学而思七年级数学下1-10讲
行程专题(学而思)第1-4讲

学习目标本讲主要通过例题加深对行程问题的三个基本数量关系的理解。
在历年小升初与各类小学竞赛试卷中,行程问题的试题占的比值是相当大的,所以学好行程问题不但对于应对小升初考试和各类数学竞赛有着举足轻重的关键性作用,而且也为初中阶段的学习打下良好的基础。
我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题. 行程问题主要涉及时间 (t)、速度 (v)和路程 (.s)这三个基本量,它们之间的关系如下:路程 = 速度×时间 可简记为:s vt =速度 = 路程÷时间 可简记为:/v s t =时间 = 路程÷速度 可简记为:/t s v =路程一定,速度与时间成反比速度一定,路程与时间成正比时间一定,路程与速度成正比显然,知道其中的两个量就可以求出第三个量.【例 1】 一段路程分为上坡、平路、下坡三段,各段路程的长度之比是 1:2:3,某人走这三段路所用的时间之比是 4:5:6,已知他上坡时每小时行2.5千米,路程全长为 20千米,此人走完全程需多少时间?【例2】甲、乙两地相距60千米,自行车队8点整从甲地出发到乙地去,前一半时间每分钟行1千米,后一半时间每分钟行0.8千米。
自行车队到达乙地的时间是几点几分几秒?【例3】某人上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟,已知下山的速度是上山速度的1.5倍,如果上山用了3 时50分钟,那么下山用多少时间?【例4】汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地,求该车的平均速度。
【例5】甲、乙两车往返于A、B两地之间,甲车去时的速度为60千米/时,返回时的速度为40千米/时,乙车往返的速度都是50千米/时,求甲、乙两车往返一次所用的时间比.【例6】从甲地到乙地全部是山路,其中上山路程是下山路程的23,一辆汽车上山速度是下山速度的一半,从甲地到乙地共行7时,这辆汽车从乙地返回甲地需要多少时间?【例7】一辆车从甲地行往乙地,如果把车速提高20%,那么可以比原定时间提前1 小时到达;如果以原速度行驶100千米后再将车速提高30%,那么也比原定时间提前 1 小时到达,求甲、乙两地的距离。
学而思初一数学秋季班第2讲.有理数综合运算.尖子班.学生版

11初一秋季·第2讲·尖子班·学生版如何计算?实数7级 实数初步实数6级 绝对值 实数5级 有理数综合运算 满分晋级阶梯漫画释义2有理数综合运算12 初一秋季·第2讲·尖子班·学生版知识点切片(4个) 7+2+1+1知识点目标有理数综合运算(7) 1、有理数加减法则;2、有理数加法的运算律;3、有理数减法法则;4、有理数乘法法则;5、有理数除法法则;6、有理数乘方;7、有理数混合运算的运算顺序 裂项技巧(2) 1、分数裂项;2、整数裂项 连锁约分(1) 1、连锁约分,简便运算 整体思想(1)1、整体思想,化繁为简题型切片(6个)对应题目题型目标 乘法分配律的应用 例1、练习1 连续自然数的加减交替 例2、练习1 有理数综合运算 例3、练习2裂项 例4、例5、练习3、练习4 连锁约分例6、练习5 整体思想例7、练习6有理数综合运算1.有理数加法法则:① 同号两数相加,取相同的符号,并把绝对值相加.② 绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③ 一个数同0相加,仍得这个数.2.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. ()()a b c a b c ++=++(加法结合律).3.有理数减法法则:减去一个数,等于加上这个数的相反数,()a b a b -=+-.4. 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0.5. 有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数.1a b a b÷=⋅,(0b ≠)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0. 6. 有理数乘方 知识导航知识、题型切片13初一秋季·第2讲·尖子班·学生版概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂. 在n a 中,a 叫做底数,n 叫 做指数.含义:n a 中,a 为底数,n 为指数,它表示a 的个数,n a 表示有n 个a 连续相乘. 特别注意:负数及分数的乘方,应把底数加上括号.7. 有理数混合运算的运算顺序: ① 先乘方,再乘除,最后加减; ② 同级运算,从左到右进行;③ 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.加减法为一级运算,乘除法为二级运算,乘方及开方(以后学)称为三级运算.同级运算,按从左到右的顺序进行;不同级运算,先算三级运算,然后二级,最后一级; 如果有括号,先算括号里的,有多重括号时,先算小括号里的,再算中括号里的,最后算大括号里的.④ 在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.【例1】 计算:⑴735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦⑵11171110()71110⨯⨯⨯++⑶111(0.25)(5)( 3.5)()2244-⨯-+⨯-+-⨯⑷371(8)32-⨯-乘法分配律的应用14 初一秋季·第2讲·尖子班·学生版⑸112571113623461236⎛⎫⎛⎫-÷+---+ ⎪ ⎪⎝⎭⎝⎭【例2】⑴填空:12344950-+-++-= ;123499100101-+-++-+= ; ⑵计算:()112341n n +-+-++-⨯.连续自然数加减交替问题15初一秋季·第2讲·尖子班·学生版【例3】 计算:⑴()216123113284 2.5242523412⎛⎫-÷-⨯+++--⨯ ⎪⎝⎭⑵()22213111112190.75242222⎡⎤⎛⎫⎛⎫÷÷-+÷--⨯--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⑶()()3220132231313 1.20.33⎛⎫--⨯-÷--⨯÷ ⎪⎝⎭⑷()()231814511722851755⎡⎤⎛⎫⎛⎫-⨯-+-⨯----⨯-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦有理数综合运算16 初一秋季·第2讲·尖子班·学生版⑸()2323510.3534124111159650.52-÷⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⨯-÷-⨯-⨯ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦÷1.分数裂项技巧:⑴()11111n n n n =-++; ⑵()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;⑶()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎢⎥⎣⎦;⑷()()()()()1111222n n k n k k n n k n k n k ⎡⎤=-⎢⎥+++++⎢⎥⎣⎦.2.整数裂项技巧:⑴()()()()()()()()111121121133n n n n n n n n n n n n +=++--=++--+⎡⎤⎡⎤⎣⎦⎣⎦; ⑵()()()()()()()()()()()()1112123112311244n n n n n n n n n n n n n n n n ++=+++--=+++--++⎡⎤⎡⎤⎣⎦⎣⎦.3.连锁约分多个分数相乘通过约掉分子分母中的相同因数简便运算.思路导航分数裂项运算17初一秋季·第2讲·尖子班·学生版【例4】 计算:⑴11111161111161621212626313136+++++⨯⨯⨯⨯⨯⨯; ⑵2310011(12)(12)(123)(1299)(12100)----⨯++++++++++.【例5】 计算:⑴12233499100⨯+⨯+⨯++⨯;整数裂项运算18 初一秋季·第2讲·尖子班·学生版⑵1335579799⨯+⨯+⨯++⨯;⑶123234484950⨯⨯+⨯⨯++⨯⨯.【例6】 计算:⑴11111111111111241035911⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++---- ⎪⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭连锁约分运算19初一秋季·第2讲·尖子班·学生版⑵11111111111113243546979998100⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯+⨯⨯+⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭【例7】 ⑴已知1111111112581120411101640+++++++=,111111112581120411101640---+--++的值为 .⑵计算:11111111111111232006232005232006232005⎛⎫⎛⎫⎛⎫⎛⎫+++⨯++++-++++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭整体思想20 初一秋季·第2讲·尖子班·学生版学案1. 计算:1111111261220304256⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--+-++--+--+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦学案2. 计算:1111113243517191820+++++⨯⨯⨯⨯⨯学案3. 33221129234+==⨯⨯;33322112336344++==⨯⨯;33332211234100454+++==⨯⨯;…….⑴ 若n 为正整数,猜想3333123n ++++= ;⑵ 利用上题的结论来比较3333123100++++与()25000-的大小.学案4. 设三个互不相等的有理数,既可分别表示为1a b a +,,的形式,又可分别表示为0bba,,的形式,则20042001a b +=初一秋季·第2讲·尖子班·学生版乘法分配律的应用、连续自然数的加减交替【练习1】 ⑴ 计算:()()(){}()34|15|73-+---+-----⎡⎤⎣⎦;⑵ 计算:1111181232⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭;⑶ 计算: 135********++++-----.有理数综合运算【练习2】 计算:4343(27)(2)(2)3⎡⎤⎛⎫-÷---⨯-+- ⎪⎢⎥⎝⎭⎣⎦裂项【练习3】 计算:1111112612203042-----= .【练习4】 计算:2446688101012⨯+⨯+⨯+⨯+⨯.复习巩固连锁约分【练习5】计算:11111111 11111111 22334420132013⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+-+-+-⎪⎪⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭整体思想【练习6】计算:()()()() 222222222222 123492350123502349+++++++-+++++++.初一秋季·第2讲·尖子班·学生版1+1=2吗? 皮亚诺(Peano,Giuseppe ) 意大利数学家。
第二节 二元一次方程组的解法(含答案)...七年级数学 学而思

第二节二元一次方程组的解法1.二元一次方程组的解法基本思路是消元,即通过运用代入法或加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解. (1)代入消元法:通过等量代换,消去方程组中的一个未知数,使二元一次方程组转化为一元一次方程,从而求得一个未知数的值,然后再求出被消去未知数的值,从而确定原方程组的解的方法.代入消元法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数例如y,用含另一个未知数如x的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)加减消元法:加减法是消元法的一种,也是解二元一次方程组的基本方法之一.加减法不仅在解二元一次方程组中适用,也是今后解其它方程(组)经常用到的方法.加减消元法解二元一次方程组的一般步骤:①变换系数:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;②加减消元:把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得未知数的值;④回代:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值;⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,需要把求得的x,y的值用“{”联立起来.2.特殊方程组的解法对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错,则可根据题目的特点,利用整体思想来采用特殊方法简化方程组,接着再采用代入或加减消元法解出相应x,y的值即可.(1)系数轮换法:适用方程组类型:如果把方程组中的每一个未知数依次轮换后,虽然每个方程都变了,但是整个方程组仍不变,步骤:解题时,把各方程相加,即可得到x+ y=常数的形式,把各方程相减,即可得到x- y=常数的形式,这两个新的方程组成的方程组就是原方程组化简后的结果,便可以采用加减或代入消元法求得未知数的值.(2)换元法:适用方程组类型:方程组项数较多、系数较为复杂,而且会有相同的部分或者是互为相反数的部分多次出现;步骤:解题时,把方程中相同的部分或者是互为相反数的部分看成是一个整体,用另一个字母来替换,从而简化原先项数多、系数复杂的方程组,再采用常规的加减或者代入消元法来求得未知数的值.(3)倒数法:适合方程组类型:方程中出现分母是和的形式,分子是积的形式⋅+yx xy步骤:解题时,采用倒数法变换成分子是和、分母是积的形式,xyyx +然后进行拆分,利用加减或者代入或者换元法来解出x ,y 的值.1.代入消元方法的选择①运用代入法时,将一个方程变形后,必须代入另一个 方程,否则就会 得出“0=0”的形式,求不出未知数的值;②当方程组中有一个方程的一个未知数的系数是1或一1时,用代入法较简便. 2.加减消元方法的选择①一般选择系数绝对值最小的未知数消元;②当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相 等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用 加减消元求解;④当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同的方程,再用加减消元求解,例1.如果关于x ,y 的方程组⎩⎨⎧-=-=+223a y x y x 的解是负数,则a 的取值范围是( )54.<<-a A 5.>a B 4.-<a C D .无解检测1.(浙江绍兴期末)已知关于x ,y 的方程组⎩⎨⎧-=-=-,52253a y x ay x 若x ,y 的值互为相反数,则a 的值为( )5.-A 5.B 20.-C 20.D例2.(四川南江县期末)已知,0)112(|32|2=+++--y x y x 则( )⎩⎨⎧==12.y x A ⎩⎨⎧-==30.y x B ⎩⎨⎧-=-=51.y x C ⎩⎨⎧-=-=72.y x D检测2.(山东滨州期末)已知,0|72|)12(2=-++--y x y x 则=-y x 3( )3.A 1.B 6.-C 8.D例3.(湖北黄冈期末)若y x h y xb a ba -+--332243是同类项,则b a -的值是( )0.A 1.B 2.C 3.D检测3.若y x nm +243与n m y x -5是同类项,则m .n 的值分别是( ) 3,2.A 1,2.B 0,2.C 2,1.D例4.(湖南衡阳县一模)解方程组:⎩⎨⎧=+=+,604320122016604120162012y x y x 则yx yx -+值是3.A 3.-B 6.C 6.-D检测4.(1)(江苏海门市期末)如果实数x ,y 满足方程组⎩⎨⎧=+=+,4222y x y x 那么=+y x(2)(安徽泗县校级模拟)关于x ,y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +,1=则k=例5.(河北古冶区一模)已知a ,b 满足方程组⎩⎨⎧=-=+,283b a b a 则=+b a2.A3.B4.C5.D检测5.(1)(河北模拟)已知e 、f 满足方程组⎩⎨⎧=-=--,6223e f f e 则f e +2的值为( )2.A 4.B 6.C 8.D(2)(广东广州中考)已知a .b 满足方程组⎩⎨⎧=-=+,43125b a b a 则b a +的值为第二节 二元一次方程组的解法(建议用时:35分钟)实战演练1.用加减法解方程组⎩⎨⎧-=-=+15y x y x 中,消x 用 法,消y 用 法( )A.加,加 B .加,减 C .减,加 D .减,减2.若用代入法解方程组⎩⎨⎧+==,12332y x yx 以下各式代入正确的是( )1)32(23.+=x x A 1)32(23.+=y x B1)23(23.+=x x C 1623.+⋅=x x x D3.若,0|52||12|=--+--y x y x 则x+y 的值为( )4.A5.B6.C7.D4.已知:|32|++y x 与2)2(y x +互为相反数,则=-y x ( )7.A 5.B 3.C 1.D5.(山东临清市期末)已知方程组⎩⎨⎧=+=-my x y x 24中x ,y 相加为0,则m 的值为( )2.A 2.-B 0.C 4.D6.(河北石家庄校级模拟)若方程组⎩⎨⎧=++=+my x m y x 32253的解x 与y 互为相反数,则m 的值为( )2.-A 0.B 2.C 4.D7.若方程组⎩⎨⎧=+=+16156653y x y x &的解也是方程103=+ky x 的解,则( )6.=k A 10.=k B 9.=k C 101.=k D 8.若3243y x b a +与ba y x -634的和是单项式,则=+b a ( ) 3.-A 0.B 3.C 6.D9.按如图8 -2—1所示的运算程序,能使输出结果为3的x ,y 的值是( )128--2,5.-==y x A ⋅-==3,3.y x B 2,.4.=-=y x C 9,3.-=-=y x D10.(山东临沂中考)已知x ,y 满足方程组⎩⎨⎧=+=+,4252y x y x 则y x -的值为( )⎩⎨⎧==12.11y x 是方程组⎩⎨⎧=-=+04by ax by ax 的解,那么=+-))((b a b a 12.已知方程组⎩⎨⎧-=+=-123225m y x my x 的解x ,y 互为相反数,则m=13.(江苏常州期末)若关于x ,y ,的二元一次方程组⎩⎨⎧=+-=+22132y x a y x 的解满足x+ y=l ,则a 的值为14.三个同学对问题“若方程组⎪⎩⎪⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧==,43y x 求方程组⎪⎩⎪⎨⎧=+=+222111523523c y b x a c y b x a 的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”,参考他们的讨论,你认为这个题目的解应该是 .15.(“信利杯”竞赛题)已知:a ,b ,c 三个数满足,31=+b a ab ,41=+c b bc ,51=+a c ca 则ca bc ab abc++的值为 16.(重庆校级自主招生)解方程组:⎩⎨⎧=+=+200320042005200620052004y x y x17.解方程组:⎪⎩⎪⎨⎧-=-=-+-421621y x y x18.已知方程组⎩⎨⎧+=---=+ay x ay x 317的解中,x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简.|2||3|++-a a19.(江苏张家港市期末)已知关于x ,y 的方程组⎩⎨⎧+=+=+12242m y x my x (实数m 是常数).(1)若x+y=1,求实数m 的值;(2)若,51≤-≤-y x 求m 的取值范围; (3)在(2)的条件下,化简:.|32||2|-++m m20.(黑龙江讷河市校级期末)已知二元一次方程组⎩⎨⎧+=-+=+1593a y x a y x 的解x ,y 均是正数.(1)求a 的取值范围; (2)化简.|4||54|--+a a拓展创新21.解方程组:⎩⎨⎧==+44y -3x 23y x 2拓展1.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+443232y x y x 拓展2.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+41432132x y xy x y xy极限挑战22.(全国初中数学竞赛)若,0634=--z y x ),0(072=/=-+xyz z y x 则式子222222103225z y x z y x ---+的值等于( )21.-A219.-B 15.-C 13.-D课堂答案培优答案。
人教版初中数学同步讲义七年级下册第01讲 有序数对(解析版)

第01讲有序数对课程标准学习目标①有序数对的定义②表示有序数对的方法③有序数对的应用 1.掌握有序数对的定义2.掌握表示确定的点的位置的方法。
3.会用有序数对表示平面内的点的位置。
知识点01有序数对1.有序数对的概念:由有顺序的两个数a 与b 组成的数对。
记做(a ,b )。
2.有序数对的应用:利用有序数对可以表示物体的位置。
【即学即练1】1.如果剧院里“5排2号”记作(5,2),那么(7,9)表示()A .“7排9号”B .“9排7号”C .“7排7号”D .“9排9号”【解答】解:如果剧院里“5排2号”记作(5,2),那么(7,9)表示“7排9号”.故选:A .知识点02有序数对的表示方法及其应用1.表示有序数对的方法:有:行列定位法;经纬度定位法;方格纸定位法;方向角+距离定位法。
2.有序数对的应用:有序数对可以用来表示准确的位置和线路。
【即学即练1】1.在平面内,下列数据不能确定一个物体位置的是()A.北偏西40°B.3楼5号C.解放路30号D.东经30°,北纬120°【解答】解:A、北偏西40°,无法确定物体的具体位置,故本选项符合题意;B、3楼5号,物体的位置明确,故本选项不符合题意;C、解放路30号,物体的位置明确,故本选项不符合题意;D、东经30°,北纬120°,物体的位置明确,故本选项不符合题意.故选:A.【即学即练2】2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A→C(+3,+4);(2)B→D(+3,﹣2);(3)若这只甲虫按最短路径行走的路线为A→B→C→D,请计算该甲虫走过的路程;(4)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(0,﹣2),请在图中标出P的位置.【解答】解:(1)A→C(+3,+4);故答案为:+3,+4;(2)B→D(+3,﹣2),故答案为:+3,﹣2;(3)1+4+2+2+1=10,答:甲虫走过的路程为10个格;(4)如图,题型01有序数对表示位置的具体方法【典例1】根据下列表述,能确定具体位置的是()A.七(3)班教室第三排B.昆明市人民东路C.南偏西45°D.东经102°,北纬24°【解答】解:A.七(3)班教室第三排,不能确定具体位置,故本选项不符合题意;B.昆明市人民东路,不能确定具体位置,故本选项不符合题意;C.南偏西45°,不能确定具体位置,故本选项不符合题意;D.东经118°,北纬51°,能确定具体位置,故本选项符合题意.故选:D.【变式1】下列表述中,不能确定具体位置的()A.东经108°北纬53°B.某电影院1号厅的3排4座C.某灯塔南偏西30°方向D.距离某学校东北方向500米处【解答】解:A、东经108°北纬53°,能确定具体位置,故该选项不符合题意;B、某电影院1号厅的3排4座,能确定具体位置,故该选项不符合题意;C、某灯塔南偏西30°方向,没有距离,不能确定具体位置,故该选项符合题意;D、距离某学校东北方向500米处,能确定具体位置,故该选项不符合题意.故选:C.【变式2】根据下列表述,不能确定具体位置的是()A.青县众视影城1号厅的3排4座B.青县清州镇新华西路226号C.某灯塔南偏西30°方向D.东经108°,北纬53°【解答】解:A、青县众视影城1号厅的3排4座,能确定具体位置,故该选项不符合题意;B、青县清州镇新华西路226号,能确定具体位置,故该选项不符合题意;C、某灯塔南偏西30°方向,不能确定具体位置,故该选项符合题意;D、东经108°,北纬53°,能确定具体位置,故该选项不符合题意.故选:C.【变式3】生态园位于县城东北方向5公里处,如图表示准确的是()A.B.C.D.【解答】解:∵生态园位于县城东北方向5公里处,∴生态园在县城北偏东45°距离县城5公里.故选:B.题型02有序数对与位置【典例1】如果棋盘上的“第5列第2行”记作(5,2),“第7列第5行”记作(7,5),那么(4,3)表示()A.第3列第5行B.第5列第3行C.第4列第3行D.第3列第4行【解答】解:如果棋盘上的“第5列第2行”记作(5,2),“第7列第5行”记作(7,5),那么(4,3)表示第4列第3行.故选:C.【变式1】中国象棋是中华民族的文化瑰宝,它源远流长,趣味性强,成为极其广泛的棋艺活动.如图,若在象棋盘上建立平面直角坐标系,使“马”位于点(2,﹣2),“兵”位于点(﹣3,1),则“帅”位于点()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【解答】解:如图所示,根据题意可建立如图所示平面直角坐标系,γ则“帅”位于点(﹣1,﹣2).故选:B.【变式2】课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(1,1)表示,小军的位置用(3,2)表示,那么小刚的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)【解答】解:根据小华的位置用(1,1)表示,小军的位置用(3,2)表示,那么小刚的位置可以用坐标表示成(5,4).故选:A.【变式3】音乐课,聪聪坐在音乐教室的第4列第2行,用数对(4,2)表示,明明坐在聪聪正后面的第一个位置上,明明的位置用数对表示是()A.(5,2)B.(4,1)C.(3,2)D.(4,3)【解答】解:音乐课,聪聪坐在音乐教室的第4列第2行,用数对(4,2)表示,明明坐在聪聪正后面的第一个位置上,明明的位置用数对表示是(4,3),故选:D.【变式4】甲坐在第4列第3行,用数对表示为(4,3),乙的位置用数对表示为(7,6),丙坐在甲的右边一列,乙的前面一行,则丙的位置用数对表示是()A.(3,7)B.(4,6)C.(5,5)D.(4,7)【解答】解:甲坐在第4列第3行,用数对表示为(4,3),乙的位置用数对表示为(7,6),丙坐在甲的右边一列,乙的前面一行,则丙的位置用数对表示是(5,5),故选:C.【变式5】如图是一组密码的一部分,为了保密,不同的情况下可以采用不同的密码.若输入数字密码(7,7),(8,5),对应中转口令是“数学”,最后输出口令为“文化”;按此方法,若输入数字密码(2,7),(3,4),则最后输出口令为()A.垂直B.平行C.素养D.相交【解答】解:输入数字密码(7,7),(8,5),对应中转口令是“数学”,最后输出口令为“文化”,可得平移规律为:向左平移1个单位,向下平移2个单位,所以输入数字密码(2,7),(3,4),则最后输出口令为是“相交”,故选:D.题型03有序数对表示路径【典例1】如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,按图解答下列问题:(1)C→D(+1,﹣2);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为:(+2,+2),(+2,﹣1),(﹣2,+3),(+1,﹣3),请在图中标出P的位置.【解答】解:(1)C→D(+1,﹣2);故答案为:D,﹣2;(2)若这只甲虫的行走路线为A→B→C→D,甲虫走过的最少路程=1+4+2+1+2=10;(3)如图,点P即为所求.【变式1】如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒洋洋在5×5的方格(每个小方格的边长均为1m)图上沿着网格线运动.灰太狼从点A处出发去寻找点B,C,D,E处的某只羊,规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为A→B(+1,+3),从点B到点A记为B→A(﹣1,﹣3),其中第一个数表示左右方向的走动,第二个数表示上下方向的走动.(1)填空:从点B到点D记为B→D(2,﹣1);(2)若灰太狼从点A处出发去找喜羊羊的行走路线依次为(+1,+3),(+1,+1),(+1,﹣2),(+1,﹣1),请在图中标出喜羊羊的位置E;(3)在(2)中若灰太狼每走1m需消耗0.6焦耳的能量,则灰太狼寻找喜羊羊的过程共需消耗多少焦耳的能量?【解答】解:(1)从点B到点D记为B→D(2,﹣1);故答案为:(2,﹣1);(2)如图,.(3)|+1|+|+3|+|+1|+|+1|+|+1|+|﹣2|+|+1|+|﹣1|=1+3+1+1+1+2+1+1=1111×0.6=6.6(焦耳),答:灰太狼寻找喜羊羊的过程共需消耗6.6焦耳的能量.1.下列描述,能确定具体位置的是()A.祖庙附近B.教室第2排C.北偏东55°D.东经118°,北纬40°【解答】解:A.祖庙附近,不能确定具体位置,故此选项不符合题意;B.教室第2排,不能确定具体位置,故此选项不符合题意;C.北偏东55°,不能确定具体位置,故此选项不符合题意;D.东经118°,北纬40°,能确定具体位置,故此选项符合题意.故选:D.2.如图,有A,B,C三点,如果A点用(1,1)来表示,B点用(2,3)表示,则C点的坐标的位置可以表示为()A.(6,2)B.(5,3)C.(5,2)D.(2,5)【解答】解:由A位置点的坐标为(1,1),B点的坐标为(2,3)可以确定平面直角坐标系中x轴与y轴的位置.根据所建坐标系从而可以确定C点的坐标(5,2).故选:C.3.根据下列描述,能够确定一个点的位置的是()A.学校图书馆前面B.凤凰电影院3排6座C.和谐号第2号车厢D.北偏东40°方向【解答】解:A选项中,学校图书馆前面,不能确定具体的一个点,故不符合题意;B选项中,凤凰电影院3排6座,能确定具体的一个点,故符合题意;C选项中,和谐号第2号车厢,不能确定具体的一个点,故不符合题意;D选项中,北偏东40°方向,不能确定具体的一个点,故不符合题意,故选:B.4.若(1,2)表示教室里第1列第2排的位置,则教室里第3列第2排的位置表示为()A.(2,3)B.(3,2)C.(2,1)D.(3,3)【解答】解:类比(1,2)表示教室里第1列第2排的位置,则教室里第3列第2排的位置表示为(3,2).故选:B.5.根据下列表述,能确定准确位置的是()A.华艺影城3号厅2排B.解放路中段C.南偏东40°D.东经116°,北纬42°【解答】解:A、华艺影城3号厅2排,不能确定具体位置,故本选项不符合题意;B、解放路中段,不能确定具体位置,故本选项不符合题意;C、南偏东40°,不能确定具体位置,故本选项不符合题意;D、东经116°,北纬42°,能确定具体位置,故本选项符合题意.故选:D.6.如果剧院里“5排2号”记作(5,2),那么(7,9)表示()A.“7排9号”B.“9排7号”C.“7排7号”D.“9排9号”【解答】解:如果剧院里“5排2号”记作(5,2),那么(7,9)表示“7排9号”.故选:A.故选:D.7.钓鱼岛及其附属岛屿自古以来就是中国的固有领土,在明代钓鱼岛纳入中国疆域版图,下列描述能够准确表示钓鱼岛地点的是()A.北纬25°44′B.福建的正东方向C.距离温州市约356千米D.北纬25°44.1′,东经123°27.5′【解答】解:钓鱼岛及其附属岛屿自古以来就是中国的固有领土,在明代钓鱼岛纳入中国疆域版图,上列描述能够准确表示钓鱼岛地点的是北纬25°44.1′,东经123°27.5′,故选:D.8.如图是雷达探测到的6个目标,若目标B用(30,60°)表示,目标D用(50,210°)表示,则表示为(40,330°)的目标是()A.目标A B.目标C C.目标E D.目标F【解答】解:∵目标B用(30,60°)表示,目标D用(50,210°)表示,∴第一个数表示距观察站的圈数的10倍,第二个数表示度数,∴表示为(40,330°)的目标是F,故选:D.9.若按照横排在前,纵列在后的编号,甲同学的位置是(3,6),而乙同学所在的位置是第3列第6排,则甲、乙同学()A.在同一列上B.在同一位置上C.在同一排上D.不在同一列或同一排上【解答】解:因为(3,6)表示第3排第6列,而第3排第6列与第3列第6排,不在同一列或同一排上,所以选D.10.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,1),则描述图中另外两艘小艇A,B的位置,正确的是()A.小艇A(30°,3),小艇B(60°,2)B.小艇A(30°,3),小艇B(120°,2)C.小艇A(120°,3),小艇B(150°,2)D.小艇A(120°,3),小艇B(210°,2)【解答】解:图中另外两个小艇A、B的位置,正确的是小艇A(120°,3),小艇B(210°,2),故选:D.11.若电影院中的3排4号记作(3,4),则6排2号可以记作(6,2).【解答】解:由题知,因为电影院中的3排4号记作(3,4),所以括号内数对的第一个数表示排数,第二个数表示号数,故6排2号可以记作(6,2).故答案为(6,2).12.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(1,﹣1),“马”位于点(4,﹣1),则“兵”位于点(﹣1,2).【解答】解:由题意可建立如下所示坐标系:∴“兵”位于点(﹣1,2),故答案为:﹣1,2.13.五(1)班同学进行队列训练,每列人数相等,张静站在最后一列的最后一个,她的位置用数对表示是(8,6),五(1)班有48名同学参加了队列训练.【解答】解:8×6=48(名),故五(1)班有48名同学参加了队列训练.故答案为:48.14.如图,雷达探测器在一次探测中发现了两个目标A,B.若目标A的位置表示为(30°,5),则目标B 的位置可以表示为(135°,6).【解答】解:∵目标A的位置表示为(30°,5),∴目标B的位置可以表示为(135°,6),故答案为:(135°,6).15.同学们,你玩过五子棋吗?它的比赛规则是只要同色5子先成一条直线就获胜,如图是两人玩的一盘棋,若白①的位置是(1,﹣5),黑的位置是(2,﹣4),现轮到黑棋走,你认为黑棋放在(3,﹣1)或(7,﹣5)位置就能获胜.【解答】解:如图所示,黑旗放在图中三角形位置,就能获胜.∵白①的位置是:(1,﹣5),黑②的位置是:(2,﹣4),∴O点的位置为:(0,0),∴黑棋放在(3,﹣1)或(7,﹣5)位置就能获胜.故答案为:(3,﹣1)或(7,﹣5).16.根据如图提供的信息回答问题.(1)书店在小军家南偏西60°方向800米处.(2)学校在小军家正北方向800米处,记作“+800米”,则少年宫在小军家正南方向大约1200米处,记作﹣1200米.(3)花店在学校南偏东30°方向400米处,请在如图中标示出来.【解答】解:(1)书店在小军家南偏西60°方向800米处.故答案为:南偏西60°,800;(2)学校在小军家正北方向800米处,记作“+800米”,则少年宫在小军家正南方向大约1200米处,记作﹣1200米故答案为:1200,﹣1200.(3)如图所示:17.填一填,画一画.(1)百姓超市的位置是(6,6).(2)淘气堡的位置是(1,3),在图中用“●”标出来.(3)万达影城在世纪广场西偏北60度北偏西30度度的方向上,距离世纪广场2000米.(4)滑冰馆在世纪广场东偏南75°,距世纪广场1000米的位置上,在图上用“▲”标出来.【解答】解:(1)百姓超市的位置是(6,6),故答案为:(6,6);(2)淘气堡的位置是(1,3),位置如图;(3)由图可知,万达影城在世纪广场西偏北60度或北偏西30度的方向上,∵500×4=2000米,∴距离世纪广场2000米,故答案为:西偏北60度或北偏西30度,2000;(4)1000÷500=2单位,位置如图.18.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对(2,4)表示,碰碰车用数对(5,1)表示,摩天轮用数对(5,4)表示.(2)请你在图中标出秋千的位置,秋千在大门以东400m,再往北300m处.(2)如图.19.如图是光明小区内的一幢商品房的示意图.若小赵家所在的位置用(4,2)表示.(1)用有序数对表示小李、小张家的位置;(2)(3,5),(5,4)分别表示谁家所在的位置?【解答】解:小赵家位置用(4,2),可找到原点如图所示.(1)根据图示,小李家的位置可用(2,1)来表示;小张家的位置可用(1,3)来表示.(2)根据图示,(3,5)表示小王家的位置;(5,4)表示小周家的位置.20.如图,表示的是图书馆、保龙仓、中国银行和餐馆的位置关系.(1)以图书馆为参照点,请用方向角和图中所标示的距离分别表示保龙仓、中国银行和餐馆的位置;(2)火车站在图书馆的南偏东60°的方向上,并且火车站距图书馆的距离与中国银行距图书馆的距离相等,请在图中画出火车站的位置.【解答】解:(1)保龙仓在图书馆南偏西70°方向上,且距离图书馆2.8km;中国银行在图书馆北偏东30°方向上,且距离图书馆3.2km;餐馆在图书馆北偏西50°方向上,且距离图书馆1.8km;(2)如图所示:。
学而思各年级数学大纲

1.通过动手操作学习倒油取水问题,进行条件判断分析; 2.通过动手测量,判断物品的真假,培养学生的逻辑推理能力。 探索多种类型数学游戏中的乐趣,感受数学之美,拓展思维。 阶段学校效果检测,帮助学生查漏补缺,有利于后期学习方法的改进。 主要内容 学会通过观察数字和得数,利用倒推思想适当添加运算符号使算式成立,并通过“24点”益 智游戏提高学习兴趣,培养学生数感。 理解小数的意义,学会读写小数并会比较小数大小;会解决生活中简单小数问题。 面积认知进阶,通过观察掌握平行四边形及梯形特征;引导学生通过转化思想推导出平行四 边形及梯形面积公式;学会利用面积公式解决实际几何问题。 利用差不变思想解决常见年龄问题。 复习余数,倍数概念。掌握带余数除法的计算及各数之间关系。 学会读懂简单的条形统计图和折线统计图,并会分析统计图提出合理性建议;学会分析表格 中通的过数找据规,律结与合递逻推辑思推想理解、决列经方典程种等树方问法题解中决的一经些典应排用列性方问式题问。题及多线交点个数、分平面个 数方法。 掌握等差数列的概念及识别方法;熟练掌握等差数列的通项公式、项数公式、求和公式、中 项定理、连续奇数和公式等重要结论并会运用;学会利用等差数列解决应用题。 学习和解决各种以数字与数值为内容的文字数字谜问题,包括数字组成的多位数,数字在运 算下的变化,数的分解、分拆与排列。
★★★
★★★
计算
几何
应用
应用 应用
逻辑 应用
巧算加减法
几何计数问题进阶
有趣的周期问题
和差问题 移多补少应用题
推理综合 重叠问题
几何
计算 应用 方法
巧求周长
数阵图 猜猜他几岁 逆向思考
学而思初一数学暑假班第7讲.一元一次方程的解法及应用.教师版

定 义示例剖析等式的概念:用等号来表示相等关系的式子,叫做等式.123+=,15x +=,s ab =,a b c mxy n ++=+等式的类型恒等式:无论用什么数值代替等式中的字母,等式总能成立.条件等式:只能用某些数值代替等式中的字母,等式才能成立.矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.33x x ==,方程56x +=需要1x =才成立.如32=,125+=,11x x +=-. 等式性质1:等式两边都加上(或减去)同一个数(或式子..),所得结果仍是等式. 等式性质2:等式两边都乘以(或除以)同一个数(除数不能是.....0.),结果仍是等式. 若a b =,则a c b c ±=±.若a b =,则ac bc =,若a b =且0c ≠,则a bc c=.在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果a b =,那么b a =;②等式具有传递性,即:如果a b =,b c =,那么a c =.【例1】 下列各式中,哪些是等式?是等式的请指出类型.43x -、15713++=、1722y -=、231x x =+、64y -、5x y +=、π 3.14≈,20a b +>,22x x =,7171x x +=-.【解析】 等式有:15713++=,1722y -=,231x x =+,5x y +=,22x x =,7171x x +=-;夯实基础模块一 等式的概念及性质7一元一次方程的解法及应用恒等式:15713++=,22x x =;条件等式:1722y -=,231x x =+,5x y +=;矛盾等式:7171x x +=-.【例2】 ⑴ 根据等式的性质填空:① 4a b =-,则a b +=______; ② 359x +=,则39x =- ;③ 683x y =+,则x =________; ④ 122x y =+,则x = .⑵ 已知等式325a b =+,则下列等式中不一定成立的是( )A .352a b -=B .3126a b +=+C .325ac bc =+D .2533a b =+(北京二中期中)⑶ 下列变形中,根据等式的性质变形正确的是( )A .由1233x -=,得2x = B .由3222x x -=+,得4x =C .由233x x -=,得3x =D .由357x -=,得375x =-(海淀区期末)【解析】 ⑴ ①4,在等式两端同时加上b ; ② 5,在等式两端同时加上5-;③ 836y +,在等式的两端同时乘以16; ④ 24y +,在等式的两端同时乘以2.⑵ C ;⑶ B定 义示例剖析方程:含有未知数的等式...即: ①方程中必须含有未知数;②方程是等式,但等式不一定是方程.例如123+=是等式不是方程. 方程的解:使方程左、右两边相等的未知数的值,叫做方程的解.解方程:求方程的解的过程...例如3x =是方程36x +=的解方程中的已知数:一般是具体的数值.方程中的未知数:是指要求的数,未知数通常用x 、y 、z 等字母表示.例如50x +=中, 5和0是已知数,例如关于x 、y 的方程2ax by c -=中,a 、2b -、c 是已知数,x 、y 是未知数. 一元一次方程:只含有一个..未知数,并且未知能力提升模块二 方程的相关概念数的最高次数....是1,系数不等于...0.的整式..方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.235x +=,10y -=,3x =最简形式:方程ax b =(0a ≠,a ,b 为已知数)的形式叫一元一次方程的最简形式.例如35x =,27x =等. 标准形式:方程0ax b +=(0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式.例如21040x x +=+=,易错点1:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程. 易错点2:任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.【例3】 ⑴ 下列式子:①3251x x +=-;②213124⎛⎫-+= ⎪⎝⎭;③235x +≤;④212y y -=,其中方程的个数为( )个. A .1 B .2 C .3 D .4⑵ ① 44x x +=+;② 12x=;③ 44x x -=-;④ 23x =;⑤ 2(2)3x x x x +=++.其中是一元一次方程的有 . ⑶ 下列方程中解是2x =的一共有( )480x -=① 480x +=② 840x -=③ 240x -=④A .1个B .2个C .3个D .4个(北大附中期中)【解析】 ⑴ B ; ⑵ ③ ⑤; ⑶ B.【例4】 ⑴ 若3223kkx k -+=是关于x 的一元一次方程,则k = .⑵ 若23(2)5m m x --=是关于x 的一元一次方程,则m 的值是 .⑶ 若(1)5aa x a -+=是关于x 的一元一次方程,则a 的值是 .⑷ 已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m = .(北京师范大学附属实验中学期中)⑸ 方程||(1)2m m x m n -=+是关于x 的一元一次方程,若n 是它的解,则n m -=( ).A .14B .54C .34D .54-(人大附中期中)【解析】 ⑴ 1;能力提升夯实基础⑵由一元一次方程的定义,可知231m-=,且20m-≠,解得2m=-;⑶由一元一次方程的定义,可知1a=,且10a-≠,解得1a=-;⑷32;⑸ B.解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按从上到下的顺序进行,要根据方程的特点灵活运用.易错点1:去括号:括号前是负号时,括号里各项均要变号.易错点2:去分母:漏乘不含分母的项.易错点3:移项忘记变符号.【例5】⑴方程(32)2(21)0x x+--=去括号正确的是()A.32210x x+-+=B.32410x x+-+=C.32420x x+--=D.32420x x+-+=⑵方程31252x xx-+-=-去分母正确的是()A.2(3)25(1)x x x--=-+B.23201051x x x--=-+ C.2(3)20105(1)x x x--=-+D.(3)2010(1)x x x--=-+⑶当x的值为时,代数式45x-和316x-的值互为相反数.⑷若方程15122b x x-=-的解是12x=,则b=.【解析】⑴ D; ⑵ C; ⑶ 3; ⑷1b=-.【例6】⑴解方程1111122x⎛⎫--=⎪⎝⎭(人大附中期中)⑵解方程12223y yy-+-=-(北京五中期中)⑶解方程3221211245x x x+-+-=-(北京师范大学附属实验中学期中)夯实基础模块三一元一次方程的解法及应用⑷解方程7110.251 0.0240.0180.012 x x x--+=-【解析】⑴10x=;⑵1y=;⑶928x=-.⑷原方程可化为7110.251864x x x--+=-,解得5259x=【例7】解下列方程:⑴1113331 2242y⎧⎫⎛⎫---=⎨⎬⎪⎝⎭⎩⎭⑵1112{[(4)6]8}1 9753x++++=【解析】⑴解法一:从内向外去括号去小括号,得1113331 2242y⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦,去中括号,得113331 2842y⎛⎫---=⎪⎝⎭,去大括号,得13331 16842y---=,移项、合并同类项,得129 168y=,系数化为1,得58y=.解法二:从外向内去括号去大括号,得1113331 4222y⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦,去中括号,得113331 8242y⎛⎫---=⎪⎝⎭,去小括号,得13331 16842y---=,移项、合并同类项,得129 168y=,系数化为1,得58y=.解法三:多次去分母两边同乘以2,得1113332 222y⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦,两边同乘以2,得113364 22y⎛⎫---=⎪⎝⎭,两边同乘以2,得1361282y---=,能力提升移项合并同类项,得1292y =, 系数化为1,得58y =.点评:解题时要善于观察题目特点选择合理得理解途径. ⑵ 解得1x =【巩固】解方程:1112(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦【解析】解得117x =-【例8】 解下列方程:⑴ 1123(23)(32)11191313x x x -+-+=⑵ 11311377325235x x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭【解析】⑴ 原方程可变为:111(23)(23)(23)0111913x x x ---+-=,即:111()(23)0111319x +--=,又1110111319+-≠, 所以230x -=,即32x =.⑵ 这一方程在变换过程中,宜将375x ⎛⎫- ⎪⎝⎭作为一个整体.方程两边同乘以6,得3323(7)32(7)55x x --=--,333(7)2(7)3255x x --+-=-, 333(7)2(7)155x x ----=, 35(7)15x --=, 343x =.【例9】 解下列方程:⑴ 2009122320092010x x x +++=⨯⨯⨯L探索创新⑵...200613352003200520052007x x x x ++++=⨯⨯⨯⨯ 【解析】⑴ 111()2009122320092010x +++=⨯⨯⨯L ,1(1)20092010x -=,即:200920092010x =,故2010x =.⑵ 原方程变形为:1111(...)200613352003200520052007x ++++=⨯⨯⨯⨯,即:2006200620072x ⋅=,4014x =.【例10】解下列方程:⑴ 20181614125357911x x x x x -----++++=⑵ 20101309720092007x x x ---++=【解析】 ⑴ 如果发现203185167149121123+=+=+=+=+=,那么离成功就不远了.201816141250357911x x x x x -----++++-=,2018161412(1)(1)(1)(1)(1)0357911x x x x x ------+-+-+-+-=,23232323230357911x x x x x -----++++=,11111()(23)0357911x ++++-=,因为111110357911++++≠,所以23x =.⑵ 原方程可化为201013(1)(1)0972*******x x x---+-++=,2010201020100972*******x x x ---+-=,111(2010)()0972*******x -+-=,显然1110972*******+-≠,故20100x -=,2010x =.【巩固】226200620072008x x x -+++=的解为 。
学而思初一数学寒假班第2讲.二元一次方程组的特殊解法.教师版

方程7级二元一次方程的实际应用方程6级 方程组巅峰突破含参方程组 方程5级二元一次方程组的特殊解法五百只鸭子漫画释义满分晋级阶梯2二元一次方程组的特殊解法题型切片(两个) 对应题目题型目标方程组的基本解法例1;例2;例3;例4; 解复杂、特殊的方程组 例5;例6;例7;例8;考点一:知道代入、加减消元法的意义1、解方程组:4316x y x y -=⋅⋅⋅⋅⋅⋅⎧⎨+=⋅⋅⋅⋅⎩①②.【解析】①+②得,420x =,解得5x =,把5x =代入①得,54y -=,解得1y =, 故此方程组的解为:51x y =⎧⎨=⎩.考点二:选择适当方法解方程组2、已知24328a b a b +=⎧⎨+=⎩,则a b +等于( )A 、3B 、83C 、2D 、1考点剖析知识互联网题型切片【解析】24328a b a b +=⎧⎨+=⎩①②∵①+②得:4412a b +=,∴3a b +=故选A【点评】本题考察了解二元一次方程组的应用,关键是检查学生能否运用巧妙的方法求出答案,题目比较典型,是一道比较好的题目.【例1】二元一次方程及二元一次方程的解概念【例2】基本的代入、加减消元法解二元一次方程组 【例3】解复杂的二元一次方程组【例4】含有字母系数的二元一次方程组,先理解题意再进行计算 【例5】叠加叠减法 【例6】换元法 【例7】倒数法【例8】探索方程组中未知数满足的关系式.定 义示例剖析二元一次方程定义:通过化简后,只有两个未知数,并且未知数的项的次数都是1,系数都不是0的整式方程.23x y =,5x y +=,1a b -=,35m n=;二元一次方程的解:使二元一次方程左右两边的值相等的一对未知数的值,叫做这个二元一次方程的一个解.14x y =⎧⎨=⎩是方程5x y +=的一个解; 二元一次方程组定义:一般地,含有相同的未知数的两个二元一次方程合在一起,就组成一个二元一次方程组.41x y x y +=⎧⎨-=⎩二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值(即两个方程的公共解),叫做二元一次方程组的解.31x y =⎧⎨=⎩是二元一次方程组41x y x y +=⎧⎨-=⎩的解.基本方法:⑴ 代入消元法:把方程组中的一个方程进行变形,写出用一个未知数x (或y )编写思路模块一 方程组的基本解法知识导航表示另一个未知数y (或x )的代数式,然后把它代入另一个方程中,消去未知数y (或x ),得到关于x (或y )的一元一次方程,通过解这个一元一次方程,再来求二元一次方程组的解.我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法.⑵ 加减消元法:当二元一次方程组中两个方程的某个未知数的系数互为相反数或相等时,可以把方程的两边分别相加(当某个未知数的系数互为相反数时)或相减(当某个未知数的系数相等时)来消去这个未知数,得到一个一元一次方程,进而求得二元一次方程组的解.像上面这种解二元一次方程组的方法叫做加减消元法,简称加减法.易错点:二元一次方程有无数组解,二元一次方程组只有唯一一组解或无数组解.【例1】 ⑴ 已知关于x 、y 的方程()12mm x y ++=是二元一次方程,则m =______.⑵ 当m =_____时,方程220x my +=是关于x 的一元一次方程. ⑶ 写出方程342x y -=的三组解.【解析】 ⑴1;⑵ 0;⑶ 2610147,,x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩等.【例2】 解方程组 ⑴2127y x x y =-⎧⎨+=-⎩(北京五中期中)⑵233511x y x y +=⎧⎨-=⎩【解析】 ⑴ 13x y =-⎧⎨=-⎩;⑵21x y =⎧⎨=-⎩【例3】 ⑴ 解方程组121232132x y y x -+⎧-=⎪⎪⎨⎪+=⎪⎩⑵ 若关于x ,y 的方程组18mx ny nx my -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则m n -为 .【解析】 ⑴ 32x y =⎧⎨=-⎩;⑵ 1.夯实基础能力提升【例4】 ⑴ m 为何值时,方程组522312x y mx y m -=⎧⎨+=-⎩的解x y 、互为相反数?⑵ 已知方程组2420x my x y +=⎧⎨-=⎩有解1x ny n =⎧⎨=+⎩,求m n 、的值.【解析】 ⑴ 9m =;⑵ 将1x n y n =⎧⎨=+⎩代入20x y -=中,即2(1)0n n -+=,解得2n =-,故有21x y =-⎧⎨=-⎩,代入24x my +=中,即44m --=,解得8m =-.定 义示例剖析当二元一次方程组比较复杂时,应先化简,利用去分母、去括号、合并同类项等将其变为简单的二元一次方程组后再选择合适的消元法求解.方程组()110.5142335x y x y +⎧--=⎪⎪⎨++⎪=⎪⎩化简得25531x y x y +=⎧⎨-=-⎩易错点:含绝对值的方程组要分类讨论.【例5】 解方程组:⑴ 199519975989199719955987x y x y +=⎧⎨+=⎩⑵ 361463102463361102x y x y +=-⎧⎨+=⎩⑶ 201020092008200820072006x y x y -=⎧⎨-=⎩(北京四中期中)【解析】 ⑴ 12x y =⎧⎨=⎩;⑵ 11x y =⎧⎨=-⎩;⑶ 12x y =-⎧⎨=-⎩.【点评】 本题尽管可以用常规方法求解,但未知数的系数较大,无论是代入法还是加减法,运算量都很大.选择方法时要根据方程的特点,具体问题具体分析.仔细观察本题系数的特殊规律,大胆地将两个方程分别相加、相减形成新的方程组,进而求得方程组的解.【例6】 运用适当的方法解下列方程组夯实基础知识导航模块二 解复杂、特殊的方程组⑴()()()()4513453x y x yx y x y⎧++-=⎪⎨+--=⎪⎩(北京十一学校期中)⑵解关于x、y的二元一次方程组3223232232x a y b ax a y b a+-⎧+=⎪⎪⎨+-⎪-=⎪⎩(北京十二中期中)【解析】⑴3212xy⎧=⎪⎪⎨⎪=⎪⎩;提示:令x y u x y v+=-=,⑵22x ay b=-⎧⎨=⎩;提示:令3223x a y bu v+-==,【点评】此题为整体换元法求解. 【例7】解下列方程组⑴1215b aabb aab+⎧=⎪⎪⎨-⎪=⎪⎩⑵13281237xyx yxyx y⎧=⎪+⎪⎨⎪=⎪+⎩【解析】⑴原式可化简为11121115a ba b⎧+=⎪⎪⎨⎪-=⎪⎩,所以207203ab⎧=⎪⎪⎨⎪=⎪⎩⑵取倒数得328237x yxyx yxy+⎧=⎪⎪⎨+⎪=⎪⎩,化简得238327x yx y⎧+=⎪⎪⎨⎪+=⎪⎩得1112xy⎧=⎪⎪⎨⎪=⎪⎩解得112xy=⎧⎪⎨=⎪⎩.【点评】此题为倒数法求解.【例8】 1.(2011年人大附中期中)已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为 .能力提升真题赏析2.(2013年一六一中学期中)由方程组213x m y m+=⎧⎨-=⎩可得出x 与y 的关系是 .3.(2013年首师大附中期中)已知关于x 、y 的方程组343x y ax y a +=-⎧⎨-=⎩,给出下列结论:①51x y =⎧⎨=-⎩是方程组的解;②当2a =-时,x ,y 的值互为相反数;③当1a =时,方程组的解也是方程4x y a +=-的解; ④,x y 满足的关系式是23x y +=其中正确的是( )A .①②B .②③C .①③④D .②③④【解析】1. 1x y -=2. 24x y +=3. D.训练1. 如果2223n m n x y ---=是关于x y 、的二元一次方程,那么m = ,n = . 【解析】 根据定义得2121n m n -=⎧⎨-=⎩,解得73m n =⎧⎨=⎩.训练2. 解方程组233119,253323.x y x y -=⎧⎨-=⎩①②【解析】 ②-①,得224x y -=,即2x y =+。
第二节 平行线的性质和判定(含答案)...七年级数学 学而思

第二节 平行线的性质和判定1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a∥b; 注:必须强调在同一平面内,否则无法说明平行.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行,注:点必须在直线外,而不能在直线上; (3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也相互平行,即“平行于同一条直线的两直线平行”.2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行,注:判断同一平面内两条直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行. 3.两直线平行的判定方法 (1)平行线的定义; (2)平行公理的推论;(3)同位角相等,两直线平行; (4)内错角相等,两直线平行; (5)同旁内角互补,两直线平行. 4.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.1.平行的判定和证明:证明平行一般从寻找相等的同位角,内错角或互补的同旁内角 出发,而这些角关系的获得条件一般有: ①已知平行条件; ②三角形内角和; ③角平分线; ④垂直;⑤互余互补关系.例1.如图5-2-1所示,如果,//,//CD EF EF AB 请写出一个关于3,2,1∠∠∠的等量关系125-- 225-- 325--检测1.如图5-2-2所示,已知a ‖b,0701=∠,,402ο=∠则=∠3 例2.如图5-2-3所示,已知,9021ο=∠+∠,,//AG CD FC DE ⊥求证:.//FH AG检测2.如图5-2-4所示,直线a ,b 被直线c 所截,下列条件能使b a //的是;61∠=∠①;62∠=∠②;31∠=∠③;75∠=∠④+∠2⑤;1807ο=∠.71∠=∠⑥例3.(江西兴国县期末)学习了平行线后,小龙同学想出了“过已知直线m 外一点P 画这条直线的平行线的新方法”,他是通过折一张半透明的正方形纸得到的.525--观察图5-2-5所示,经两次折叠展开后折痕CD 所在的直线即为过点P 的已知直线m 的平行线.从图中可知,小明画平行线的依据有( )①两直线平行,同位角相等; ②两直线平行,内错角相等; ③同位角相等,两直线平行; ④内错角相等,两直线平行. A.①② B.②③ C .③④ D .①④425--检测3.如图5-2-6所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在C D ,的位置,若,60ο=∠EFB 则=∠AED例4.已知,,100,//ο=∠=∠A B OA BC 试回答下列问题:725-- 825-- 925--(1)如图5-2-7所示,求证:;//AC OB(2)如图5-2-8所示,若点E ,F 在线段BC 上,且满足,AOC FOC ∠=∠并且OE 平分.BOF ∠则EOC ∠的度数等于 (在横线上填上答案即可);(3)在(2)的条件下,若平行移动AC ,如图5-2-9,那么OFB OCB ∠∠:的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值; (4)在(3)的条件下,如果平行移动AC 的过程中,若使,OCA OEB ∠=∠此时OCA ∠度数等于 (在横线上填上答案即可).检测4.(广东澄海区期末)如图5 -2 -10所示,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由; (2)如图5-2 -11所示,BEF ∠与FFD ∠的角平分线交于点P ,EP 与CD 交于点G .点H 是MN 上一点,且GHlEG ,求证:;//GH PF(3)如图5-2 -12所示,在(2)的条件下,连接PH ,K 是GH 上一点使=∠PHK ,HPK ∠作PQ 平分EPK ∠问HPQ ∠的大小是否发生变化?若不变,请求出其值;若变化,说明理由,625---122-5-5--1110225-第二节平行线的性质和判定(建议用时 35分钟)实战演练1.(浙江绍兴期末)如图5-2-1所示,,//,////DB EG DC EF AB 则图中与1∠相等的角(1∠除外)共有( )6.A 个 5.B 个 4.C 个 3.D 个2.(浙江金华中考)以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线以,6互相平行的是( )125-- 225-- 325-- 425-- 525--A .如图5-2-2所示,展开后测得21∠=∠B .如图5-2-3所示,展开后测得4321∠=∠∠=∠且C .如图5-2-4所示,测得21∠=∠D .如图5-2-5所示,展开后再沿CD 折叠,两条折痕的交点为0,测得,OB OA =OD =OC3.如图5-2-6所示是五条胡同的路线图,),(F F D C B A →--→→→经过测量得到C B ∠=∠,70ο=,110ο=∠=∠E D 则图中互相平行的线有( )A .1对B .2对C .3对D .4对625-- 725-- 825-- 925--4.(山东聊城中考)如图5-2-7所示,,//CD AB ,68ο=∠B ,20ο=∠E 则D ∠的度数为( )ο28.A o B 38. ο48.C ο88.D5.如图5-2-8所示,HG EF BC AD ,,//交于点HI P ,平分,GHF ∠PM 平分EPH ∠HI 交PM 的反向延长线于Q ,//PN,HI 下列结论:,GEP EGP ∠=∠①若则;//AD PM 2=∠GEP ②;MPN ∠,2Q FPN ∠=∠③其中正确的是( )①②③.A ①③.B ②③.C ①②.D6,(山东聊城模拟)如图5-2-9所示,在四边形ABCD 中,=∠B ,120ο,50oD =∠将C ∠向内折出一个,PRC ∆恰好使,//AB CP //CR ,AD 则C ∠的度数是( )ο80.A ο85.B ο95.C o D 110.7.如图5 -2 - 10所示,已知,AB GF ⊥,21∠=∠,B AGH ∠=∠则下列结论:;//BC GH ①;HGM D ∠=∠②;//FG DE ③,AB HE ⊥④其中正确的是( )①②⋅A ③ ②③④⋅B ①③④⋅C ①②③④⋅D1125-- 1225--8.(广西玉州区期末)如图5 -2 - 11所示,已知BAD CD AB ∠,//和BCD ∠的平分线交于点E .,1001ο=∠,m BAD =∠ο则EC A ∠的度数为9,如图5 -2 - 12所示,直线,//21l l 若,125ο=∠A ,85ο=∠B 则=∠+∠21 10.如图 5 -2 - 13所示,已知,180ο=∠+∠BCD B .D B ∠=∠求证:.DFE E ∠=∠证明:οΘ180=∠+∠BCD B ( )CD AB //∴( )=∠∴B (两直线平行,同位角相等), D B ∠=∠Θ(已知), D DCE ∠=∠∴(等量代换), BF AD //∴( )DFE E ∠=∠∴( )11.如图5 -2 - 14所示,直线AB ,CD 被EF 所截,,21∠=∠,BME CNF ∠=∠求证:AB ,//CD .//NQ MP12.(山东招远市期耒)如图5-2 -15所示,点D ,E 分别在ABC ∆的边AB ,AC 上,点F 在DC 上,且,18021ο=∠+∠.3B ∠=∠求证:.//BC DE1325--1425--1525--13.小明将一直角三角板(ο30=∠A )放在如图5 -2 - 16所示的位置,且.21C ∠=∠+∠ (1)证明:;//b a(2)经测量知,1A ∠=∠求;2∠(3)如图5-2 - 17所示,将三角板进行适当转动,直角顶点始终在两直线间,M 在线段CD 上,且CEH CEM ∠=∠给出下列结论:BDFMEG∠∠①的值不变:BDF MEG ∠-∠②的值不变,可以证明,其中只有一个是正确的,请你作出正确的选择并直接写出此值,1625-- 1725--14.如图5-2-18所示,.F D B E C A ∠+∠+∠=∠+∠+∠求证:.//CD AF15.问题情景:如图5-2 - 19所示,,//CD AB ,130oPAB =∠,120ο=∠PCD 求APC ∠的度数. (1)天天同学看过图形后立即口答出:,110oAPC =∠请你补全他的推理依据.如图5 -2 - 20所示,过点P 作,//AB PE,//CD AB ΘCD AB PE ////∴( .180ο=∠+∠∴APE Aο180=∠+∠CPE C ( ),120,130οΘ=∠=∠PCD PAB O.60.50ο=∠=∴⊥CPE APE o1825--ο110=∠+∠=∠∴CPE APE APC ( )问题迁移:(2)如图5-2- 21所示,,//BC AD 当点P 在A ,B 两点之间运动时,,α∠=∠ADP ,β∠=∠BCP 求βα∠∠∠,与CPD 之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P 在A ,B 两点外侧运动时(点P 与点A ,B ,0三点不重合),请你直接写出CPD ∠与βα∠∠,之间的数量关系.1925-- 2025-- 2125--拓展创新16.(辽宁鞍山期末)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图5 -2 - 22所示,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被6反射出的光线n 与光线m 平行,且,381ο=∠则=∠2 ;=∠3(2)在(1)中,若ο551=∠则=∠3 ;若,401ο=∠则=∠3(3)由(1).(2)猜想:当两平面镜a ,b 的夹角=∠3 时,可以使任何射到平面镜a 上的光线m ,经过平面镜a ,b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗?拓展1.有一款灯,内有两面镜子AB ,BC ,当光线经过镜子反射时,入射角等于反射角,即图5 -2 - 23、图5-2 -24中的.43,21∠=∠∠=∠2225--2325-- 2425--(1)如图5 -2 - 23所示,当BC AB ⊥时,说明为什么进入灯内的光线EF 与离开灯的光线GH 互相平行; (2)如图5-2 - 24所示,若两面镜子的夹角为)900(οο<<αα时,进入灯内的光线与离开灯的光线的夹角为),900(οο<<ββ试探索α与β的数量关系;(3)若两面镜子的夹角为),18090(οο<<αα进入灯内的光线与离开灯的光线所在直线的夹角为).900(οο<<ββ直接写出α与β的数量关系.拓展2.(湖北武昌区期末)一个长方形台球桌面ABCD )90,//,//(ο=∠A BC AD DC AB 如图5 -2 - 25所示,已知台球在与台球桌边沿碰撞的过程中,撞击线路与桌边的夹角等于反射线路与桌边的夹角,即.21∠=∠(1)台球经过如图5 -2 - 26所示的两次反弹后,撞击线路EF ,第二次反弹线路GH , 求证:;//GH EF(2)台球经过如图5 -2 - 27所示的两次反弹后,撞击线路EF 和第二次反弹线路GH 是否仍然平行,给出你的结论并说明理由.2525-- 2625-- 2725--极限挑战17.平面上有100条直线,其中有20条是互相平行的,问这100条直线最多能将平面分成部分,课堂答案培优答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学而思七年级数学下1-10讲第一讲、整式第二讲同底数幂的乘法、幂的乘方与积的乘方第三讲同底数幂的除法与整式的乘除第四讲整式的除法第五讲平方差公式第六讲完全平方公式第七讲、整式的除法第八讲测试第九讲中考经典第十讲平行线与相交线余角与补角第一讲、整式知识要点:1、单项式的意义:数与字母的乘积的代数式叫做单项式。
(单独的一个数或字母也是单项式) 2b 与 2b的区别2、单项式中的数字因数叫做叫做这个单项式的系数3、单项式中所有字母的指数和叫做叫做这个单项式的次数。
4、几个单项式的和叫做多项式5、组成多项式的每一个单项式叫做多项式的项6、多项式里此数目最高的项的次数,就是这个多项式的次数。
7、整式的意义:单项式和多项式统称为整式。
(分母中含有字母的代数式不是整式)8、整式的加减:求几个整式的和或差的运算,运算结果仍是整式9、整式加减的一般步骤:(1)去括号;(2)合并同类项10、整体代入法:11、整式的运算对数的运算的指导性作用:例1、填空题:(1)单项式213x -的系数是,次数是;(2)单项式222a b c-的系数是,次数是;(3)单项式 22x y z π的系数是,次数是;例2、填空:(1)多项式23x +是次项式,最高次项是,常数项是。
(2)多项式43923101232x y x x y -++是次项式,最高次项的系数是,常数项是。
例3 、已知多项式4212331534a x y xy x y +--+(1)求多项式中各项的系数与次数。
(2)若多项式是8次三项式,求a 的值例4、(1)25ax -与24x a -的差是(2)与2421x x ++的差是24x2例5、若2,3xy x y =-+=,求代数式[](310)5(223xy y x xy y x++-+-的值。
例6、证明:对于任意一个三位数字,交换它的百位数和个位数又得到一个一个数,两个数相减,所得结果能被99整除。
例7、甲、乙两种服装的成本共600元,商店老板为获取利润,决定将甲种服装按60%的利润率定价,在实际出售时,两种服装均按八五折出售。
若甲种服装的成本为x 元,求该商店共获利多少元。
如果商店获利182元,求甲、乙两种服装的成本各是多少元?一、判断题:1、 0不是单项式()2、单项式23xyz 的次数是5 ()3、 2223a b -是多项式()4、多项式223245x x x -+-中二次项的系数是2 ()5、多项式一定是整式,但整式不一定是多项式()二、填空题:1、多项式233410ab a b -+的各项是,是次项式。
2、若多项式中432(1)3(1)1x a x x b x --+-+- 不含3x 和x 项,则a = ,b = 。
3、 2m ax y - 是关于x 、y 的一个单项式,且系数是12,次数是5,则a = , m = 。
4、一个多项式减去243ab b -得223a ab -,则这个多项式是5、()+22(238)453m m m m --=-++6、某种商品原价a 元,进价b 元,若按原价的8折出售可获利元。
7、观察下列等式:21211(12)+?=?+ ; 22222(22)+?=?+23233(32)+?=?+;……则第n 个等式可表示为。
8、如果23(5)k k xy --是关于x 、y 的六次单项式,那么k =9、如果多项式 32(2)(2)6k k x k x ----是关于x 的二次多项式,则k 的值是。
三、选择题:1、在代数式:3a b -,2ab π-,0,321x x x +-,21()3x y --,23x y +,a 中,单项式的个数是()A 、 2个B 、 3个C 、 4个D 、 5个2、一组按规律排列的式子多项式:233547,,,,a b a b a b a b +-+-……,其中第10式子是()A、 1019a b + B、1019a b - C、 1017a b - D、1021a b -3、下列各式中,计算正确的是()A 、222()2a a b c a a b c --+=--+B 、(1)()a b c ---+=1a b c +++C 、()a b a d b d -+-=-+D 、[]35(21)3521a b c a b c ---=--+ 4、已知A 是二次三项式,B 是三次四项式,则A+B 是()A 、三次式B 、二次式C 、五次式D 、不高于三次的整式 5、已知33x y -=-,则53x y -+的值是() A 、 0 B 、 2 C 、 5 D 、 8 6、下列结论正确的是() A 、没有加减运算的代数式叫单项式B 、单项式237xy 的系数是3,次数是2C 、单项式m 既没有系数,也没有次数D 、单项式2xy z -的系数是1-,次数是47、单项式 113a b a x y +--与23x y 的和仍为单项式,则a b -的值为()A 、 2B 、 0C 、2-D 、 18、如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a 克,再称得剩余电线的质量为b 克,那么原来这卷电线的总长度为() A 、1b a +米 B 、(1)b a +米 C 、(1)a b a ++ 米 D 、(1)a b +米9、已知代数式242x x +-的值为3,则代数式2285x x +-的值为() A 、 5 B 、5- C 、5或5- D 、 010、如图,一块砖的外侧面积为x ,那么图中残留部分墙面的面积为() A 、4x B 、12x C 、8x D 、16x三、计算:1、12(2)3(2)2x x y z x y --++-2、已知2(1)20x y -++=,求22(52)2(34)xy x xy x ---的值四、解答题:1、一个三位数,十位数字为1a -,个位数字比十位数字的3倍多2,百位数字比个位数字少3,请用多项式表示这个三位数,并求出所有满足条件的a 的值。
第二讲同底数幂的乘法、幂的乘方与积的乘方知识要点:1、(1)同底数幂的乘法:m n m n a a a +?= (,m n 都是正整数)(2)与整式的加法的区别:(3) 注意事项:幂的底数相同时才可使用(4)公式的逆用:(5)常见的恒等变形:2、(1)幂的乘方: ()m n mn a a = (,m n 都是正整数)(3)公式的逆用:3、(1)积的乘方:()n n n ab a b =? (n 是正整数)(2)注意事项:(3)意义及运用:(4)公式的逆用:例1、计算:(1)()32344()()()()a a a a a a a -?-?+-?-?-?(2)23()()x y y x -?-例2、已知2,5m n a a ==,求m n a +的值。
例3、已知23,26,212a b c ===,求a 、b 、c 之间的关系。
例4、填空:(1)22(3)x y - =(2)2234()a a ??- =(3)()3322()a a-+-=(4)()3213()()n n x x x --- =(5)20072006(8)0.125-? = (6)212(5)5(5)n n +-+?- =例5、(1)85a a =?( ) (2)249a b =()2(3) 12b =()2=()3=()4=()6 (4)若 102m =,103n =,则4310m n += (5)若436(8)2x =,则x = (6)已知2139273m m ??=,则m = 例6、已知1234522,24,28,216,232,===== ……观察上面的式子,判断6698的个位数字是几?一、选择题:1、下列等式成立的是() A 、 22()()x y x y -=+B 、44()()y x x y -=-C 、33()()x y x y -+=- D 、22()()x y y x -=--2、计算234(3)a b -- 的结果是()A 、81281a bB 、6712a bC 、6712a b -D 、81281a b - 3、下列计算中,错误的是()A 、326()a a -=B 、236311()28x y x y =C 、2324(3)6ab a b =D 、3412(10)10=4、若等式 ()(0)n nx x x -=-≠成立,则n 是() A 、奇数 B 、偶数 C 、正整数 D 、整数 5、计算1()()n n a b b a --?-等于() A 、21()n a b -- B 、21()n b a -- C 、21()n a b --- D 、非以上答案 6、二、填空题:3、 1m m x x x +??= ;4、343()()()x y y x x y ---+= ;5、若1010010001000010x =,则x = ;6、若2m n x x x =? ,则n = ;7、若2,3m n a a ==,则m n a + = ;8、计算:2332()()x x -+-= ;9、计算:(1)20022003(4)(0.25)-+-= ;(2) 332()m ??--?? = ;(3) 13927n n -??= ;(4) 211813n n --? = ;三、计算题:1、 352622a a a a a a a ?+?-??2、2345()2m m m m m -?+-?+3、2344()()2()()x x x x x x --+-+-?4、计算:322333(2)(3)(2)5()x x x x -+-+?-5、计算: 42483125??6、若 2530x y +-= ,求432x y ?的值。
7、已知2,4m m a b ==,求32()m a b 的值8、计算: 221()()()n n x y y x y x +---第三讲、同底数幂的除法与整式的乘除知识要点:1、同底数幂的除法:(1)法则:(0,,m n m n a a a a m n -÷=≠都是正整数,并且m n >)语言表达:同底数幂相除,底数不变,指数相减(2)注意:① 0a ≠② 底数必须相同才能使用该公式③ 可推广2、意义与使用:1(0,p p a a p a-=≠为正整数)3、逆用:4、整式的乘法:(1)单项式的乘法法则:把系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
(2)单项式与多项式的乘法法则:根据分配率用单项式去乘多项式的每一项,再把所得的积相加(3)多项式的乘法法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把它们(4)注意:① 计算系数时,先确定符号,再计算绝对值② 对于三个以上单项式相乘也适用③ 结果仍是单项式例1、计算:(1)127a a ÷= (2) 2825()()m n m n ÷=(3)m n m n a a +-÷ = (4)76()()x y y x -÷-=(5)4141023()a a a ÷?? =例2、计算: 301112( 3.14)12()22π--+---?-例2、若3,3x y a b ==,求23x y -的值。