《固体物理学》基础知识训练题及其参考标准答案
《固体物理学》房晓勇主编教材-习题参考解答07第七章 能带结构分析

可以看出,由于 k0 得存在,电流的方向和电场方向并不一致。 (2)当 t → ∞ 时有
⎛ =k G JG ⎞ JJ G e=Δ ⎜ − 0 i + k ′ ⎟ G eEz t e=Δ k0 Δ JG ⎝ ⎠ j ( t ) = lim = =e k′ ∗ 2 t →∞ 2 2 2 2 2 2 2 m = Δ ⎛ ⎞ =k e Ez t =Δ Δ ∗ m∗ = 2 ⎜ 2 20 2 + ⎟ ∗ + 2 2 2 m m∗ 2 = ⎠ m e Ez t ⎝ e Ez t G (3)设所求的电流为 j ,在空穴处加一个电子,则能带为满带,满带的电流为零,因而有
eEz t ,因而 = G eE t JG ⎞ ⎛ z − k k′⎟ ⎜ 0i + = ⎝ ⎠
从初始条件可解出 k x ( t ) = k0 , k y ( t ) = 0, k z ( t ) = −
G j=
e=Δ ⎛ e2 Ez2t t m∗ = 2 ⎜ k02 + =2 ⎝ ⎞ Δ 2 ⎟ ∗ +Δ ⎠m
x=
nZn ,依 7.3 题,有 nCu
2nZn + nCu 3π = = 1.36 4 nα
1
第七章 能带结构分析 即
( 2 x + 1) nCu
nα
=
3π = 1.36 4
而 nα = nZn + nCu = (1 + x ) nCu 因此得到
2x +1 3π = x +1 4
得
x=
3π − 4 = 0.563 8 − 3π
⎛ 2 e2 B 2 cos 2 θ e2 B 2 sin 2 θ ⎞ eB sin θ cos ϕ iω = iω ⎜ −ω + + ⎟=0 ml∗ mt∗2 mt∗2 ml∗2 ⎠ ⎝ eB sin θ cos ϕ iω − mt∗
固体物理学_答案(黄昆)

《固体物理学》习题解答黄昆原著韩汝琦改编 (陈志远解答,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率,VcnV x =(1)对于简立方结构:(见教材P2图1-1) a=2r ,V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34ar 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒=n=2, Vc=a 3∴68.083)r 334(r 342ar342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r344ar344x 3333≈π=π⨯=π⨯=(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯=(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r338r 348ar348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
大学固体物理试题及答案

大学固体物理试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体结构的描述,错误的是:A. 晶体具有规则的几何外形B. 晶体内部的原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 固体物理中,描述电子在晶格中运动的方程是:A. 薛定谔方程B. 牛顿运动方程C. 麦克斯韦方程D. 热力学第一定律答案:A3. 固体中,电子能带的宽度与下列哪个因素有关?A. 电子的电荷B. 电子的质量C. 晶格的周期性D. 电子的自旋答案:C4. 金属导电的原因是:A. 金属内部存在自由电子B. 金属内部存在空穴C. 金属内部存在离子D. 金属内部存在分子答案:A二、填空题(每题5分,共20分)1. 晶体的周期性结构可以用_________来描述。
答案:晶格常数2. 能带理论中,电子在能带之间跃迁需要吸收或释放_________。
答案:光子3. 根据泡利不相容原理,一个原子轨道内最多可以容纳_________个电子。
答案:24. 半导体的导电性介于金属和绝缘体之间,其原因是半导体的_________较窄。
答案:能带间隙三、简答题(每题10分,共30分)1. 简要说明什么是费米能级,并解释其在固体物理中的重要性。
答案:费米能级是指在绝对零度时,电子占据的最高能级。
在固体物理中,费米能级是描述电子分布状态的重要参数,它决定了固体的导电性、磁性等物理性质。
2. 解释为什么金属在常温下具有良好的导电性。
答案:金属具有良好的导电性是因为其内部存在大量的自由电子,这些电子可以在电场作用下自由移动,形成电流。
3. 什么是超导现象?请简述其物理机制。
答案:超导现象是指某些材料在低于某一临界温度时,电阻突然降为零的现象。
其物理机制与电子之间的库珀对形成有关,这些库珀对在低温下能够无阻碍地流动,从而实现零电阻。
四、计算题(每题15分,共30分)1. 假设一个一维晶格,晶格常数为a,电子的有效质量为m*,求电子在第一能带的最低能级。
固体物理学_答案

《固体物理学》习题解答黄昆 原著 韩汝琦改编第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率,VcnVx =(1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
《固体物理学》部分习题解答

《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。
解由倒格子定义体心立方格子原胞基矢倒格子基矢同理可见由为基矢构成的格子为面心立方格子面心立方格子原胞基矢倒格子基矢同理可见由为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为,其中为正格子原胞体积证倒格子基矢倒格子体积1.5证明:倒格子矢量垂直于密勒指数为的晶面系。
证:容易证明与晶面系正交。
1.6如果基矢构成简单正交系证明晶面族的面间距为说明面指数简单的晶面,其面密度较大,容易解理证简单正交系倒格子基矢倒格子矢量晶面族的面间距面指数越简单的晶面,其晶面的间距越大晶面上格点的密度越大,这样的晶面越容易解理1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的晶向解(111)面与(100)面的交线的AB-AB平移,A与O重合。
B点位矢(111)与(100)面的交线的晶向——晶向指数(111)面与(110)面的交线的AB——将AB平移,A与原点O重合,B点位矢(111)面与(110)面的交线的晶向――晶向指数2.1.证明两种一价离子组成的一维晶格的马德隆常数为.证设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r表示相邻离子间的距离,于是有前边的因子2是因为存在着两个相等距离的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为当X=1时,有2.3 若一晶体的相互作用能可以表示为求1)平衡间距2)结合能W(单个原子的)3)体弹性模量4)若取,计算值。
解1)晶体内能平衡条件2) 单个原子的结合能3) 体弹性模量晶体的体积——A为常数,N为原胞数目晶体内能体弹性模量由平衡条件体弹性模量()4)2.6.用林纳德—琼斯(Lennard—Jones)势计算Ne在bcc(球心立方)和fcc(面心立方)结构中的结合能之比值.解2.7.对于,从气体的测量得到Lennard—Jones势参数为计算结合成面心立方固体分子氢时的结合能(以KJ/mol单位),每个氢分子可当做球形来处理.结合能的实验值为0.751kJ/mo1,试与计算值比较.解以为基团,组成fcc结构的晶体,如略去动能,分子间按Lennard—Jones势相互作用,则晶体的总相互作用能为:因此,计算得到的晶体的结合能为2.55KJ/mol,远大于实验观察值0.75lKJ/mo1.对于的晶体,量子修正是很重要的,我们计算中没有考虑零点能的量子修正,这正是造成理论和实验值之间巨大差别的原因.3.1.已知一维单原子链,其中第个格波,在第个格点引起的位移为,,为任意个相位因子,并已知在较高温度下每个格波的平均能量为,具体计算每个原子的平方平均位移。
《固体物理学》房晓勇习题参考解答

………………(4)
(
d 2U dr d ⎧ 1 ⎡ N mA nB ⎤ ⎫ ) = ⋅ ⎨ ( m +1 − n +1 ⎥ ⎬ 2 V0 dV dV dr ⎩ 3NBr 2 ⎢ r ⎦ ⎭r = r0 ⎣2 r
=
1 N ⋅ 9V02 2
⎡ m 2 A n 2 B 3mA 3nB ⎤ ⎢ − m + n − m + n ⎥ ……………(5) r0 r0 r0 ⎦ ⎣ r0
得
mA nB = r0m +1 r0n +1
1
⎛ nB ⎞ n − m r0 = ⎜ ⎟ ⎝ mA ⎠
d 2U m(m + 1) A n(n + 1) B mA | =− + = − m+ 2 2 r = r0 m+ 2 n+2 dr r0 r0 r0 ⎡ n(n + 1) B ⎤ mA = − m+ 2 ⎡ ⎢m + 1 − n−m ⎥ ⎣ m + 1 − ( n + 1) ⎤ ⎦ mAr r 0 0 ⎢ ⎥ ⎣ ⎦
在体心立方结构中,每个晶胞有 2 个原子,N 个原子有 N/2 个晶胞,又因为 a =
N N⎛ 2 ⎞ 4N 3 3 V0 = a 3 = ⎜ R0 ⎟ = R0 2 2⎝ 3 ⎠ 9
12 12 ⎛ A6 ⎞ ε A62 mnε A6 3 mnε A6 3 mn mn ε3 3 =N × = = = K = U0 A ⎜ ⎟ 12 3 3 1/ 6 9V0 2 A12 24 A12 R0 A12 ⎠ 4N 3 3 2σ 3 ⎡ ⎤ ⎝ ⎛ ⎞ 2 A 9 R0 24 A12 ⎢⎜ 12 ⎟ σ ⎥ 9 A ⎢ ⎥ ⎣⎝ 6 ⎠ ⎦ 5/ 2
4-固体物理学习题解答(完整版)
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a那么,R f R b31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123oo o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()ooa n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为 (001)→(0001),(13)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(28(3)面心立方:6(4)六方密堆积:6(5)金刚石:16。
大学固体物理考试题及答案参考
固体物理练习题1.晶体结构中,面心立方的配位数为 12 。
2。
空间点阵学说认为 晶体内部微观结构可以看成是由一些相同的点子在三维空间作周期性无限分布 。
3.最常见的两种原胞是 固体物理学原胞、结晶学原胞 。
4.声子是 格波的能量量子 ,其能量为 ħωq ,准动量为 ħq .5。
倒格子基矢与正格子基矢满足 正交归一关系 。
6。
玻恩-卡曼边界条件表明描述有限晶体振动状态的波矢只能取 分立的值 , 即只能取 Na的整数倍。
7.晶体的点缺陷类型有 热缺陷、填隙原子、杂质原子、色心 .8.索末菲的量子自由电子气模型的四个基本假设是 自由电子近似、独立电子近似、无碰撞假设、自由电子费米气体假设 。
9。
根据爱因斯坦模型,当T→0时,晶格热容量以 指数 的形式趋于零。
10.晶体结合类型有 离子结合、共价结合、金属结合、分子结合、氢键结合 。
11。
在绝对零度时,自由电子基态的平均能量为 0F 53E 。
12。
金属电子的 B m ,23nk C V = 。
13.按照惯例,面心立方原胞的基矢为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=)(2)(2)(2321j i a a k i a a k j a a,体心立方原胞基矢为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=+-=++-=)(2)(2)(2321k j i a a k j i a a k j i a a。
14 。
对晶格常数为a 的简单立方晶体,与正格矢k a j a ia R ˆˆˆ22++=正交的倒格子晶面族的面指数为 122 , 其面间距为 a 32π 。
15。
根据晶胞基矢之间的夹角、长度关系可将晶体分为 7大晶系 ,对应的只有14种 布拉伐格子.16.按几何构型分类,晶体缺陷可分为 点缺陷、线缺陷、面缺陷、体缺陷、微缺陷 。
17. 由同种原子组成的二维密排晶体,每个原子周围有 6 个最近邻原子。
18.低温下金属的总摩尔定容热容为 3m ,bT T C V +=γ 。
19. 中子非弹性散射 是确定晶格振动谱最有效的实验方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《固体物理学》基础知识训练题及其参考标准答案《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。
第一章作业1:1.固体物理的研究对象有那些?答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。
2.晶体和非晶体原子排列各有什么特点?答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。
非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。
3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。
有那些单质晶体分别属于以上三类。
答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。
常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。
面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。
常见的面心立方晶体有:Cu, Ag, Au, Al等。
六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。
常见的六角密排晶体有:Be,Mg,Zn,Cd等。
4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。
答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。
ZnS:类似于金刚石。
作业2:1. 什么叫原胞?解:原胞是指晶格内重复排列的最小体积单元。
2. 简单立方晶格,体心立方晶格,面心立方晶格的基矢是什么?设对应的立方晶格的边长为a ,以上三种晶格的体积是多少?解:简立方基矢: i a a=1j a a=2 3a V =k a a=3面心立方基矢:)(21j i a a+=)(22k j a a += 341a V =3()2aa i k =+体心立方基矢1(i j k)2aa =+- 2(i j k)2a a =-++ 321a V =;3(i j k)2aa =-+3.对于简单晶格和复式晶格,如何确定其中原子的位置?解:对于简单晶格每个原子的位置可以写成:=R++; ,,为晶格基矢;对于复式晶格位置可以写成:=R+++; 表示原胞内各种等价原子之间的相对位移。
4.如何确定某一晶列指数?(1)取一晶体微粒为坐标原点0,确定原胞的基矢,,;(2)将所考察的晶列平移过坐标原点,从原点沿着晶列方向,找出最近的一个微粒的矢量并表示为:=R++;(3)写出该晶列的晶向指数[321l l l ]。
5.如何确定某一晶面的密勒指数?(1)取一晶体微粒为坐标原点0,确定原胞的基矢,,; (2)找出考察的晶面在矢量,,;方向上的截距1a r,,;(3)将r 、s 、t 倒数并整数化,从而得到该晶面的密勒指数(321h h h )。
作业3:1.倒格子基矢如何利用正格子基矢求出?解:可以利用正格子基矢1α,2α,3α导出倒格子基矢1b ,2b,3b ,其关系为:)(2321321αααααπ=b ;)(2321132αααααπ=b ;)(2321213αααααπ =b2.倒格子有何特点?解:①设正格子基矢为1a ,2a ,3a,倒格子中微粒的位矢为332211G b h b h b h ++=, 1b ,2b ,3b 是倒格子基矢,1h ,2h ,3h 是整数,则有:ijj i b a πδ2=?,当j i =时,1≠ij δ;当j i ≠时,=ij δ。
②倒格子原胞的体积*Ω与正格子原胞的体积Ω的乘积为()32π ,即()3*2π=Ω?Ω。
③倒格矢3322111321b h b h b h G h h h++=(1b 、2b 、3b 是倒格子基矢,1h 、2h 、3h 是整数)与密勒指数为)(321h h h 的晶面相互垂直。
作业4:1、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ?=+??=+??=+??由倒格子基矢的定义:1232()b a a π=Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=??==,223,,,0,()224,,022i j ka a a a a i j k a a ?==-++ 213422()()4ab i j k i j k a aππ∴=??-++=-++同理可得:232()2()b i j k ab i j k aππ=-+=+- 即面心立方的倒格子基矢与体心立方的正格基矢相同。
所以,面心立方的倒格子是体心立方。
(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ?=-++??=-+??=+-??由倒格子基矢的定义:1232()b a a π=Ω3123,,222(),,2222,,222a a a a a a a a a a a a a-Ω=??=-=-,223,,,,()2222,,222i j k a a a a a a j k a a a ?=-=+- 213222()()2a b j k j k a aππ∴=??+=+同理可得:232()2()b i k ab i j aππ=+=+即体心立方的倒格子基矢与面心立方的正格基矢相同。
所以,体心立方的倒格子是面心立方。
2、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
证明:因为33121323,a a a a CA CB h h h h =-=-, 112233G h b h b h b =++容易证明12312300h h h h h h G CA G CB ?=?=所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
作业51.在三维情况下,正交变换表示成什么形式?此时绕Z 轴转θ角的正交矩阵和中心反演的正交矩阵各是什么?解:在三维情况下,正交变换可表示成:z y x ='''z y x ????? ??333231222221131211a a a a a a a a a ??z y x其中矩阵a 是正交矩阵(i ,j=1,2,3)绕Z 轴转θ角的正交矩阵是:-1000cos sin 0sin cos θθθθ中心反演的正交矩阵为:100010001-?? ?--??2.简单立方晶格有哪些对称操作?答:(1)绕立方轴转动2π、π、23π,有三个立方轴,共有9个对称操作;(2)绕面对角线转动π,有六条不同的面对角线,共6个对称操作;(3)绕立方体对角线转32π、34π,有4条不同的立方体对角线,共8个对称操作;(4)正交变换100010001,即不动,也算一个对称操作;将上述的4种可能加起来,一共是24个对称操作。
又因为中心反演定律可以使立方体保持不变,因此以上每一个转动加中心反演都是对称操作。
所以总共48个对称操作。
3.什么叫对称素?答:若某物体绕其一对称轴转α角后,其中的微粒分布仍然与原来的空间排列完全相同,那么该操作对应的对称素n 为:απn ,α用弧度制。
作业61.试证明:晶体的宏观对称性只有哪几种对称素?证明:如下图,格点A 的位置可表示为2211ααl l +围绕“过格点A 点且垂直纸面的轴”转动θ角后,设格点B 转到另一格点B ' 的位置。
由于格点A 与格点B 完全等价,因此围绕“过格点B 点且垂直纸面的轴”转动θ角,格点A 一定会转到另一格点'A 的位置。
又由于A 和B 都是晶体中的格点,晶体中的格点排列具有严格的周期性,所以有:AB A B ||'',AB n A B ==''∴1n α, n 为整数。
如图可得:)cos 21(θ-=''AB A B21cos cos 21nn -=?-=θθθcos 必须在1与-1之间。
∴n 只能有-1,0,1,2,3五个值,相应的πππππθ,32,2,3,2=,它的宏观对称素还能为:1,2,3,4,6;由于各个对称素的中心反演都是对称操作,故得:6,4,3,2,1也是对称素。
第二章作业7:1、三维NaCl 晶体对应的马德隆常数α的表达式是什么?在二维、一维情况下,马德隆常数α的表达式又分别是什么?∑∑∑∑---=--=+--=++-=+++nnnn n n n n n n n n n n n n a n n a n n n a )1(')()1(')()1(')('2122121212322212121321321)1(一维:二维:三维:2、证明两种一价离子组成的一维晶格的马德隆常数为a=2In2。
证:设想一个由正负两种离子相间排列的无限长的离子键取任一负离子作参考离子。
用r 表示相邻离子间的距离。
]4131211[2)1( +-+-=±=∴∑r r r r r r a sij 马德隆常数]4131211[2 +-+-=a +-+-=+432)1(432x x x x x In当x=1时有: +-+-=41312112In 即a=2In23、试由三维NaCl 晶体的内能表达式,r 表示相邻正负离子的距离,N 表示晶体中原胞的个数,(1)其中表示相互吸引的平均库仑能和重叠排斥能各是哪一项?(2)试求出该晶体处于平衡态时的晶格常数、体变模量和结合能。
解:(1)平均库仑能为)(RAN -,重叠排斥能为n r B N(2)令0|0==r r dr du ,由于??+-=n r r B r A N u )(,则有: ,0)(1020=-+n r Bn r A N 于是可得110)(-=n A Bn r ][n r B r A N U +-=体模变量:400222184)1(0r aq n dV u d V VdV dp K V ?-=???? ??=-=πε 结合能:)()(000n r B r A N r u W +--=-=作业8:1、共价结合有哪两个基本特性?它们的含义分别是什么?解:(1)饱和性:是指一个原子只能形成一定数目的共价键,一个电子只能和一个与自己自旋方向相反的电子形成一个共价键。