高三数学函数与方程课件

专题复习

第1课函数与方程

感悟?渗透?应用

1.如图所示,从边长为a的正三角形的顶点,在各边上截取长度为x的线段,以这些线段为边做成有两个角是直角的四边形,这样的四边形有三个,把这三个四边形剪掉,用剩下的部分折成一个底为正三角形的无盖柱形容器,

(1)求这容器的容积V(x):

(2)求使V(x)为最大时的x的值及V(x)的最大值.

2.已知f(x)=x3+ax+bx+c有极大值f(α)和极小值f(β).

(1)求f(α)+f(β)的值;

(2)设曲线y=f(x)的极值点为A、B,求证:线段AB的中点在y=f(x)上.

3.设a>0,函数f(x)=x3-ax在[1,+∞)上是单调函数.

(1)求实数a的取值范围;

(2)设x0≥1,f(x)≥1,且f[f(x

0)]=x

,求证:f(x

)=x

4.已知函数f(x)=ax2+bx+c(a>b>c)的图像上有两点A(m

1

,

f(m

1))、B(m

2

,f(m

2

)),满足f(1)=0且a2+(f(m

1

)+f(m

2

))·a

+f(m

1)·f(m

2

)=0.

(1)求证:b≥0;

(2)求证:f(x)的图像被x轴所截得的线段长的取值范围是[2,3);

(3)问能否得出f(m

1+3)、f(m

2

+3)中至少有一个为正数?请

证明你的结论.

5.已知数列{a n }中,a 1=1,且点P (a n ,a n+1)(n ∈N *)在直线x-y+1=0上.

(1)求数列{a n }的通项公式;

(2)若函数且n ≥2),求函数f (n )的最小值;

(3)设b n =1/a n ,S n 表示数列b n 的前n 项和.试问:是否存在关于n 的整式g (n ),使得S 1+S 2+S 3+…+S n -1=(S n -1)·g (n )对于一切不小于2的自然数n 恒成立?若存在,写出g (n )的解析式,并加以证明;若不存在,说明理由.()(,N 1111321∈++++++++=n a n a n a n a n n f n

Λ

高考数学专题练习--函数图像

高考数学专题练习--函数图像 1. 【江苏苏州市高三期中调研考试】已知函数()2 21,0 ,0 x x f x x x x ->?=? +≤?,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是__________. 【答案】1 ,04 ?? - ??? 【解析】 2. 【江苏省苏州市高三暑假自主学习测试】已知函数31 1, ,()11,, x f x x x x ?>?=?-≤≤??若关于x 的方程 ()(1)f x k x =+有两个不同的实数根,则实数k 的取值范围是 ▲ . 【答案】1 (0,)2 【解析】 试题分析:作函数()y f x =及(1)y k x =+图像,(11), (1,0)A B -,,由图可知要使关于x 的方程()(1)f x k x =+有两个不同的实数根,须满足1 (0,)(0,).2 AB k k ∈=

3. 【江苏省南通市如东县、徐州市丰县高三10月联考】设幂函数()f x kx α=的图象经过点 ()4,2,则k α+= ▲ . 【答案】 32 【解析】 试题分析:由题意得11,422 k α α==?=∴32k α+= 4. 【泰州中学第一学期第一次质量检测文科】已知幂函数()y f x =的图象经过点1 (4,)2 ,则 1 ()4 f 的值为 . 【答案】2 【解析】 试题分析:设()y f x x α ==,则11422α α=?=-,因此1 211()()244 f -== 5. 【江苏省南通中学高三上学期期中考试】已知函数2 +1, 1, ()(), 1, a x x f x x a x ?-?=?->??≤ 函数 ()2()g x f x =-,若函数()()y f x g x =- 恰有4个零点,则实数的取值范围是 ▲ . 【答案】23a <≤ 【解析】

近五年高考数学函数及其图像真题及其答案

1. 已知函数()f x =32 31ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 2. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4. 函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是 A .()y g x = B .()y g x =- C .()y g x =- D .()y g x =-- 5. 已知函数f (x )=????? -x 2+2x x ≤0ln(x +1) x >0 ,若|f (x )|≥ax ,则a 的取值范围是 A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0] 6. 已知函数3 2 ()f x x ax bx c =+++,下列结论中错误的是

A .0x R ?∈,0()0f x = B .函数()y f x =的图象是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 D .若0x 是()f x 的极值点,则0'()0f x = 7. 设3log 6a =,5log 10b =,7log 14c =,则 A .c b a >> B .b c a >> C .a c b >>D .a b c >> 8. 若函数()2 11=,2f x x ax a x ?? ++ +∞ ??? 在是增函数,则的取值范围是 A .[]-1,0 B .[)+∞-,1 C .[]0,3 D .[)+∞,3 9. 函数()()21=log 10f x x x ??+> ? ?? 的反函数()1 =f x - A .()1021x x >- B .()1021 x x ≠-C .()21x x R -∈D .()210x x -> 10. 已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为 A .()1,1-B .11,2? ?-- ??? C .()-1,0 D .1,12?? ??? 11. 已知函数()()x x x f -+= 1ln 1 ,则y=f (x )的图像大致为 A . B .

高三数学-理科函数与导数-专题练习(含答案与解析)

(Ⅰ)当(0,1)x ∈时,求()f x 的单调性; (Ⅱ)若2()()()h x x x f x =-?,且方程()h x m =有两个不相等的实数根1x ,2x .求证:121x x +>.

联立212y x y x ax =-??'=-+-? 消去y 得:2(1)10x a x +-+=, 由题意得:2(1)40a -=-=△, 解得:3a =或1-; (Ⅱ)由(1)得:l 1(n )x f x =+', 1(0,)e x ∈时,)0(f x '<,()f x 递减, 1(,)e x ∈+∞时,)0(f x '>,()f x 递增, ①1104e t t <<+≤,即110e 4 t <≤-时, min 111)ln )444 ()()((f x f t t t ==+++, ②110e 4t t <<<+,即111e 4e t -<<时, min e ()1e )(1f x f -==; ③11e 4t t ≤<+,即1e t ≥时,()f x 在[1,4]t t +递增, min ())ln (f x f t t t ==; 综上,min 1111)ln ),044e 41111,e e 4e 1l (e (,()n f x t t t t t t t ++<≤--???-<<≥?=?????; 因此(0,)x ∈+∞时,min max 1()()e f x m x ≥-≥恒成立, 又两次最值不能同时取到, 故对任意(0,)x ∈+∞,都有2ln e e x x x x >-成立.

∴()0g x '>, ∴函数()g x 在定义域内为增函数, ∴(1)(0)g g >,即12 e (1)(0) f f >,亦即(1) f > 故选:A . 2.解析:∵()1cos 0f x x '=+≥, ∴()sin f x x x =+在实数R 上为增函数, 又∵()sin ()f x x x f x -=--=-, ∴()sin f x x x =+为奇函数, ∴2222222222(23)(41)0(23)(41) (23)(41)2341(2)(1)1f y y f x x f y y f x x f y y f x x y y x x x y -++-+≤?-+≤--+?-+≤-+-?-+≤-+-?-+-≤, 由22(2)(1)11x y y ?-+-≤?≥? 可知,该不等式组所表示的区域为以点(2,1)C 为圆心,1为半径的上半个圆,1 y x +表示的几何意义为点(,)P x y 与点(1,0)M -连接的斜率,作出半圆与点P 连线,数形结合可得1 y x +的取值范围为13,44?????? . 3.解析:依题意,可得右图:()2f x =

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高考数学函数及其性质练习题

函数及其性质 一、填空题 (2016·12)已知函数()() f x x∈R满足()2() f x f x -=-,若函数 1 x y x + =与() y f x =图像的交点为 11 (,) x y,22 (,) x y,…,(,) m m x y,则 1 () m i i i x y = += ∑() A.0 B.m C.2m D.4m (2015·5)设函数2 1 1log(2)(1) () 2(1) x x x f x x - +-< ? =? ≥ ? ,则 2 (2)(l og12) f f -+=()A.3 B.6 C.9 D.12 (2015·10)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x. 将动点P到A,B两点距离之和表示为x的函数f(x),则f(x)的图像大致为() A.B.C.D. (2013·8)设 3 log6 a=, 5 log10 b=, 7 log14 c=,则() A.c b a >>B.b c a >>C.a c b >>D.a b c >> (2013·10)已知函数32 () f x x ax bx c =+++,下列结论中错误的是() A. 00 ,()0 x f x ?∈= R B.函数() y f x =的图像是中心对称图形 C.若 x是() f x的极小值点,则() f x在区间 (,) x -∞单调递减 D.若 x是() f x的极值点,则 ()0 f x'= (2012·10)已知函数 x x x f - + = )1 ln( 1 ) (,则) (x f y=的图像大致为() A. B. C. D. (2011·2)下列函数中,既是偶函数又在+∞ (0,)单调递增的函数是() A.3 y x =B.||1 y x =+C.21 y x =-+D.|| 2x y- = (2011·12)函数 1 1 y x = - 的图像与函数2sin,(24) y x x π =-≤≤的图像所有交点的横坐标之和等于() 1 1 y x o 1 1 y x o 1 1 y x o 1 1 y x o

(word完整版)高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题) 一、选择题 1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ] 2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ? (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ? (a ,b ) 3、设点P 为曲线y =x 3-3 x +3 2 上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2 π]∪(65π,π) D 、[0,2 π ]∪[32π,π) 4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=1 3 2+-m m ,则m 的取 值范围为( ) A 、m < 32 B 、m <32且m ≠-1 C 、-1<m <32 D 、m >3 2 或m <-1 5、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( ) A 、f (-1)<f (3) B 、f (0)>f (3) C 、f (-1)=f (3) D 、f (0)=f (3) 6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定 7、函数y =log 2 1 (x 2+kx +2)的值域为R ,则k 的范围为( ) A 、[22 ,+∞] B 、(-∞,-22)∪[22,+∞]

(word完整版)高中数学函数图象高考题.doc

B 1 .函数 y = a | x | (a > 1)的图象是 ( y y o x o A B B ( ) y o 1 x -1 o 函数图象 ) y 1 1 x o x C y y x x o 1 y 1 o x D y -1 o x A B C B 3.当 a>1 时,函数 y=log a x 和 y=(1 - a)x 的图象只可能是( ) y A4.已知 y=f(x) 与 y=g(x) 的图象如图所示 yf ( x ) x O 则函数 F(x)=f(x) ·g(x) 的图象可以是 (A) y y y O x O x O x A xa x B C B 5.函数 y (a 1) 的图像大致形状是 ( ) | x | y y y O f ( x) 2x x O 1 O x ( D 6.已知函数 x x x 1 ,则 f x ( 1- x )的图象是 log 1 2 y y y A B C 2 。 。 1 。 - 1 D y y g( x) O x y O x D y O ) x y D 2

O x

A B C D D 7.函数 y x cosx 的部分图象是 ( ) A 8.若函数 f(x) =x 2 +bx+c 的图象的顶点在第四象限,则函数 f /(x)的图象是 ( ) y y y y o x o x o x o x A B C D A 9.一给定函数 y f ( x) 的图象在下列图中,并且对任意 a 1 (0,1) ,由关系式 a n 1 f (a n ) 得到的数列 { a n } 满足 a n 1 a n (n N * ) ,则该函数的图象是 ( ) A B C D C10.函数 y=kx+k 与 y= k 在同一坐标系是的大致图象是( ) x y y y y O x O x O x O x A 11.设函数 f ( x ) =1- 1 x 2 (- 1≤ x ≤0)的图像是( ) A B C D

高三数学一轮复习必备精品6:函数与方程 【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】

第6讲 函数与方程 备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】 一.【课标要求】 1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系; 2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。 二.【命题走向】 函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。高考试题中有近一半的试题与这三个“二次”问题有关 预计2010年高考对本讲的要求是:以二分法为重点、以二次函数为载体、以考察函数与方程的关系为目标来考察学生的能力 (1)题型可为选择、填空和解答; (2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。 三.【要点精讲】 1.方程的根与函数的零点 (1)函数零点 概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。 函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点。 二次函数)0(2 ≠++=a c bx ax y 的零点: 1)△>0,方程02 =++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点; 2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点; 3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。 零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有 0)()(

北京第十八中学高三数学第一轮复习 14 函数的表示法求解析式教学案(教师版)

北京第十八中学高三数学第一轮复习 14 函数的表示法求解 析式教学案(教师版) 一、课前检测 1.若函数()f x 满足2(1)2f x x x +=-,则f = . 答案:6- 2.已知()()()23,2f x x g x f x =++=,则()g x = . 答案:21x - 3. 若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 答案:()123f x x =- 或()21f x x =-+ 二、知识梳理 求函数解析式的题型有: 1.已知函数类型,求函数的解析式:待定系数法; 解读: 2.已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; 解读: 3.已知函数图像,求函数解析式; 解读: 4.()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法; 解读: 5.应用题求函数解析式常用方法有待定系数法等. 解读: 三、典型例题分析 例1 设2211(),f x x x x +=+ ,求()f x 的解析式. 答案:()22f x x =- 变式训练1:设(cos )cos 2,(sin )f x x f x =求的解析式. 答案:()2sin 1f x x =-

变式训练2:设33221)1(,1)1(x x x x g x x x x f +=++=+, 求)]([x g f . 答案:()22f x x =-,()33g x x x =-,642[()]692f g x x x x =-+- 小结与拓展:配凑法 例2 设23)1(2+-=+x x x f ,求)(x f 的解析式. 答案:2()56f x x x =-+ 变式训练1:已知21lg f x x ??+= ???,求)(x f 的解析式. 答案:2 ()lg 1f x x =- 变式训练2:设x x f 2cos )1(cos =-,求)(x f 的解析式. 答案:2()21f x x x =++ 小结与拓展:换元法 例3 已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+, 求()f x 的解析式; 答案:()27f x x =+ 变式训练1:已知12()3f x f x x ?? += ???,求)(x f 的解析式. 答案:1 ()2f x x x =-

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

高考数学重点难点3函数与方程思想大全

重点难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●重点难点磁场 1.(★★★★★)关于x的不等式2?32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为. 2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0) (1)若a=1,b=–2时,求f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围; (3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值. ●案例探究 [例1]已知函数f(x)=logm (1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明; (2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1)x<–3或x>3. ∵f(x)定义域为[α,β],∴α>3 设β≥x1>x2≥α,有 当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数. (2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)] ∵0<m<1, f(x)为减函数. ∴ 即 即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根 ∴∴0<m< 故当0<m<时,满足题意条件的m存在. [例2]已知函数f(x)=x2–(m+1)x+m(m∈R) (1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5; (2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3; (3)在(2)的条件下,若函数f(sinα)的最大值是8,求m. 命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属

高考数学函数图像

函数图像与变换 一、 图像变换 1.平移变换: (1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单 位即可得到; (2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单 位即可得到. 2.对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; (2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1()y f x -=的图像可以将函数()y f x =的图像关于直线y x =对称得到. 3.翻折变换: (1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分, 并保留()y f x = 的x 轴上方部分即可得到; (2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留 ()y f x =在y 轴右边部 分即可得到. 4.伸缩变换: (1)函数()y af x = (0a >)的图像可以将函数()y f x =的图像的纵坐标伸长到原来的(0)k k >倍(横坐标不变) 得到。 (2)函数()y af x = (0a >)的图像可以将函数()y f x =的图像的横坐标伸长到原来的(0)k k >倍(纵坐标不变) 得到。 二、典型例题 1、 函数的图象变换 函数的图象变换这一节的知识点是高考考查的重要方面,一些复杂的函数是可以通过一些较为简单的函数由相应的变换得到,从而我们可以利用之研究函数的性质。 例1、(1)设()2,()x f x g x -=的图像与()f x 的图像关于直线y x =对称,() h x 的图像由()g x 的图像 右平移1个单位得到,则()h x 为__________ (2)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移3个单位而得到 (3)将函数()y f x =的图像上所有点的横坐标变为原来的13 (纵坐标不变),再将此图像沿x 轴方向向左平移2个单位,所得图像对应的函数为_____ 例2、已知f(x+199)=4x 2+4x+3(x ∈R),那么函数f(x)的最小值为____. 例3、设函数y=f(x)的定义域为R,则函数y=f(x-1)与y=(1-x)的图象关系为( ) A、直线y=0对称 B、直线x=0对称 C、直线y=1对称 D、直线x=1对称 2 、函数图象的画法 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段。用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换。

高三数学三角函数专题训练

高三数学三角函数专题训练 1.为得到函数πcos 23y x ?? =+ ?? ? 的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12 个长度单位 C .向左平移 5π6 个长度单位 D .向右平移 5π6 个长度单位 2.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则M N 的最大值为( ) A .1 B . 2 C . 3 D .2 3.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的1 2倍(纵坐标不变),得到的图 象所表示的函数是( ) A .sin(2)3 y x π =-,x R ∈ B.sin( ) 2 6 x y π =+ ,x R ∈ C.s in (2)3 y x π =+,x R ∈ D.sin(2) 3 2y x π=+ ,x R ∈ 4.设5sin 7 a π=,2cos 7 b π=,2tan 7 c π=,则( ) A.c b a << B.a c b << C.a c b << D.b a c << 5.将函数sin(2)3 y x π =+ 的图象按向量α 平移后所得的图象关于点(,0) 12 π - 中 心对称,则向量α的坐标可能为( ) A .(,0)12π - B .(,0)6 π - C .( ,0)12 π D .( ,0)6 π 6.函数2 ()sin 3sin cos f x x x x =+ 在区间 ,42ππ?? ???? 上的最大值是( ) A.1 B.13 2 + C. 3 2 D.1+ 3 7.若,5sin 2cos -=+a a 则a tan =( ) A.2 1 B. 2 C.2 1- D.2-

高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法

高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法 高考要求 求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳 求解函数解析式的几种常用方法主要有 1 待定系数法,如果已知函数解析式的构造时,用待定系数法; 2 换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3 消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法 典型题例示范讲解 例1 (1)已知函数f (x )满足f (log a x )=)1(1 2x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式 (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求 f (x ) 的表达式 命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力 知识依托 利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域 错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错 技巧与方法 (1)用换元法;(2)用待定系数法 解 (1)令t=log a x (a >1,t >0;01,x >0;0

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动象如右图所示,则?的值为( ) A 2.为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A C 3 ,则sin cos αα=( ) A 1 D -1 4 ) A 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6 .若sin a = -a ( ) (A )(B (C (D 7,则α2tan 的值为( )

A 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在 C .)(x f 的最大值为.)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A 个单位,再向上平移1个单位 B 个单位,再向下平移1个单位 C 个单位,再向上平移1个单位 D 个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移个单位,得到函数()y g x =

于() A 13.同时具有性质①最小正周期是π; 增函数的一个函数为() A C 14则tanθ=() A.-2 D.2 15) A 16.已知tan(α﹣)=,则的值为() A. B.2 C.2 D.﹣2 17) A.1 D.2 18.已知角α的终边上一点的坐标为(,则角α值为 19) A 20) A..

(通用版)202x高考数学一轮复习 2.11 函数与方程讲义 文

第十一节函数与方程 一、基础知识批注——理解深一点 1.函数的零点 (1)零点的定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点. (2)零点的几个等价关系:方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. 函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数. 2.函数的零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件. 对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 二、常用结论汇总——规律多一点 有关函数零点的结论 (1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点. (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.

(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.

三、基础小题强化——功底牢一点 一判一判对的打“√”,错的打“×” (1)函数的零点就是函数的图象与x 轴的交点.( ) (2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( ) (5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( ) 答案:(1)× (2)× (3)× (4)√ (5)√ (二)选一选 1.已知函数f (x )的图象是连续不断的,且有如下对应值表: x 1 2 3 4 5 f (x ) -4 -2 1 4 7 f x A .(1,2) B .(2,3) C .(3,4) D .(4,5) 解析:选B 由所给的函数值的表格可以看出,x =2与x =3这两个数字对应的函数值的符号不同,即f (2)·f (3)<0,所以函数f (x )在(2,3)内有零点. 2.函数f (x )=(x -1)ln(x -2)的零点有( ) A .0个 B .1个 C .2个 D .3个 解析:选B 由x -2>0,得x >2,所以函数f (x )的定义域为(2,+∞),所以当f (x )=0,即(x -1)ln(x -2)=0时,解得x =1(舍去)或x =3. 3.函数f (x )=ln x -2x 的零点所在的大致区间是( ) A .(1,2) B .(2,3) C.? ?? ??1e ,1和(3,4) D .(4,+∞) 解析:选B 易知f (x )为增函数,由f (2)=ln 2-1<0,f (3)=ln 3-23 >0,得f (2)·f (3)<0,

2015高考数学专题复习:函数图像

2015高考数学专题复习:函数图像 1、判断函数图像依据: 1.基本函数图像特征: 2.奇偶性: 3.导数单调性: 4.特殊点: 5.定义域: 6.函数之间大小关系: 7.平移变换 2、指出下列函数与()x f y =的图像之间的关系: 1.()1-=x f y 2.()2-=x f y 3.()x f y -= 4.()x f y -= 5.()x f y --= 6.()x f y = 7.() x f y = 8.()x f y -= 练习:已知()()()()?? ?≤<≤≤-=10........... 01.sin x x x x x f π,作出下列函数图像: 1.()1-=x f y 2.()2-=x f y 3.()x f y -= 4.()x f y -= 5.()x f y --= 6.()x f y = 7.()x f y = 8.() x f y -=

1.函数)(x f y =与函数()x g y =的图像如右图所示,则函数()()x g x f y ?=的图像可能是下面的( ) 2.()y f x =的图像如图所示,则()y f x =的解析式可能为 ( ) A.()cos f x x x =-- B.()sin f x x x =-- C.()||cos f x x x = D.()||sin f x x x = 3.(山东)函数 sin x y x =, (,0)(0,)x ππ∈-的图像可能是下列图像中的 ( ) 4.(13山东)函数x x x y sin cos +=的图像大致为 ( ) 5.(山东)函数x x x y --= 226cos 的图像大致为 ( )

相关文档
最新文档