高三专题复习:直线与圆知识点及经典例题(含答案)

高三专题复习:直线与圆知识点及经典例题(含答案)
高三专题复习:直线与圆知识点及经典例题(含答案)

专题:圆的方程、直线和圆的位置关系

【知识要点】

圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程

形如: 222)()(r b y a x =-+- 这个方程叫做圆的标准方程。王新敞

说明:1、若圆心在坐标原点上,这时0==b a ,则圆的方程就是222r y x =+。

2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确

定了圆,所以,只要a,b,r 三个量确定了且r >0,圆的方程就给定了。

就是说要确定圆的方程,必须具备三个独立的条件王新敞

确定a,b,r ,可以根据3个条件,利用待定系数法来解决。

(二)圆的一般方程

将圆的标准方程222)()(r b y a x =-+-,展开可得02222222=-++--+r b a by ax y x 。可见,任何一个圆的方程都可以写成 :022=++++F Ey Dx y x 。

问题:形如022=++++F Ey Dx y x 的方程的曲线是不是圆?

将方程02

2

=++++F Ey Dx y x 左边配方得:2

2222)2

4()2()2(F E D E y D x -+=-+-

(1)当042

2

>-+F E D 时,方程(1)与标准方程比较,方程02

2=++++F Ey Dx y x 表示以)2

,2(E

D --

为圆心,以2

422F

E D -+为半径的圆。

(2)当042

2

=-+F E D 时,方程02

2=++++F Ey Dx y x 只有实数解,解为2

,2E

y D x -=-

=,所以表示一个点)2

,2(E

D --

. (3)当0422<-+F E D 时,方程02

2=++++F Ey Dx y x 没有实数解,因而它不表示任何图形。

圆的一般方程的定义:当042

2

>-+F E D 时,方程022=++++F Ey Dx y x 称为圆的一般方程. 圆的一般方程的特点:(i )2

2

y x 和的系数相同,不等于零;(ii )没有xy 这样的二次项。 (三)直线与圆的位置关系

1、直线与圆位置关系的种类

(1)相离---求距离; (2)相切---求切线; (3)相交---求焦点弦长。 2、直线与圆的位置关系判断方法: 几何方法主要步骤:

(1)把直线方程化为一般式,利用圆的方程求出圆心和半径 (2)利用点到直线的距离公式求圆心到直线的距离

(3)作判断: 当d>r 时,直线与圆相离;当d =r 时,直线与圆相切;当d

(1)把直线方程与圆的方程联立成方程组

(2)利用消元法,得到关于另一个元的一元二次方程

(3)求出其Δ的值,比较Δ与0的大小:

(4)当Δ<0时,直线与圆相离;当Δ=0时,直线与圆相切 ;当Δ>0时,直线与圆相交。

圆的切线方程总结:

当点),(00y x 在圆222r y x =+上时,切线方程为:200r y y x x =+;

当点),(00y x 在圆222)()(r b y a x =-+-上时,切线方程为:200))(())((r b y b y a x a x =--+--。 【典型例题】 类型一:圆的方程

例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 变式1:求过两点)4,1(A 、)2,3(B 且被直线0=y 平分的圆的标准方程.

变式2:求过两点)4,1(A 、)2,3(B 且圆上所有的点均关于直线0=y 对称的圆的标准方程.

分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.

解法一:(待定系数法)

设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为2

22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴?????=+-=+-2

22

24)3(16)1(r

a r a 解之得:1-=a ,202

=r . 所以所求圆的方程为20)1(2

2=++y x . 解法二:(直接求出圆心坐标和半径)

因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13

12

4-=--=

AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .

又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++=

=AC r .

故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为

r PC d >=++==254)12(22.∴点P 在圆外.

例2:求过三点O (0,0),M (1,1),N (4,2)的圆的方程,并求出这个圆的圆心和半径。

解:设圆的方程为:x 2 + y 2 + Dx + Ey + F = 0,将三个点的坐标代入方程

???

??=+++=+++=02024020F E D F E D F ? F = 0, D = -8, E = 6 ? 圆方程为:x 2 + y 2 -8x + 6y = 0

配方:( x -4 )2 + ( y + 3 )2 = 25 ?圆心:( 4, -3 ), 半径r = 5 例3:求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.

分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.

解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上,

又圆心到两直线02=-y x 和02=+y x 的距离相等.∴

5

25

2y x y x +=

-.∴两直线交角的平分线方程是

03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上.

设圆心)3,(t t C ∵C 到直线02=+y x 的距离等于AC ,∴

22)53(5

32-+=+t t t t .

化简整理得0562

=+-t t .解得:1=t 或5=t ∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55.

∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(2

2=-+-y x .

说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法. 类型二:切线方程、切点弦方程、公共弦方程

例4、已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.

解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴

21422

=++-k k .解得43=

k ,所以()4243

+-=x y ,

即01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x . 说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.

本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用

200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.

例5、自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆07442

2

=+--+y x y x 相切,求光线所在直线方程。

例6、 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.

分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.

解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:

0101012

020=++++F y E x D y x ①

0202022

020=++++F y E x D y x ②

①-②得:0)()(21021021=-+-+-F F y E E x D D .

∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .

∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程.又过A 、B 两点的直线是唯一的.

∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .

说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛. 例7、求过点(3,1)M ,且与圆2

2

(1)4x y -+=相切的直线l 的方程.

解:设切线方程为1(3)y k x -=-,即310kx y k --+=,∵圆心(1,0)到切线l 的距离等于半径2, ∴

()

2

2|31|21k k k -+=+-,解得34k =-, ∴切线方程为3

1(3)4

y x -=--,即34130x y +-=,

当过点M 的直线的斜率不存在时,其方程为3x =,圆心(1,0)到此直线的距离等于半径2,故直线3x =也适合题意。 所以,所求的直线l 的方程是34130x y +-=或3x =. 补充:圆02

2

=++++F Ey Dx y x 的切点弦方程:

类型三:弦长、弧问题

例8、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长.

例9、直线0323=-+y x 截圆42

2

=+y x 得的劣弧所对的圆心角为 解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对

的圆心角为3

π

=

∠AOB .

例10、圆C :25)2()1(22=-+-y x ,直线)(047)1(12R m m y m x m ∈=--+++)(,

(Ⅰ)证明:不论m 取何值时,l 与C 恒有两个交点;

(Ⅱ)求最短弦长所在直线方程。

分析:本题最关键的是直线交点系方程的转化,挖掘出直线恒过定点。再探究定点在圆内,下一步只需要去探究点到直线的距离最大时,直线方程是什么。

类型四:直线与圆的位置关系

例11、已知直线0323=-+y x 和圆42

2

=+y x ,判断此直线与已知圆的位置关系.

例12、若直线m x y +=与曲线24x y -=

有且只有一个公共点,求实数m 的取值范围.

解:∵曲线24x y -=

表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范围是

22<≤-m 或22=m .

例13、圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?

分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r .设圆心1O 到直线01143=-+y x 的距离为d ,则324

311

34332

2

<=+-?+?=

d .如图,在圆心1

O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意.∴符合题意的点共有3个.

解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为

043=++m y x ,则14

3112

2

=++=

m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :

,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,

则34

36

34332

2

1=+-?+?=

d ,14

316

34332

2

2=+-?+?=

d .

∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 类型五:圆中的最值问题

例14、圆010442

2=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是

解:∵圆18)2()2(2

2=-+-y x 的圆心为(2,2),半径23=r ,∴圆心到直线的距离r d >==

252

10,

∴直线与圆相离,∴圆上的点到直线的最大距离与最小距离的差是262)()(==--+r r d r d .

例15、(1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.

(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求1

2

--x y 的最大、最小值,求y x 2-的最大、最小值.

分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决.本题类比于2017年高考理科全国二卷12题,这类型题目的处理方法就是通过几何意义用线性规划的思路来处理,或者用圆的参数方程,分别把x,y 表示出来,通过研究三角函数的最值研究。

解:(1)圆上点到原点距离的最大值1d 等于圆心到原点的距离'

1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离'

1d 减去半径1.所以6143221=++=d .4143222=-+=d .

所以36max =d .16min =d . (2)设

k x y =--1

2

,则02=+--k y kx .由于),(y x P 是圆上点,当直线与圆有交点时,如图所示, 两条切线的斜率分别是最大、最小值. 由11222

=++--=

k k k d ,得4

3

3±=

k .所以12--x y 的最大值为433+,

最小值为

4

3

3-.令t y x =-2,同理两条切线在x 轴上的截距分别是最大、最小值.由15

2=--=

m d ,得52±-=m .所以y x 2-的最大值为52+-,最小值为52--.

例16、已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(2

2

=-+-y x 上运动,则2

2PB PA +的最小值是 .

解:设),(y x P ,则828)(2)2()2(2

2222222

2+=++=+-+++=+OP y x y x y x PB PA .设圆心为)4,3(C ,

则325min

=-=-=r OC OP ,∴2

2

PB PA +的最小值为268322

=+?.

类型六:直线与圆的综合

例17、在平面直角坐标系x0y 中,经过点(0,3)且斜率为k 的直线l 与圆422=+y x 有两个不同的交点P 、Q 。 (1) 求k 的取值范围;

(2) 设A(2,0),B(0,1)若向量OQ OP +与AB 共线,求k 的值。

圆与方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1).设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=. (2) 当0422=-+F E D 时,方程表示一个点??? ??--2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形.

注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0r r d ; ② 条公切线外切321??+=r r d ; ③ 条公切线相交22121??+<<-r r d r r ; ④ 条公切线内切121??-=r r d ; ⑤ 无公切线内含??-<<210r r d ;

八年级物理浮力复习知识点、题型整理及答案32554

《浮力》复习提纲 第一节:使用托盘天平测量物体质量的步骤: 0.估测被测物体质量,选择合适量程(称量)和分度值(感量)的天平,观察铭牌。 1.将托盘天平放在水平桌面(或实验台)上。水平放置 2.将游码拨至标尺左端的零刻线处。游码归零 3.调节平衡螺母,使横梁平衡。平衡螺母 4.把被测物体放在左盘内,按“先大后小”顺序选择适当砝码,用镊子向右盘里增减砝码并调节游码在标尺 上的位置,直到横梁平衡。左物右码 5.盘里砝码的总质量加上游码所对的刻度值,就等于被测物体的质量。被测物体质量=砝码值+游码值 6.取下物体,用镊子将砝码放回盒中,游码归零,实验完毕。 注:判断横梁平衡方法:a.指针指在分度盘的中线处;b.指针左右摆动幅度相同。(黑体字为口诀) 第二节:关于密度的计算: 1、密度:单位体积的某种物质的质量。密度是物质的一种特性(反映了相同体积的不同物质,质量一般不同)。同种物质的密度受状态和温度的影响,但在物态和温度不变时为一定值。不同物质的密度一般不同。 从公式ρ=m/v 分析:ρ与m 或v 没有关系,只有当ρ一定时,m 与v 成正比。 密度单位之间的换算:1g/cm 3=103 kg /m3, (即水的密度) 2、密度的测量时的注意: 1)量筒使用前必须观察它的分度值和量程,底部放水平,读数时与液面的底部相平。 2)用排水法测不规则固体体积时所用固体不吸水,不溶水,不与水发生化学反应。 3)测固体密度时必须先测量质量后测量体积,防止因固体沾水测量值偏大,测量液体密度时想尽办法减少容器内壁沾水而造成液体体积偏小。实验室常用量筒或量杯测量液体和不规则固体的体积。1mL=1cm 3 1L=1dm3。量筒的刻度是均匀的,量杯的刻度上密下疏。 3、计算合金密度:甲乙两种物体的密度分别为ρ1和ρ2:等质量混合,混合后的密度为2ρ1ρ2/ρ1+ρ2;等体积混合,混合后的密度为(ρ1+ρ2)/2。 一、浮力的定义:一切浸入液体(气体)的物体都受到液体(气体)对它竖直向上的力 叫浮力。 二、浮力方向:竖直向上,施力物体:液(气)体 三、浮力产生的原因(实质):液(气)体对物体向上的压力大于向下的压力,向上、向下的压力差 即浮力。 四、物体的浮沉条件: 1、前提条件:物体浸没在液体中,且只受浮力和重力。 2、请根据示意图完成下空。 下沉 悬浮 上浮 漂浮 F 浮 < G F浮 = G F 浮 > G F 浮 = G ρ液<ρ物 ρ液 =ρ物 ρ液 >ρ物 ρ液 >ρ物 3、说明: ① 密度均匀的物体悬浮(或漂浮)在某液体中,若把物体切成大小不等的两块,则大块、小块都悬浮(或漂 浮)。 ②一物体漂浮在密度为ρ的液体中,若露出体积为物体总体积的1/3,则物体密度为 2 3ρ 分析:F 浮 = G 则:ρ液V 排g =ρ物Vg ρ物=( V 排/V )·ρ液= 2 3ρ液 ③ 悬浮与漂浮的比较 相同: F 浮 = G 不同:悬浮ρ液 =ρ物 ;V 排=V 物 漂浮ρ液 <ρ物;V 排

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

(完整版)直线与圆知识归纳

直线与圆 ◆知识点归纳 直线与方程 1.直线的倾斜角 规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2 (tan π α≠ =a k ,R k ∈ 斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为1 21 22 1x x y y k P P --= 3.直线方程的几种形式 能力提升 斜率应用 例1.已知函数)1(log )(2+=x x f 且0>>>c b a ,则 c c f b b f a a f ) (,)(,)(的大小关系

例2.已知实数y x ,满足)11(222 ≤≤-+-=x x x y ,试求2 3 ++x y 的最大值和最小值 两直线位置关系 两条直线的位置关系 设两直线的方程分别为: 222111:b x k y l +=或0 :22221111=++C y B x A l ;当21k k ≠或1221B A B A ≠时它们 相交,交点坐标为方程组???+=+=2211b x k y b x k y 或???=++=++00 222 111C y B x A C y B x A 直线间的夹角: ①若θ为1l 到2l 的角,12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ②若θ为1l 和2l 的夹角,则12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ③当0121=+k k 或02121=+B B A A o 直线1l 到2l 的角θ与1l 和2l 的夹角α:) 2 (π θθα≤ =

《圆》知识点归纳及相关题型整理

第五章中心对称图形(二) ——知识点归纳以及相关题目总结 一、和圆有关的基本概念 1.圆: 把线段OP的一个端点O固定,使线段OP绕着点O在平面内旋转1周,另一个端点P运动所形成的图形叫做圆。其中,定点O叫做圆心,线段OP叫做半径。 以点O为圆心的圆,记作“⊙O”,读作“圆O”。 圆是到定点的距离等于定长的点的集合。 2.圆的内部可以看作是到圆心的距离小于半径的点的集合。 3.圆的外部可以看作是到圆心的距离大于半径的点的集合。 4.弦:连接圆上任意两点的线段。 5.直径:经过圆心的弦。 6.弧:圆上任意两点间的部分。 优弧:大于半圆的弧。 劣弧:小于半圆的弧。 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。 7.同心圆:圆心相同,半径不相等的两个圆叫做同心圆。 8.等圆:能够重合的两个圆叫做等圆。(圆心不同) 9.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。(在大小不等的两个圆中,不存在等弧。 10.圆心角:顶点在圆心的角。 11.圆周角:顶点在圆上,两边与圆相交的角。 12.圆的切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长。 13.正多边形: ①定义:各边相等、各角也相等的多边形 ②对称性:都是轴对称图形;有偶数条边的正多边形既是轴对称图形有是中心对称图形。 14.圆锥: ①:母线:连接圆锥的顶点和底面圆上任意一点的线段。 ②:高:连接顶点与底面圆的圆心的线段。 15.三角形的外接圆:三角形三个顶点确定一个圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。

16.三角形的内切圆:与三角形各边都相切的圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。 二、和圆有关的重要定理 1.圆是中心对称图形,圆心是它的对称中心。 2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。 3.在同圆或等圆中,如果两个圆心角、两条弦、两条弧中有一组量相等,那么它们所对应的其余各组量都分别相等。 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 4.圆心角的度数与它所对的弧的度数相等。 5.圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。 6.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 垂径定理的实质可以理解为:一条直线,如果它具有两个性质:(1)经过圆心;(2)垂直于弦,那么这条直线就一定具有另外三个性质:(3)平分弦,(4)平分弦所对的劣弧,(5)平分弦所对的优弧。 推论:圆的两条平行弦所夹的弧相等。 7.同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。 8.直径(或半圆)所对的圆周角是直角,90°的圆周角所对的弦是直径。 9.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 10.确定圆的条件 不在同一条直线上的三个点确定一个圆 经过三角形三个顶点可以画一个圆,并且只能画一个.这个三角形叫做这个圆的内接三角形。 经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心。 三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。 11.三角形的外接圆的圆心是三边的垂直平分线的交点 12.圆的切线垂直于经过切点的半径。 13.经过半径的外端并且垂直于这条半径的是直线是圆的切线。

人教版八年级物理下册浮力知识点典型题解析.docx

初中物理学习材料 1、浮力比较题 例1、甲、乙、丙三个体积相同的实心小球,静止在液体中如图8所示,关于三个小球下面说法正确的是() A. 三个球受到的浮力关系为F甲=F乙>F丙 B. 三个球受到的浮力 关系为F甲<F乙=F丙 C. 三个球的密度关系为ρ甲<ρ乙<ρ丙 D. 三个球的密度关系为ρ甲>ρ乙>ρ丙例2、将重力相同的木块和铁块放入水中静止后,则() A、木块受的浮力大 B、铁块受的浮力大 C、木块和铁块所受浮力一样大 D、无法判断谁受的浮力大 例3、甲、乙两个完全相同的密度计放在A、B两种液体中,如图 43所示,则甲、乙密度计受浮力F甲、F乙和A、B液体密度比较 () A. F甲>F乙,ρA>ρB B. F甲=F乙,ρA=ρB C. F甲<F乙,ρA<ρB D. F甲=F乙,ρA>ρB 2.浮力变化题 一般情况下,在同种液体中,关注V排的变化情况,如果液体发生改变,一般用浮沉条件来分析。

例1.一个充气的气球下面挂一个金属块,把它们放入水中某处恰能静止,如果把金属块及气球的位置轻轻向上移一些,则金属块和气球( ) A.仍能静止 B.向下运动 C.向上运动 D.上下晃动 解释:由于气球的位置轻轻向上移,所以受到水的压强变小,导致气泡体积变大,浮力变大,超过了重力,因此选C。 例2、金鱼缸中小金鱼口中吐出的小气泡,在升至水面的过程中体积逐渐变大,这个过程中气泡所受浮力将() A. 不变 B. 变大 C. 变小 D. 无法确定 例3、潜水艇从潜行变为上浮,在浮出水面之前,所受海水的压强和浮力变化情况正确的是() A. 压强减小,浮力不变 B. 压强增大,浮力不变 C. 压强不变,浮力变大 D. 压强不变,浮力变小 例4、游泳的人由河边走向深水处的过程中,如果河底布满碎石子,则() A. 脚越来越疼,因为水对脚的压力越来越大 B、脚疼得越为越轻,因为河底对人的支持力越来越小 C、脚越来越疼,因为水对人的浮力越来越大 D、脚疼得越来越轻,因为人受到的重力越来越小 3.判断物体是否实心 例:体积是30cm3的铁球,质量是79g,它是空心的还是实心的?如果是空心的,空心部分的体积多大?(ρ=7.9g/ cm3) 分析:(1)根据密度公式变形V=m/ρ求出此时铁球的实心体积,再与铁球的实际体积(30cm3)相比较,如果相等,则是实心的,如果实心体积小于实际体

(完整版)集合练习题及答案-经典

集合期末复习题12.26 姓名 班级________________ 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=-的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=}{ 12x x <<,B=}{ x x a <,若A ?B ,则a 的取值范围是 ( ) A }{ 2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{ 2a a ≤ 9、 满足条件M U }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={} 22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.

圆的知识点总结与典型例题

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以 圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论 1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推 出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④ 平分弦所对的优弧;⑤平分弦所对的劣弧。 推论2 圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两 条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论 1 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论 2 半圆(或直径)所对的圆周角是直角;90 °的圆周角所对的弦是直径;推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质圆内接四边形的对角互补,并且任何一个外角都等于它的内对 角。 探8.轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; 2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; 3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1.已知:如图1,在。O中,半径0M丄弦AB于点N。 图1 ①若AB = , ON = 1,求MN的长; ②若半径0M = R,/ AOB = 120。,求MN的长。 解:①??? AB =,半径0M 丄AB,二AN = BN =

浮力复习知识点与经典例题

浮力复习知识点与经典例题

————————————————————————————————作者:————————————————————————————————日期: 1

《浮力》复习提纲 一、浮力的定义:一切浸入液体(气体)的物体都受到液体(气体)对它竖直向上的力 叫浮力。 二、浮力方向:竖直向上,施力物体:液(气)体 三、浮力产生的原因(实质):液(气)体对物体向上的压力大于向下的压力,向上、向下的压力差 即浮力。 四、物体的浮沉条件: 1、前提条件:物体浸没在液体中,且只受浮力和重力。 2、请根据示意图完成下空。 下沉 悬浮 上浮 漂浮 F 浮 < G F 浮 = G F 浮 > G F 浮 = G ρ液<ρ物 ρ液 =ρ物 ρ液 >ρ物 ρ液 >ρ物 3、说明: ① 密度均匀的物体悬浮(或漂浮)在某液体中,若把物体切成大小不等的两块,则大块、小块都悬浮(或漂浮)。 ②一物体漂浮在密度为ρ的液体中,若露出体积为物体总体积的1/3,则物体密度为 2 3ρ 分析:F 浮 = G 则:ρ液V 排g =ρ物Vg ρ物=( V 排/V )·ρ液= 2 3ρ液 ③ 悬浮与漂浮的比较 相同: F 浮 = G 不同:悬浮ρ液 =ρ物 ;V 排=V 物 漂浮ρ液 <ρ物;V 排

集合典型例题

集合·典型例题 能力素质 例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5N N ,;2 1________Z , 0________Z , -3________Z , 0.5Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈, ∈,-,,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈, ∈,-∈,,;∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.

高三总复习直线与圆的方程知识点总结及典型例题.

直线与圆的方程 、直线的方程 已知 L 上两点 P 1( x 1,y 1) P 2( x 2,y 2 ) 当 x 1 = x 2 时, =900 , 不存在。当 0 时, =arctank , <0 时, = ②任何一个关于 x 、y 的二元一次方程都表示一条直线。 5、直线系:(1)共点直线系方程: p 0(x 0,y 0)为定值, k 为参数 y-y 0=k (x-x 0) 特别: y=kx+b ,表示过( 0、 b )的直线系(不含 y 轴) ( 2)平行直线系:① y=kx+b ,k 为定值, b 为参数。 ② AX+BY+ 入=0 表示与 Ax+By+C=0 平行的直线系 ③ BX-AY+ 入 =0 表示与 AX+BY+C 垂直的直线系 ( 3)过 L 1,L 2交点的直线系 A 1x+B 1y+C 1+入( A 2X+B 2Y+C 2)=0(不含 L2) 6、三点共线的判定:① AB BC AC ,②K AB =K BC , ③写出过其中两点的方程,再验证第三点在直线上。 、两直线的位置关系 k= y 2 y 1 x 2 x 1 20 2 已知 方程 说明 斜截式 K 、b Y=kx+b 不含 y 轴和行平 于 y 轴的直点斜式 P 1=(x 1,y 1) k y-y 1=k(x-x 1) 不含 y 轴和平 行 于 y 轴的直线 两点式 P 1(x 1,y 1) P 2(x 2,y 2) y y 1 x x 1 不含坐标辆和 平行于坐标轴 的直线 y 2 y 1 x 2 x 1 截距式 a 、b xy 1 ab 不含坐标轴、平 行于坐标轴和 过原点的直线 一般式 Ax+by+c=0 A 、 B 不同时为 0 3、截距(略)曲线过原点 横纵截距都为 0。 4、直线方程的几种形式 几种特殊位置的直 线 ①x 轴: y=0 ② y 轴: x=0 ③平行于 x 轴: y=b ④平行于 y 轴: x=a ⑤过原点: y=kx y 的二元一 次方程。 1、倾斜角: 0< < k 0 2 = 不存在 2 +arctank 2、斜

圆的知识点总结史上最全的

A 图4 图5 圆的总结 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; - 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 点与圆的位置关系: 点在圆内 dr 点A 在圆外 / 直线与圆的位置关系: 直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 dR+r # 外切(图2) 有一个交点 d=R+r 相交(图3) 有两个交点 R-r

D B B A 垂径定理: 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; / (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB ⊥CD ③CE=DE ④ ⑤ 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD " 圆心角定理 ~ 圆周角定理 圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB 圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧 ~ 即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角 ∴∠C=∠D 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径 即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径 " BC BD =AC AD =

浮力-知识点总结及练习题

浮力 1、浮力的定义:一切浸入液体(气体)的物体都受到液体(气体)对它竖直向上的力 叫浮力。 2、浮力方向:竖直向上,施力物体:液(气)体 3、浮力产生的原因(实质):液(气)体对物体向上的压力大于向下的压力,向上、向下的压力差 即浮力。 4、物体的浮沉条件: (1)前提条件:物体浸没在液体中,且只受浮力和重力。 (2)请根据示意图完成下空。 。 下沉 悬浮 上浮 漂浮 F 浮 < G F 浮 = G F 浮 > G F 浮 = G ρ液<ρ物 ρ液 =ρ物 ρ液 >ρ物 ρ液 >ρ物 (3)、说明: ① 密度均匀的物体悬浮(或漂浮)在某液体中,若把物体切成大小不等的两块,则大块、小块都悬浮(或漂浮)。 ②一物体漂浮在密度为ρ的液体中,若露出体积为物体总体积的1/3,则物体密度为(2/3)ρ 分析:F 浮 = G 则:ρ液V 排g =ρ物Vg ρ物=( V 排/V )·ρ液= 2 3ρ液 ③ 悬浮与漂浮的比较 相同: F 浮 = G > 不同:悬浮ρ液 =ρ物 ;V 排=V 物 漂浮ρ液 >ρ物;V 排

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q },其中a 0≠,A=B,求q 的值. 例2 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合=A {2,3,2a +4a +2},B ={0,7,2a +4a -2,2-a },且A I B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合 ()()[]{}(){}2,,,,=∈=x y x b a x x f y y x I 中元素的个数为…………………………………………………………………………() (A )1(B )0(C )1或0(D )1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于() A.(0,2),(1,1)B.{(0,2),(1,1)}C.{1,2}D. {}2≤y y 集合与方程 例1、已知{}φ=∈=+++=+R A R x x p x x A I ,,01)2(2,求实数p 的取值范围。 例2、已知集合(){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和,如果φ≠B A I ,求 实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若φ=B A I ,求实数a 的值。 集合学习中的错误种种 数学是一门严谨的学科,在集合学习中,由于对概念理解不清或考虑问题不全面等,稍不留心就会不知不觉地产生错误,本文归纳集合学习中的种种错误,认期帮助同学们避免此类错误的再次发生. 一、混淆集合中元素的形成 例 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B =I 忽视空集的特殊性 例 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ?,则m 的值为 没有弄清全集的含义

(完整版)高中数学直线和圆知识点总结

直线和圆 一.直线 1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0,)2π θ∈时,0k ≥; (2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k < (4)当倾斜角从0?增加到90?时,斜率从0增加到+∞; 当倾斜角从90?增加到180? 时,斜率从-∞增加到0 2.直线方程 (1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+ (3)两点式:1 21121x x x x y y y y --=-- (4)截距式:1x y a b += (5)一般式:0C =++By Ax 3.距离公式 (1)点111(,)P x y ,222(,)P x y 之间的距离:12PP = (2)点00(,)P x y 到直线0Ax By C ++= 的距离:d = (3)平行线间的距离:10Ax By C ++=与20Ax By C ++= 的距离:d = 4.位置关系 (1)截距式:y kx b =+形式 重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ?=- (2)一般式:0Ax By C ++=形式 重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠

垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系 1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l ) 二.圆 1.圆的方程 (1)标准形式:222 ()()x a y b R -+-=(0R >) (2)一般式:220x y Dx Ey F ++++=(2240D E F +->) (3)参数方程:00cos sin x x r y y r θθ=+??=+? (θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决. (4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系 (1)点00(,)P x y 和圆222 ()()x a y b R -+-=的位置关系: 当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++= 的距离d = R 的大小关系 当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点);

圆知识点总结及典型例题.docx圆知识点总结及典型例题

《圆》章节知识点复习 一、圆的概念 集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂 线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内 ?d r ? 点A 在圆外; 三、直线与圆的位置关系 1、直线与圆相离 ?d r >?无交点; 2、直线与圆相切 ?d r =?有一个交点; 3、直线与圆相交 ?d r

四、圆与圆的位置关系 外离(图1)?无交点 ?d R r >+; 外切(图2)? 有一个交点 ?d R r =+; 相交(图3)? 有两个交点 ?R r d R r -<<+;内切(图4)? 有一个交点 ?d R r =-; 内含(图5)? 无交点 ?d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 图1 图 3 r R d 图2

高一数学集合练习题及答案-经典

选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A= }{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U= {}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________.

相关文档
最新文档