所成的角是( )A .0°B .30°C .60°D .90°【例4】已知异面直线a 、b 所成角为80︒,P 为空间一定点,则过P 点且与a 、b 所成角都是50︒的直线有且仅有( )条. A .2 B .3 C .4D .6【题型六】 直线和平面所成的角1:垂线法【例1】在空间,若60AOB AOC ∠=∠=︒,90BOC ∠=°,直线OA 与平面OBC 所成的角为θ,则cos θ=( )A B C .12D .13【例2】正四面体ABCD 中,直线AB 与平面BCD 所成的角的正弦值是( )A B .14C D【例3】如图,已知正方体1111ABCD A B C D -,直线1A B 与平面11A B CD 所成的角为( )A .30B .45︒C .60︒D .90︒【例4】已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则( ) A .2βα= B .2αβ=C .αβ=D .2παβ+=【题型七】直线和平面所成 的角2:垂面法【例1】如图,在三棱锥P ABC -中,平面PAB ⊥平面,2ABC PA PB AB ===,,AB BC BC ⊥=线PC 与平面ABC 所成的角是( )A .30︒B .45︒C .60︒D .90︒【例2】正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为则直线1B A 与平面11BB C C 所成的角为( )A .3πB .6πC .512πD .4π【例3】如图,在正三棱柱111ABC A B C -中,底面边长为2,侧棱长为3,则直线1BB 与平面11AB C 所成的角为________.【例4】已知四棱锥P ABCD -底面是边长为2的正方形,PA ⊥平面ABCD ,且2PA =,则直线PB 与平面PCD 所成的角大小为__________.【题型八】直线和平面所成 的角3:体积法(距离法)【例1】如图,在直三棱柱111ABC A B C -中,1AB BC ==,120ABC ∠=︒.M 为11A C 的中点,则直线BM 与平面11ABB A 所成的角为( )A .15°B .30°C .45°D .60°【例2】在正方体''''ABCD A B C D -中,直线'BC 与平面'A BD 所成的角的余弦值等于A B C D【例3】已知长方体1111ABCD A B C D -中,1112AA AB AD ===,,1AA 与平面1A BD 所成的角为______.【例4】直线l 与平面α所成的角为6π,且AB 是直线l 上两点,线段AB 在平面α内的射影长为3,则AB =___________.【题型九】线面角中的范围与最值【例1】在正方体1111ABCD A B C D -中,点O 为线段BD 的中点,设点P 在直线1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .⎤⎥⎣⎦B .⎤⎥⎣⎦C .⎣⎦D .⎣⎦【例2】若直线l 与平面α所成的角为3π,直线a 在平面α内,则直线l 与直线a 所成的角的取值范围是( )A .0,3π⎡⎤⎢⎥⎣⎦B .,62ππ⎡⎤⎢⎥⎣⎦ C .,32ππ⎡⎤⎢⎥⎣⎦ D .,63ππ⎡⎤⎢⎥⎣⎦【例3】在正方体1111ABCD A B C D -中,点P 在线段11C D 上,若直线1B P 与平面11BC D 所成的角为θ,则tan θ的取值范围是( )A .⎣⎦B .⎡⎣C .11,32⎡⎤⎢⎥⎣⎦D .⎤⎥⎣⎦【例4】直线l 与平面α所成的角为π3,则直线l 与平面α内直线所成角的最小值是________.【题型十】线面角:综合【例1】如图所示,在正方体1AC 中,2AB =,1111AC B D E =,直线AC 与直线DE 所成的角为α,直线DE 与平面11BCC B 所成的角为β,则()cos αβ-=__________.【例2】直线l 与平面α所成的角是45°,若直线l 在α内的射影与α内的直线m 所成的角是45°,则l 与m 所成的角是( ) A .30° B .45°C .60°D .90°【例3】若直线l 与平面α所成的角为3π,直线a 在平面α内,且与直线l 异面,则直线l 与直线a 所成角的取值范围是( )A .0,3π⎡⎤⎢⎥⎣⎦B .,62ππ⎡⎤⎢⎥⎣⎦C .,63ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎤⎢⎥⎣⎦【例4】如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上,若直线1DD 与平面1D EC 所成的角为4π,则AE =__________.【题型十一】定义法求二面角的平面角【例1】自二面角内任意一点分别向两个面引垂线,则两垂线所成的角与二面角的平面角的关系是( ) A .相等 B .互补 C .互余 D .相等或互补【例2】如图,菱形ABCD 的边长为60BCD ∠=︒,将BCD △沿对角线BD 折起,使得二面角C BD A '--的平面角的余弦值是13,则C B '与平面ABD 所成角的正弦值是( )A B C D【例3】在三棱锥P -ABC 中,P A =PB =AC =CB =AB =2,PC =3,则二面角P -AB -C 的大小为( ) A .30° B .60° C .90° D .120°【例4】在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,且PA AB =,AD =,则二面角P CD B --的大小为( ) A .30° B .45° C .60°D .75°【题型十二】二面角内的角度【例1】从空间一点P 向二面角l αβ--的两个面α、β分别作垂线PE 、PF ,E ,F 为垂足,若二面角l αβ--的大小为60°,则⊥EPF 的大小为( )A .60°B .120°C .60°或120°D .不确定【例2】如图,在ABC 中,AB AC =,3A π∠=,P 为底边BC 上的动点,BP BC λ=,102λ<<,沿折痕AP把ABC 折成直二面角B AP C '--,则B AC '∠的余弦值的取值范围为( )A .⎛ ⎝⎭B .12⎛ ⎝⎭C .13,24⎛⎫ ⎪⎝⎭D .10,2⎛⎫⎪⎝⎭【例3】如图,圆锥AO 中,B 、C 是圆O 上的不同两点,若30OAB ∠=,且二面角B AO C --所成平面角为60,动点P 在线段AB 上,则CP 与平面AOB 所成角的正切值的最大值为( )A .2 BC D .1【例4】已知E ,F 分别是矩形ABCD 边AD ,BC 的中点,沿EF 将矩形ABCD 翻折成大小为α的二面角.在动点P 从点E 沿线段EF 运动到点F 的过程中,记二面角B AP C --的大小为θ,则( ) A .当90α<︒时,sin θ先增大后减小 B .当90α<︒时,sin θ先减小后增大 C .当90α>时,sin θ先增大后减小 D .当90α>时,sin θ先减小后增大【题型十三】二面角内的距离【例1】如图,在大小为60︒的二面角A EF D --中,四边形ABFE ,四边形CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )AB .2C .1 D【例2】在三棱锥A -BCD 中,ABC 和BCD △均为边长为2的等边三角形,若AB CD ⊥,则二面角A -BC -D 的余弦值为( )A B C .13D【例3】120°的二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知2AB =,3AC =,4BD =,则CD 的长为( )A B C D【例4】如下图,面α与面β所成二面角的大小为3π,且A ,B 为其棱上两点.直线AC ,BD 分别在这个二面角的两个半平面中,且都垂直于AB ,已知AB =2AC =,4BD =,则CD =( )AB C D .【题型十四】综合角度:比大小(难点)【例1】在正方体1111ABCD A B C D -中,M 是线段1A C (不含端点)上的点,记直线M B 与直线11A B 成角为α,直线MC 与平面ABC 所成角为β,二面角M BC A --的平面角为γ,则( )A .βγα<<B .αβγ<<C .βαγ<<D .γαβ<<【例2】已知矩形ABCD ,M 是边AD 上一点,沿BM 翻折ABM ,使得平面ABM ⊥平面BCDM ,记二面角A BC D --的大小为α,二面角A DM C --的大小为β,则( )A .αβ<B .αβ>C .2παβ+< D .2παβ+>【例3】四棱锥P ABCD -的各棱长均相等,M 是AB 上的动点(不包括端点),点N 在线段AD 上且满足2AN ND =,分别记二面角P MN C --,P AB C ,P MD C --的平面角为,,αβγ,则( ) A .βαγ>> B .βγα>>C .γβα>>D .γαβ>>【例4】已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF 沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥1.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1BB 所成角为( )A .6πB .3πC .4πD .2π2.若二面角l αβ--的平面角为θ,异面直线a ,b 满足a α⊂,b β⊂,且a l ⊥,b l ⊥,则异面直线a ,b 所成的角为( ).A .θB .πθ-C .2θπ-D .θ或πθ-3..已知正三棱锥A BCD -中,BC =,E 是CD 的中点,则异面直线BE 与AD 所成角为( ) A .30° B .45° C .60° D .90°4.在直三棱柱111ABC A B C -中,12AB AA ==,1BC =,AB BC ⊥,点D 是侧棱1BB 的中点,则异面直线1C D 与直线1AB 所成的角大小为( )A .6πB .4πC .3πD .2π5.两条异面直线,a b 所成的角为60,在直线,a b 上分别取点,A E 和点,B F ,使AB a ⊥,且AB b ⊥.已知6,8,14AE BF EF ===,则线段AB 的长为( )A .20或12B .12或C .D .206..已知两条异面直线a ,b 所成角为60°,在直线a 上取点C ,E .在直线b 上取点D ,F ,使CD a ⊥,且CD b ⊥.已知1CE DF CD ===,则线段EF 的长为______.7..在正方体1111ABCD A B C D -中,设直线1BD 与直线AD 所成的角为α,直线1BD 与平面11CDD C 所成的角为β,则αβ+=( )A .4πB .3πC .2πD .23π8.如图,正四棱锥P ABCD -的体积为2,底面积为6,E 为侧棱PC 的中点,则直线BE 与平面PAC 所成的角为_______.9.在正方体1111ABCD A B C D -中,若存在平面α,使每条棱所在的直线与平面α所成的角都相等,则各棱所在的直线与此平面所成角的正切值为_______.10.过正方体1111ABCD A B C D -的顶点A 作平面α,使正方形ABCD 、正方形11ABB A 、正方形11ADD A 所在平面与平面α所成的二面角的平面角相等,则这样的平面α可以作( )A .1个B .2个C .3个D .4个11.如图,已知二面角l αβ--平面角的大小为3π,其棱l 上有A 、B 两点,AC 、BD 分别在这个二面角的两个半平面内,且都与AB 垂直.已知1AB =,2==AC BD ,则CD =( )A .5B .13C D11.已知矩形 ABCD ,1AB =,BC =沿对角线AC 将ABC 折起,若二面角B AC D --的余弦值为13-,则B 与D 之间距离为( )A.1 BC D12.已知在正方体1111ABCD A B C D -中,点E 为棱BC 的中点,直线l 在平面1111D C B A 内.若二面角A l E --的平面角为θ,则cos θ的最小值为( )A B .1121 C D .3513.已知在正四棱锥P ABCD -中,2AB =,3PA =,侧棱与底面所成角为α,侧面与底面所成角为β,二面角A PB C --的平面角为θ,则下列说法正确的是( ) A .βαθ<< B .αθβ<< C .2cos cos 0θβ+= D .2cos cos 0θα+=。
高考数学立体几何题型大全总结

高考数学立体几何题型大全总结1. 三角锥的体积公式
体积公式:V=1/3∗S∗h
其中,S为底面积,h为高。
2. 三棱锥的体积公式
体积公式:V=1/3∗S∗h
其中,S为底面积,h为高。
3. 四棱锥的体积公式
体积公式:V=1/3∗S∗h
其中,S为底面积,h为高。
4. 圆锥的体积公式
体积公式:V=1/3∗π∗r2∗h
其中,r为圆锥的半径,h为圆锥的高。
5. 球的体积公式
体积公式:V=4/3∗π∗r3
其中,r为球的半径。
6. 圆柱的体积公式
体积公式:V=π∗r2∗h
其中,r为圆柱的半径,h为圆柱的高。
7. 圆台的体积公式
体积公式:V=1/3∗π∗h∗(r12+r22+r1r2)
其中,r1,r2为底面半径,h为圆台高。
8. 空间向量的共线与垂直判定公式
共线判定公式:
如果两个向量a,b共线,则有a=kb,其中k为一个实数。
垂直判定公式:
如果两个向量a,b垂直,则有a·b=0,其中“·”表示向量的数量积。
9. 空间向量的平面垂直判定公式
若向量a与平面P垂直,则a在平面P上的投影为零向量。
10. 空间向量的平面共面判定公式
若向量a和向量b在同一平面上,则a和b的向量积c在该平面内。
11. 空间中两直线相交的条件
两直线相交的条件是它们至少有一个公共点,并且既不平行也不重合。
高考数学立体几何题型全归纳

高考数学立体几何题型全归纳一、空间几何体的结构特征1. 一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm),则该三棱柱的表面积为()正视图:是一个矩形,长为2,高为√(3);侧视图:是一个矩形,长为2,高为1;俯视图:是一个正三角形,边长为2。
解析:底面正三角形的边长a = 2,底面积S_{底}=(√(3))/(4)a^2=(√(3))/(4)×2^2=√(3)。
侧棱长h = 1,三个侧面的面积S_{侧}=3×2×1 = 6。
所以表面积S=2S_{底}+S_{侧}=2√(3)+6。
2. 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()正视图:是一个梯形,上底为1,下底为2,高为2;侧视图:是一个矩形,长为2,宽为1;俯视图:是一个矩形,长为2,宽为1。
解析:该几何体是一个四棱台。
上底面积S_{1}=1×1 = 1,下底面积S_{2}=2×2=4,高h = 2。
根据四棱台体积公式V=(1)/(3)h(S_{1}+S_{2}+√(S_{1)S_{2}})=(1)/(3)×2×(1 + 4+√(1×4))=(14)/(3)二、空间几何体的表面积与体积3. 已知球的直径SC = 4,A,B是该球球面上的两点,AB=√(3),∠ ASC=∠BSC = 30^∘,则棱锥S - ABC的体积为()解析:设球心为O,因为SC是球的直径,∠ ASC=∠ BSC = 30^∘所以SA=SB = 2√(3),AO = BO=√(3)又AB=√(3),所以 AOB是等边三角形,S_{ AOB}=(√(3))/(4)×(√(3))^2=(3√(3))/(4)V_{S - ABC}=V_{S - AOB}+V_{C - AOB}=(1)/(3)× S_{ AOB}×(SO + CO)=(1)/(3)×(3√(3))/(4)×2=√(3)4. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()正视图:是一个正方形,右上角缺了一个等腰直角三角形;侧视图:是一个正方形,右上角缺了一个等腰直角三角形;俯视图:是一个正方形,右上角缺了一个小正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲-立体几何题型归类总结高中数学-立体几何第四讲立体几何题型归类总结一、考点分析基本图形1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
斜棱柱底面是正多边形的棱柱正棱柱直棱柱其他棱柱2.棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的垂线上,这样的棱锥叫做正棱锥。
3.球球的性质:球心与截面圆心的连线垂直于截面;r=R2-d2(其中,球心到截面的距离为d、球的半径为R、截面的半径为r)球与多面体的组合体:球与正四面体、长方体、正方体等的内接与外切。
注:球的有关问题转化为圆的问题解决。
球面积、体积公式:S球=4πR,V球=4/3πR³(其中R为球的半径)二、平行垂直基础知识网络平行与垂直关系可互相转化平行关系a⊥α,b⊥α⇒a//ba⊥α,a//b⇒b⊥αa⊥α,a⊥β⇒α//βα//β,a⊥α⇒a⊥βα//β,γ⊥α⇒γ⊥β垂直关系线线平行判定线线垂直性质判定性质判定面面垂直定义面面垂直线面平行面面平行线面垂直异面直线所成的角,线面角,二面角的求法1.求异面直线所成的角θ∈(0°,90°):解题步骤:找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。
常用中位线平移法证:证明所找(作)的角就是异面直线所成的角(或其补角)。
常需要证明线线平行;计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角度$\theta\in[0^\circ,90^\circ]$:关键在于找到“两足”:垂足和斜足。
解题步骤:1.找到斜线与其在平面内的射影的夹角(注意三垂线定理的应用);2.证明所找到的角度就是直线与平面所成的角度(或其补角)(常常需要证明线面垂直);3.通过解直角三角形,计算线面角度。
3求二面角的平面角度$\theta\in[0,\pi]$:解题步骤:1.根据二面角的平面角度定义,找到二面角的平面角度;2.证明所找到的平面角度就是二面角的平面角度(常常使用定义法、三垂线法和垂面法);3.通过解三角形,计算二面角的平面角度。
二、典型例题考点一:三视图1.若一个空间几何体的三视图如图1所示,则该几何体的体积为__________。
2.若某个空间几何体的三视图如图2所示,则该几何体的体积为__________。
3.若一个几何体的三视图如图3所示,则该几何体的体积为__________。
4.若某个几何体的三视图(单位:cm)如图4所示,则该几何体的体积为__________。
5.若一个几何体的三视图如图5所示,且它的体积为33,则$a=$__________。
6.已知某个几何体的三视图如图6所示,根据图中标出的尺寸(单位:cm),可得该几何体的体积为__________。
7.若某个几何体的三视图(单位:cm)如图7所示,则该几何体的体积为__________。
8.设某个几何体的三视图如图8(尺寸的长度单位为m),则该几何体的体积为__________。
9.若一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,则该几何体的侧面积为__________。
10.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm),则该三棱柱的表面积为__________。
11.如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,则该几何体的全面积为__________。
12.如果一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积为多少?13.已知某个几何体的俯视图是一个边长为2的正方形,主视图和左视图是边长为2的正三角形,则该几何体的表面积是多少?14.如果一个几何体的三视图如图14所示(单位长度:cm),则该几何体的表面积是多少?15.一个棱锥的三视图如图9-3-7所示,则该棱锥的全面积是多少?(单位:)16.根据图16中的数据,可以得出该几何体的表面积是多少?17.如果一个空间几何体的主视图、左视图、俯视图是全等的等腰直角三角形,直角边长为1,则该几何体的体积是多少?18.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图9-3-14所示,则该棱柱的体积是多少?注:1-6体积表面积7-11异面直线所成角12-15线面角1.将一个边长为a的正方体切成27个全等的小正方体,则表面积增加了多少?2.在正方体的八个顶点中,有四个恰好是正四面体的顶点,则正方体的表面积与此正四面体的表面积的比值是多少?3.设正六棱锥的底面边长为1,侧棱长为5,则它的体积是多少?4.正棱锥的高和底面边长都缩小原来的$\frac{1}{2}$,则它的体积是原来的多少?5.已知圆锥的母线长为8,底面周长为6π,则它的体积是多少?6.平行六面体AC的体积为30,则四面体ABCD的体积等于多少?7.如图7,在正方体ABCD-A1B1C1D1中,E和F分别是A1D1和C1D1的中点,求异面直线AB1与EF所成角的角度是多少?8.已知正四棱锥S-ABCD侧棱长为2,底面边长为3,E 为SA的中点,则求异面直线BE与SC所成角的大小。
9.在正方体ABCD-ABCD中,求异面直线CD和BC所成的角的度数。
10.在长方体ABCD-A1B1C1D1中,已知AB=3BC,BC=CC1,则求异面直线AA1与BC1所成角的大小,以及异面直线AB与CD1所成角的度数。
11.在空间四边形ABCD中,AC⊥BD且AC=BD,E和F分别为AB和CD的中点,则求EF与AC所成角的大小。
12.在正方体AC1中,已知AB1与平面ABC1D1所成的角为α,则求α的大小。
13.在正三棱柱ABC-A1B1C1中,已知AB=AA1,则求直线CB1与平面AA1B1B所成角的正弦值。
14.在正方体ABCD-A1B1C1D1中,已知对角线BD1与平面ABCD所成角的正切值为k,则求k的值。
15.在图中已知ΔABC为等腰直角三角形,AC=BC=52,P为空间一点,且PC⊥AC,PC⊥BC,PC=5,AB的中点为M,则求PM与平面ABC所成的角的大小。
16.在图中正方体ABCD-A1B1C1D1的棱长为1,O为底面A1B1C1D1的中心,则求O到平面ABC1D1的距离。
17.一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则求该球的体积。
18.在长方体ABCD-A1B1C1D1中,已知8个顶点在同一个球面上,且AB=2,AD=3,AA1=1,则求顶点A和B之间的球面距离。
19.已知点A,B,C,D在同一个球面上,且AB垂直于平面BCD,BC垂直于CD。
若AB=6,AC=213,AD=8,则求B,C 两点间的球面距离。
20.在正方体ABCD-A1B1C1D1中,M为DD1的中点,O 为底面ABCD的中心,P为棱A1B1上任意一点。
求证:直线OP与直线AM所成的角为直角。
21.三角形ABC的顶点B在平面a内,A、C在a的同一侧,且AB、BC与a所成的角分别为30°和45°。
若AB=3,BC=42,AC=5,则AC与a所成的角为60°。
22.矩形ABCD中,AB=4,BC=3,沿AC将矩形折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积为12.23.已知点A,B,C,D在同一个球面上,且AB垂直于平面BCD,BC垂直于CD。
若AB=6,AC=213,AD=8,则求B,C 两点间的球面距离。
24.正三棱锥的一个侧面的面积与底面积之比为2:3,则这个三棱锥的侧面和底面所成二面角的度数为60°。
25.已知S,A,B,C是球O表面上的点,且SA垂直于平面ABC,AB垂直于BC,SA=AB=1,BC=2,则球O表面积为7π。
26.已知正方体的八个顶点都在球面上,且球的体积为32π,则正方体的棱长为3.27.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为4√3π。
1.正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点。
Ⅰ)求证:B1D1垂直于AE;Ⅱ)求证:AC平行于平面B1DE;Ⅲ)求三棱锥A-BDE的体积。
2.已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点。
求证:(1)C1O平行于面ABD;(2)AC1D1与CAB1D1共面。
3.如图,PA垂直于矩形ABCD所在平面,M、N分别是AB和PC的中点。
Ⅰ)求证:MN平行于平面PAD;Ⅱ)求证:MN垂直于CD;Ⅲ)若∠PDA=45°,求证:MN垂直于平面PCD。
4.如图(1),ABCD为非直角梯形,点E、F分别为上下底AB、CD上的动点,且EF垂直CD。
现将梯形AEFD沿EF 折起,得到图(2)。
1)若折起后形成的空间图形满足DF垂直BC,求证:AD垂直CF;2)若折起后形成的空间图形满足ABCD四点共面,求证:AB平行于平面DEC。
5.如图,在五面体ABCDEF中,FA垂直于平面ABCD,AD平行于BC,BC平行于FE,AB垂直于AD,M为EC的中点,N为AE的中点,且AF=AB=BC=FE。
I)证明平面AMD垂直于平面CDE;II)证明BN平行于平面CDE。
6.在四棱锥P-ABCD中,侧面PCD是正三角形,且与底面ABCD垂直,已知菱形ABCD中∠ADC=60°,M是PA的中点,O是DC的中点。
1)求证:OM平行于平面PCB;2)求证:PA垂直于CD;3)求证:平面PAB垂直于平面COM。
7.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD垂直于底面ABCD,且PD=DC,E是PC的中点,作EF垂直于PB交PB于点F。
1)证明PA平行于平面EDB;2)证明PB垂直于平面EFD。
8.正四棱柱ABCD-A1B1C1D1的底面边长是3,侧棱长是3,点E、F分别在B1B、D1D上,且AE垂直于A1B,AF垂直于A1D。
1)求证:A1C垂直于面AEF;2)求二面角A-EF-B的大小;3)求点B1到面AEF的距离。
9.如图所示,四棱锥P-ABCD的底面ABCD为正方形,且PD垂直于底面且PD=AD。
1)求证:平面PAC垂直于平面PBD;2)求PC与平面PBD所成的角。
10.如图所示,已知正四棱锥S-ABCD侧棱长为2,底面边长为3,E是SA的中点。
求异面直线BE与SC所成角的大小。
11.正六棱柱ABCDEF-A1B1C1D1E1F1的底面边长为1,侧棱长为2,则该棱柱的侧面对角线E1D与BC1所成的角为60°。