向量的基本运算公式大全
向量的数量积运算的所有公式

向量的数量积运算的所有公式1.向量的数量积定义:对于两个向量u和v,它们的数量积表示为u·v,即:u·v = ,u,,v,cosθ其中,u,和,v,分别表示向量u和v的长度(或模),θ表示向量u和v之间的夹角。
2.向量的数量积性质:(a)u·v=v·u(交换律,数量积满足交换律)(b)u·u=,u,^2(自身与自身的数量积等于向量的长度的平方)(c) (ku)·v = k(u·v)(数量积与标量的乘积等于标量与数量积的乘积)(d)(u+v)·w=u·w+v·w(数量积的分配律)3.向量的数量积的计算公式:(a)对于二维向量u=(u₁,u₂)和v=(v₁,v₂):u·v=u₁v₁+u₂v₂(b)对于三维向量u=(u₁,u₂,u₃)和v=(v₁,v₂,v₃):u·v=u₁v₁+u₂v₂+u₃v₃4.向量的数量积的几何解释:(a)两个向量u和v之间的数量积u·v等于向量u在向量v方向上的投影长度乘以向量v的长度。
(b)如果u和v之间的夹角θ等于0度,则u·v=,u,,v,(数量积的最大值)(c)如果u和v之间的夹角θ等于90度,则u·v=0(数量积的最小值)5.向量的数量积与向量的垂直性:(a)如果u·v=0,则向量u和v垂直(正交)。
(b)如果u·v≠0,则向量u和v不垂直。
6.向量的数量积与向量的夹角的关系:(a) u·v = ,u,,v,cosθ(b)如果θ=0度,则u·v=,u,,v,(数量积的最大值)(c)如果θ=90度,则u·v=0(数量积的最小值)这些公式是向量的数量积运算的基本公式和性质,可用于求解向量的数量积问题,以及在几何和物理等领域中的应用。
平面向量的所有公式归纳总结

平面向量的所有公式归纳总结平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。
平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
1、向量的加法满足平行四边形法则和三角形法则.ab+bc=ac.a+b=(x+x',y+y').a+0=0+a=a.2、向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).如果a、b就是互为恰好相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0ab-ac=cb.即“共同起点,指向被减”a=(x,y)b=(x',y')则a-b=(x-x',y-y').1、定义:已知两个非零向量a,b.作oa=a,ob=b,则角aob称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量内积(内积、点内积)就是一个数量,记作ab.若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣.2、向量的数量积的坐标表示:ab=xx'+yy'.3、向量的数量内积的运算律ab=ba(交换律);(λa)b=λ(ab)(关于数乘法的结合律);(a+b)c=ac+bc(分配律);4、向量的数量内积的性质aa=|a|的平方.a⊥b〈=〉ab=0.|ab|≤|a||b|.5、向量的数量内积与实数运算的主要不同点(1)向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2.(2)向量的数量积不满足用户解出律,即为:由ab=ac(a≠0),推不出b=c.(3)|ab|≠|a||b|(4)由|a|=|b|,推不出a=b或a=-b.1、实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任一.当a=0时,对于任意实数λ,都有λa=0.备注:按定义言,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,则表示向量a的存有向线段在原方向(λ>0)或反方向(λ<0)上弯曲为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.2、数与向量的乘法满足用户下面的运算律结合律:(λa)b=λ(ab)=(aλb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘坐向量的解出律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.1、定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b 和a×b按这个次序构成右手系.若a、b共线,则a×b=0.2、向量的向量内积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.3、向量的向量内积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.备注:向量没乘法,“向量ab/向量cd”就是没意义的.1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b逆向时,左边挑等号;②当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.①当且仅当a、b同向时,左边取等号;②当且仅当a、b逆向时,右边挑等号.定比分点公式(向量p1p=λ向量pp2)设p1、p2就是直线上的两点,p就是l上不同于p1、p2的任一一点.则存有一个实数λ,并使向量p1p=λ向量pp2,λ叫作点p棕斑向线段p1p2阿芒塔的比.若p1(x1,y1),p2(x2,y2),p(x,y),则有op=(op1+λop2)(1+λ);(的定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ).(的定比分点座标公式)我们把上面的式子叫做有向线段p1p2的定比分点公式1、三点共线定理若oc=λoa+μob,且λ+μ=1,则a、b、c三点共线2、三角形战略重点推论式在△abc中,若ga+gb+gc=o,则g为△abc的重心3、向量共线的关键条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb. a//b的关键条件就是xy'-x'y=0.4、零向量0平行于任何向量.5、向量横向的充要条件a⊥b的充要条件是ab=0.a⊥b的充要条件就是xx'+yy'=0.6、零向量0垂直于任何向量.。
向量的运算基本定律

向量的运算基本定律1.实数与向量的积的运算律:设λ、μ为实数,那么:⑴结合律:λ(μa )=(λμ) a ;⑵第一分配律:(λ+μ) a =λa +μa ;⑶第二分配律:λ(a +b )=λa +λb .2.向量的数量积的运算律:⑴ a ·b= b ·a (交换律);⑵(λa )·b= λ(a ·b )=λa ·b = a ·(λb );⑶(a +b )·c= a ·c +b ·c.3.平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.4.向量平行的坐标表示:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.5.a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.55. a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.6.平面向量的坐标运算:⑴设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++.⑵设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --.⑶设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. ⑷设a =(,),x y R λ∈,则λa =(,)x y λλ.⑸设a =11(,)x y ,b =22(,)x y ,则a ·b =1212()x x y y +.7.两向量的夹角公式:cos θ=(a =11(,)x y ,b =22(,)x y ).8.平面两点间的距离公式:,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).9.向量的平行与垂直:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则A ||b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.10.线段的定比分公式:设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 11.三角形的重心坐标公式: △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 12.点的平移公式:''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .13.“按向量平移”的几个结论:⑴点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.⑵ 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.⑶ 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.⑷曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.⑸ 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .4.三角形五“心”向量形式的充要条件:设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 ⑴O 为ABC ∆的外心222OA OB OC ⇔==.⑵O 为ABC ∆的重心0OA OB OC ⇔++=.⑶O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.⑷O 为ABC ∆的内心0aOA bOB cOC ⇔++=.⑸O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.。
向量的加减公式

向量的加减公式向量的加减公式是向量运算中最基本的公式之一。
在向量的加减运算中,我们需要用到向量的加法和减法公式,这些公式可以帮助我们更好地理解向量的运算规律。
向量的加法公式:对于两个向量a和b,它们的加法公式为:a +b = (a1 + b1, a2 + b2, a3 + b3)其中,a1、a2、a3分别表示向量a在x、y、z三个方向上的分量,b1、b2、b3分别表示向量b在x、y、z三个方向上的分量。
这个公式的意义是将两个向量的对应分量相加,得到一个新的向量。
例如,如果有向量a = (1, 2, 3)和向量b = (4, 5, 6),那么它们的和为:a +b = (1 + 4, 2 + 5, 3 + 6) = (5, 7, 9)向量的减法公式:对于两个向量a和b,它们的减法公式为:a -b = (a1 - b1, a2 - b2, a3 - b3)其中,a1、a2、a3分别表示向量a在x、y、z三个方向上的分量,b1、b2、b3分别表示向量b在x、y、z三个方向上的分量。
这个公式的意义是将两个向量的对应分量相减,得到一个新的向量。
例如,如果有向量a = (1, 2, 3)和向量b = (4, 5, 6),那么它们的差为: a - b = (1 - 4, 2 - 5, 3 - 6) = (-3, -3, -3)通过向量的加减公式,我们可以更好地理解向量的运算规律。
在实际应用中,向量的加减运算常常用于计算物体的位移、速度、加速度等物理量。
例如,在机器人控制中,我们可以通过向量的加减运算来计算机器人的运动轨迹和速度,从而实现精确的控制。
向量的加减公式是向量运算中最基本的公式之一,它们可以帮助我们更好地理解向量的运算规律,也可以应用于各种实际问题中。
向量的基本运算与性质

向量的基本运算与性质在数学中,向量是一个有方向和大小的量。
向量可以进行各种基本运算,并且具有一些特殊的性质。
本文将介绍向量的基本运算和性质。
一、向量的表示和定义向量可以用多种方式进行表示,最常见的是使用箭头符号→在字母上方表示一个向量。
例如,向量a可以表示为→a。
向量还可以用坐标形式表示,如(a1,a2,a3)。
在三维空间中,向量通常表示为一个由起点和终点确定的有向线段。
向量有大小(模长)和方向,可以通过两点之间的差值来表示。
二、向量的基本运算1. 向量的加法向量的加法是指将两个向量按照相应的对应分量相加得到一个新的向量。
设有两个向量→a=(a1,a2,a3)和→b=(b1,b2,b3),则它们的和为→a+→b=(a1+b1,a2+b2,a3+b3)。
2. 向量的减法向量的减法是指将两个向量按照相应的对应分量相减得到一个新的向量。
设有两个向量→a=(a1,a2,a3)和→b=(b1,b2,b3),则它们的差为→a-→b=(a1-b1,a2-b2,a3-b3)。
3. 向量的数量乘法向量的数量乘法是指将一个向量的每个分量都乘以一个标量得到一个新的向量。
设有一个向量→a=(a1,a2,a3)和一个标量k,那么它们的数量乘积为k→a=(ka1,ka2,ka3)。
三、向量的性质1. 交换律向量的加法满足交换律,即→a+→b=→b+→a。
这意味着向量的加法顺序可以交换,不会改变结果。
2. 结合律向量的加法满足结合律,即(→a+→b)+→c=→a+(→b+→c)。
这意味着向量的加法可以按照不同的顺序进行,结果不会改变。
3. 零向量零向量是指所有分量都为0的向量,通常表示为→0=(0,0,0)。
对于任意向量→a,有→a+→0=→0+→a=→a。
4. 相反向量对于任意向量→a,存在一个相反向量-→a,使得→a+(-→a)=(-→a)+→a=→0。
其中-→a的每个分量都是→a对应分量的相反数。
5. 数量乘法的性质数量乘法满足结合律和分配律。
向量的基本运算公式

向量的基本运算公式向量是一种数学表达形式,它可以表示大小和方向。
通过在三维空间中描绘点,我们可以定义一个向量。
现在,让我们来讨论一些有关向量的运算公式,并了解它们是如何运用在物理和数学中的。
首先,我们来讨论向量的加法。
向量的加法是把两个向量进行相加,其结果是一个新的向量,称为“和向量”。
它的方向和大小取决于两个向量的方向和大小,因此可以用以下公式来表示:$ vec{A} + vec{B} = vec{C} $其中,$ vec{A} $和$ vec{B} $分别是两个向量,$ vec{C} $是它们的和向量。
接下来,我们来讨论向量的减法。
向量的减法是把两个向量相减,其结果是一个新的向量,称为“差向量”。
它的方向和大小取决于两个向量的方向和大小,因此可以用以下公式来表示:$ vec{A} - vec{B} = vec{C} $其中,$ vec{A} $和$ vec{B} $分别是两个向量,$ vec{C} $是它们的差向量。
此外,我们还可以讨论向量的乘法。
向量的乘法是把两个向量相乘,其结果是一个新的向量,称为“积向量”。
它的方向和大小取决于两个向量的方向和大小,因此可以用以下公式来表示:$ vec{A} times vec{B} = vec{C} $其中,$ vec{A} $和$ vec{B} $分别是两个向量,$ vec{C} $是它们的积向量。
最后,我们来讨论向量的除法。
向量的除法是把两个向量相除,其结果是一个新的向量,称为“商向量”。
它的方向和大小取决于两个向量的方向和大小,因此可以用以下公式来表示:$ vec{A} div vec{B} = vec{C} $其中,$ vec{A} $和$ vec{B} $分别是两个向量,$ vec{C} $是它们的商向量。
以上就是有关向量的基本运算公式的全部内容,通过对这些公式的理解,我们可以更加清楚地了解向量运算的基本原理,并在图像处理、数学模型设计等方面得到有效的帮助。
《线性代数》公式大全

《线性代数》公式大全线性代数是数学中的一个分支,研究向量、矩阵和线性方程组等相关概念和性质。
它是现代数学和应用科学的基础,广泛应用于物理学、工程学、计算机科学等领域。
本文将介绍线性代数中的基本概念和相关公式。
1.向量的定义和运算:向量是有方向和大小的量,可以用有序数对或者列矩阵来表示。
设有向量a=(a1, a2, ..., an),b=(b1, b2, ..., bn),则向量的运算包括:- 向量的加法:a + b = (a1 + b1, a2 + b2, ..., an + bn)- 向量的减法:a - b = (a1 - b1, a2 - b2, ..., an - bn)- 数乘:k * a = (k * a1, k * a2, ..., k * an)2.向量的模和单位向量:向量的模表示向量的长度,记作,a,计算公式为:,a, =sqrt(a1² + a2² + ... + an²)。
单位向量表示模为1的向量,计算公式为:u=a/,a。
3.内积和外积:内积也叫点积或数量积,计算公式为:a·b = a1 * b1 + a2 * b2+ ... + an * bn。
外积也叫向量积或叉积,计算公式为:a×b=(a2*b3-a3*b2,a3*b1-a1*b3,a1*b2-a2*b1)。
4.矩阵的定义和运算:矩阵是按照行列排列的矩形阵列,可以用方括号表示。
设有矩阵A和B,则矩阵的运算包括:-矩阵的加法:A+B=[a11+b11,a12+b12,...,a1m+b1m;a21+b21,a22+b22,...,a2m+b2m;...] -矩阵的减法:A-B=[a11-b11,a12-b12,...,a1m-b1m;a21-b21,a22-b22,...,a2m-b2m;...]-数乘:k*A=[k*a11,k*a12,...,k*a1m;k*a21,k*a22,...,k*a2m;...] -矩阵的乘法:A*B=[c11,c12,...,c1n;c21,c22,...,c2n;...]其中,cij = a(i1) * b(1j) + a(i2) * b(2j) + ... + a(im) *b(mj),a(ij)为矩阵A的第i行第j列元素。
向量坐标运算公式总结

向量坐标运算公式总结在数学和物理学中,向量是一个具有大小和方向的量,常用于描述物体的位置、速度和力等相关概念。
而对向量进行运算,是解决许多实际问题的关键步骤之一。
本文将总结一些常用的向量坐标运算公式,帮助读者更好地理解和应用向量运算。
1. 向量的表示在二维坐标系中,一个向量可以用一个有序数对表示,如(a, b)。
表示向量的时候,通常以x轴和y轴分量的形式给出。
在三维坐标系中,一个向量可以用一个有序数组表示,如(a, b, c)。
2. 向量的加法向量的加法是指将两个向量相加,得到一个新的向量。
对于二维向量(a, b)和(c, d),它们的加法运算规则如下:(a, b) + (c, d) = (a + c, b + d)3. 向量的减法向量的减法是指将一个向量减去另一个向量,得到一个新的向量。
对于二维向量(a, b)和(c, d),它们的减法运算规则如下:(a, b) - (c, d) = (a - c, b - d)4. 向量的数量乘法向量的数量乘法是指将一个向量与一个标量相乘,得到一个新的向量。
对于二维向量(a, b)和实数k,它们的数量乘法运算规则如下:k(a, b) = (ka, kb)5. 内积(点乘)内积(点乘)是指将两个向量相乘后再求和的运算。
对于二维向量(a, b)和(c, d),它们的内积运算规则如下:(a, b)·(c, d) = ac + bd6. 外积(叉乘)外积(叉乘)是向量间的一种运算,用于产生一个新的向量。
外积只适用于三维向量。
对于三维向量(a, b, c)和(d, e, f),它们的外积运算规则如下:(a, b, c) × (d, e, f) = (bf - ce, cd - af, ae - bd)7. 向量的模向量的模是指向量的长度或大小。
对于二维向量(a, b),它的模定义为:| (a, b) | = √(a² + b²)8. 向量的单位向量单位向量是指模为1的向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量的基本运算公式大全
向量是线性代数中的重要概念,具有广泛的应用。
基本的向量运算包括向量加法、向量减法、标量乘法和向量点乘等。
1. 向量加法:
对于向量A和向量B,其加法定义为A + B = (a1 + b1, a2 + b2, ..., an + bn),即分别对应元素相加。
2. 向量减法:
向量减法即为向量加法的逆运算。
对于向量A和向量B,其减法定义为A - B = (a1 - b1, a2 - b2, ..., an - bn),即分别对应元素相减。
3. 标量乘法:
标量乘法指的是将一个实数与向量的每个分量相乘。
对于向量A和标量k,其标量乘法定义为kA = (ka1, ka2, ..., kan),即每个分量都乘以k。
4. 向量点乘(内积):
向量点乘是向量运算中的一种重要操作,也称为内积。
对于向量A和向量B,其点乘定义为A · B = a1b1 + a2b2 + ... + anbn,即对应元素相乘并求和。
5. 向量长度(模):
向量的长度或模表示向量的大小,通常用两个竖线表示,例如 ||A||。
对于二维向量A(x, y),其长度计算公式为 ||A|| =
√(x^2 + y^2)。
对于n维向量A(x1, x2, ..., xn),其长度计算公
式为||A|| = √(x1^2 + x2^2 + ... + xn^2)。
6. 向量的单位化:
对一个非零向量A,单位化后得到一个与之方向相同,长度
为1的向量,称为A的单位向量。
单位化向量的计算公式为
A' = A / ||A||,即向量A除以其长度。
7. 向量的投影:
向量的投影描述了一个向量在另一个向量上的分解。
对于向
量A和向量B,向量B在A上的投影记为Proj_A(B),计算公
式为 Proj_A(B) = (B · A / ||A||^2) * A。
8. 向量的夹角:
两个非零向量A和B之间的夹角θ可通过向量的点乘和向量的长度公式计算得到,计算公式为cosθ = (A · B) / (||A|| * ||B||)。
9. 向量的正交与平行:
如果两个向量的点乘等于0,则它们是正交的;如果两个向
量的夹角为0度或180度,则它们是平行的。
这些基本运算公式是向量运算中的基础,可以用来解决许多与向量相关的问题。
在实际应用中,还可以进一步扩展向量运算,如向量的叉乘、向量的投影、向量的线性组合等,以满足更复杂的应用需求。