导数计算(1)
导数的计算方法

导数的计算方法导数是微积分中的重要概念,它描述了函数在某一点的变化率。
在实际问题中,导数的计算方法对于求解各种问题具有重要的意义。
本文将介绍导数的计算方法,包括基本导数公式、导数的几何意义以及常见函数的导数计算方法。
首先,我们来看一下基本的导数公式。
对于函数y=f(x),它在点x处的导数可以表示为f'(x),即函数f(x)的导数。
常见的基本导数公式包括:1.常数函数的导数,如果f(x)是一个常数函数,那么它的导数为0,即f'(x)=0。
2.幂函数的导数,对于幂函数f(x)=x^n,它的导数为f'(x)=nx^(n-1)。
3.指数函数的导数,指数函数f(x)=a^x(a>0且a≠1)的导数为f'(x)=a^x ln(a)。
4.对数函数的导数,对数函数f(x)=log_a(x)的导数为f'(x)=1/(xln(a))。
5.三角函数的导数,常见三角函数sin(x)、cos(x)、tan(x)的导数分别为cos(x)、-sin(x)、sec^2(x)。
这些基本的导数公式是我们计算导数时的基础,掌握这些公式能够帮助我们更快更准确地计算各种函数的导数。
其次,我们来谈谈导数的几何意义。
在几何学中,导数可以理解为函数图像在某一点处的切线斜率。
具体地说,如果函数y=f(x)在点x处可导,那么它在该点的导数f'(x)就是函数图像在该点处切线的斜率。
这意味着导数可以帮助我们理解函数图像在不同点处的变化情况,从而更好地理解函数的性质和特点。
最后,我们来讨论一些常见函数的导数计算方法。
对于常见的函数,我们可以利用基本导数公式和导数的性质来计算它们的导数。
例如,对于多项式函数、指数函数、对数函数、三角函数等,我们可以根据它们的导数公式来计算它们的导数。
此外,我们还可以利用导数的性质,如导数的和、差、积、商规则,来简化导数的计算过程,从而更快更准确地求得函数的导数。
总之,导数是微积分中的重要概念,它描述了函数在某一点的变化率。
导数的计算公式

导数的计算公式
导数的计算公式是微积分中的重要概念之一。
导数描述了函数在某一点的变化率,也可以理解为函数曲线在该点处的切线斜率。
对于函数f(x),它的导数可以用以下公式表示:
f'(x) = lim(h->0) [f(x+h) - f(x)] / h
其中,f'(x) 表示函数f(x) 的导数,h 表示自变量x 的增量。
这个公式也可以写成更常见的形式:
f'(x) = df(x) / dx
其中df(x) 表示函数f(x) 在微小增量dx 内的变化量。
除了上述基本的导数计算公式,还有一些常见函数的导数公式可以简化计算。
以下是一些常见函数的导数公式:
1. 常数函数:
如果f(x) = c(其中c 是常数),则f'(x) = 0。
2. 幂函数:
如果f(x) = x^n(其中n 是常数),则f'(x) = nx^(n-1)。
3. 指数函数:
如果f(x) = e^x,则f'(x) = e^x。
4. 对数函数:
如果f(x) = ln(x),则f'(x) = 1/x。
5. 三角函数:
- sin(x) 的导数为cos(x)。
- cos(x) 的导数为-sin(x)。
- tan(x) 的导数为sec^2(x)(sec(x) 是secant 函数,为1/cos(x))。
这些是一些常见函数的导数公式,还有更多函数的导数公式,可以通过微积分教材或在线资源进一步学习。
导数的定义及计算

导数的定义及计算导数是微积分中的重要概念之一,用于描述函数在某一点的变化率或斜率。
在本文中,我们将介绍导数的定义及计算方法,并通过一些具体的例子来加深理解。
一、导数的定义在数学中,函数f(x)在x点处的导数可以用以下极限定义表示:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,lim表示极限操作,h表示自变量x的变化量,也可以解释为一个无限小的增量。
根据这个定义,我们可以得出导数的几何意义是函数在该点处的切线的斜率。
二、导数的计算方法1. 基本导数公式导数有一些基本的计算公式,这些公式可以帮助我们计算各种类型函数的导数。
下面是一些常用的基本导数公式:- 常数函数导数:常数函数的导数为0。
- 幂函数导数:幂函数f(x) = x^n 的导数为 f'(x) = n*x^(n-1)。
- 指数函数导数:指数函数f(x) = a^x(其中a>0且a≠1)的导数为f'(x) = ln(a) * a^x。
- 对数函数导数:对数函数f(x) = ln(x)(其中x>0)的导数为 f'(x) = 1/x。
- 正弦函数导数:正弦函数f(x) = sin(x)的导数为 f'(x) = cos(x)。
- 余弦函数导数:余弦函数f(x) = cos(x)的导数为 f'(x) = -sin(x)。
通过运用这些基本导数公式,我们可以计算更复杂函数的导数。
2. 导数的运算法则导数还具有一些运算法则,这些法则可以简化导数的计算过程。
下面是导数的运算法则:- 和差法则:若f(x)和g(x)是可导函数,则(f(x)±g(x))' = f'(x)±g'(x)。
- 积法则:若f(x)和g(x)是可导函数,则(f(x)·g(x))' = f'(x)·g(x) +f(x)·g'(x)。
导数的概念与计算

专题五 导数及其应用
1.求下列函数的导数:
(1)y=(3x2-4x)(2x+1)
(2) y=csions xx;
(3) y=exln x;
(4) y=(1+sin x)2.
解:(1) y=6x3-5x2-4x,所以 y′=18x2-10x-4. (2)y′=-sins2ixn-2xcos2x=-sin12x.
A.y=0
B.y=2x
C.y=x
D.y=-2x
3.已知函数 f(x)=axln x,x∈(0,+∞),其中 a 为实数,f′(x)为 f(x)
的导函数.若 f′(1)=3,则 a 的值为________.
4.若函数 f(x)=lnxx,则 f′(2)=___________.
5.若曲线 y=e-x 上点 P 处的切线平行于直线 2x+y+1=0,则点 P 的坐 标是_______________.
(3)0gf(3(xx))u对′x =f_′__(__x_)__g_(_[_gx_()__x-_0)_f4_(]_2_x_)y_u_g′_·′u(_x_′x_)(g(x)≠0).
4.复合0函5 数y的对u导数
06
专题五 导数及其 应用
复合函数 y=f(g(x))的导数和函数 y=f(u),u=g(x)的导数间
作业:
1.(选修 2-2 P18 练习 T2(4)改编)函数 y=xcos x-sin x 的导
数为( )
02
A.xsin x
专题五 导数及其应用
B.-xsin x
C.xcos x
D.-xcos x
01
解析:y′=xB′cos x+x(cos x)′-(sin x)′=cos x-xsin x-cos
高考数学计算题型精练(新高考通用版)专题03 导数计算(解析版)

导数计算1.求下列函数的导数:(1)cos sin cos xy x x -=;(2)221e x y x +=.【答案】(1)()21sin cos x x --;(2)()222141exx ++【详解】(1)()()()()22sin sin cos cos sin cos 1sin cos sin cos x x x x x xy x x x x ---+'==---;(2)()()22221221221e 21e 41e xx x y x x x +++''=++=+.2.求下列函数的导数.(1)()()221f x x =-+;(2)()()ln 41f x x =-;(3)()322x f x +=;(4)()f x =;【答案】(1)84x -(2)441x -(3)3232ln2x +⨯【详解】(1)因为()()2221441f x x x x =-+=-+,所以()84f x x '=-.(2)因为()()ln 41f x x =-,所以()441f x x '=-.(3)因为()322x f x +=,所以()3232ln2x f x +'=⨯(4)因为()f x =,所以()f x '==3.求下列函数的导数:(1)32235y x x =-+;(2)241y x x =++;(3)2log y x =;(4)e n xy x =;(5)31sin x y x-=;(6)sin sin cos xy x x=+.【答案】(1)266x x -(2)()22241x x ----+(3)1ln 2x (4)()1e n xx n x -+(5)()2323sin 1cos sin x x x x x--(6)11sin 2x+【详解】(1)()()32223566y x x x x ''''=-+=-.(2)()()()22242411y x x x x ''--'=+=+++()22241x x --=--+.(3)()21log ln 2y x x ''==.(4)()()()11e e e e e n x n x n x n x n x y x x nx x x n x --'''=+=+=+.(5)()()()()33321sin 1sin 1sin sin x x x x x y x x '''---⎛⎫-'== ⎪⎝⎭()2323sin 1cos sin x x x x x --=.(6)()sin sin cos x y x x ''=+()()()()2sin sin cos sin sin cos sin cos x x x x x x x x ''+-+=+()()()2cos sin cos sin cos sin sin cos x x x x x x x x +--=+()2111sin 2sin cos x x x ==++.4.求下列函数的导数:(1)1)1y ⎫=+-⎪⎭;(2)3ln (0,1)x y x a a a =+>≠;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭(4)2ln(23)1x y x +=+.【答案】(1)11y x ⎫'=+⎪⎭;(2)3ln (0xy a a a x '=+>且1)a ≠;(3)1sin 42cos 42y x x x --'=;(4)y '()()222212(23)ln(23)(23)1x x x x x x +-++=++【详解】(1)1)11y ⎫==-=⎪⎭,11y x '⎛⎫'∴===+⎪⎭⎝.(2)()'33ln ln (0,1)xxy x aa a a a x=+=+>≠'.(3)11sin 2cos 2sin(4)sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭ ,111sin 44cos 4sin 42cos 4222x x x x x x y '∴=--⋅=--.(4)()()()2222[ln(23)]1ln(23)11x x x x y x ''++-++'=+()()222(23)12ln(23)231x x x x x x '+⋅+-++=+()()222212(23)ln(23)(23)1x x x x x x +-++=++.5.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;(3)sin cos 22x y xx =-;【答案】(1)6sin =-'y x x ;(2)1ln +='+x y x x ;(3)11cos 2y x '=-.【详解】(1)因为23cos =+y x x ,所以6sin =-'y x x ;(2)因为()1ln =+y x x ,所以1ln +='+x y x x;(3)因为1sin cos sin 222y x x x x x =-=-,所以11cos 2y x '=-;6.求下列函数的导数.(1)22y x x -=+;(2)2ln 1xy x =+【答案】(1)322y x x -=-';(2)()()22112ln 1x x xy x-+'=+【详解】(1)322y x x -=-';(2)()()()()()22222212ln ln 1ln 111x x xx x x x x y xx ⎛⎫+-'' ⎪+-+⎝⎭'==++()()()2222112ln 12ln 11x x x x x x x x x -+-+==++.7.求下列函数的导数:(1)2()(1sin )(1)f x x x =+-;(2)()31x xf x x =-+.【答案】(1)()2cos 12(1sin )x x x x --+;(2)213ln 3(1)x x -+.【详解】(1)22()(1sin )(1)(1sin )(1)f x x x x x '''=+-++-2cos (1)(1sin )(2)x x x x =-++-()2cos 12(1sin )x x x x =--+(2)()((3)1x xf x x '''=-+2()(1)(1)3ln 3(1)x x x x x x ''+-+=-+213ln 3(1)x x =-+.8.求下列函数的导数:(1)22log (3);y x x =(2)cos(21).x y x+=【答案】(1)22log (3).ln 2x y x x '=+(2)()22sin 21cos(21).x x x y x -+-+'=【详解】(1)[]2222()log (3)log (3)y x x x x '''=+2232log (3)3ln 2x x xx =+22log (3)ln 2xx x =+.(2)[]2cos(21)cos(21)x x x x y x''+-+'=()22sin 21cos(21)x x x x -+-+=.9.求下列函数的导数:(1)111x y x x+=+-;(2)ln(21)y x x =+.【答案】(1)22221(1)x x y x x +-'=-(2)2ln(21)21xy x x '=+++.【详解】(1)2222(1)(1)(1)121(1)(1)x x y x x x x --+⨯-'=-=---22221(1)x x x x +-=-;(2)12ln(21)2ln(21)2121xy x x x x x '=++⋅⋅=++++.10.求下列函数的导数:(1)()ln 21x y x+=;(2)()ln 25y x =-;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎝⎭⎝⎭.【答案】(1)()()()2221ln 2121x x x y x x-++'=+(2)225y x '=-(3)1sin 42cos 42y x x x --'=【详解】(1)()()()()()2221ln21ln 21ln 21ln 2121x x x x x x x x x y x x x '+'⋅-+''+-+⎡⎤+⎡⎤⎣⎦+'===⎢⎥⎣⎦()()()()222ln 21221ln 212121xx x x x x x x x -+-+++==+.(2)令25u x =-,ln y u =,则()112ln 222525y u u u x x '''=⋅=⋅=⋅=--.(3)因为()11sin 2cos 2sin 4sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭,所以()11111sin 4sin 4sin 44cos 4sin 42cos 422222y x x x x x x x x x x''⎛⎫⎛⎫=-+-=--⋅=-- ⎪ ⎪⎝⎭⎝⎭'.11.求下列函数的导函数.(1)324ln 1y x x x =+-+;(2)24cos 2xy x -=+;(3)21e sin +=x y x .【答案】(1)21122x x x +-(2)()()2222sin 2cos 82x x x x x x ++-+(3)()212sin cos e x x x ++【详解】(1)'21122y x x x=+-;(2)()()()()()22'2222sin 224cos 2sin 2cos 822x x x x xx x x xy xx+--++-==++;(3)()'2121212e sin e cos 2sin cos e x x x y x x x x +++=+=+.12.求下列函数的导数.(1)(11y⎛=+ ⎝;(2)ln xy x=.【答案】(1)'y =,(2)'21ln x y x -=【详解】解:(1)因为(11221111y x x-⎛=+==- ⎝,所以31'22211111)22222x y x x x --+=--=-=-,(2)由ln x y x =,得'21ln x y x -=13.求下列函数的导数:(1)5log 2y x =;(2)8x y =;(3)cos 2y x =;(4)()432y x =.【答案】(1)1ln 5y x '=(2)8ln8x y '=(3)2sin 2y x '=-(4)1013323y x =【详解】(1)555log 2log 2log x x =+ 1ln 5y x '∴=(2)8ln8x y '=(3)令2,t x =则cos y t =()()()cos 2cos 2sin 22sin 2x t x y y t x t x t x''''''∴=⋅⇒=⋅=-⨯=-,故2sin 2y x '=-(4)()10444414313333334222233y x x y xx -'==⋅∴=⨯= 14.求下列函数的导数:(1)8y x =;(2)4x y =;(3)3log y x =;(4)sin(2y x π=+;(5)2e y =.【答案】(1)'78y x =;(2)'4ln 4x y =⋅;(3)'1ln 3y x =⋅;(4)'sin y x =-;(5)'0y =.【详解】(1)8y x =,'78y x =;(2)4x y =,'4ln 4x y =⋅;(3)3log y x =,'1ln 3y x =⋅;(4)sin()cos 2y x x π=+=,'sin y x =-;(5)2e y =,'0y =.15.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)ln y x =;(5)cos y x =.【答案】(1)1112y x '=(2)54y x'=-(3)3ln 3xy '=(4)1y x '=(5)sin y x '=-【详解】(1)()121112y x x ''==(2)()4545144y x x x x --'⎛⎫''===-=- ⎪⎝⎭(3)()ln 333x x y ''==(4)()1ln y x x''==(5)()cos sin y x x''==-16.求下列函数的导函数(1)4235+6y x x x =--;(2)21y x x=+;(3)2cos y x x =;(4)tan y x =【答案】(1)3465y x x =--';(2)321y x '=-;(3)22cos sin y x x x x -'=;(4)21cos y x'=【详解】(1)由4235+6y x x x =--,则3465y x x =--';(2)由21y x x =+,则321y x '=-;(3)由2cos y x x =,则22cos sin y x x x x -'=;(4)由sin tan cos x y x x ==,则2222cos sin 1cos cos x x y x x+'==.17.求下列函数的导函数.(1)()3224f x x x =-+;(2)()32113f x x x ax =-++(3)()cos ,(0,1)f x x x x =+∈;(4)2()3ln f x x x x =-+-(5)sin y x =;(6)11x y x +=-【答案】(1)2()68f x x x =-+(2)2()2f x x x a'=-+(3)()sin 1f x x '=-+(4)1()23f x x x'=--+(5)cos y x '=(6)22(1)y x '=--【详解】解:(1)由()3224f x x x =-+,则()'268f x x x =-+;(2)由()32113f x x x ax =-++,则()'22f x x x a =-+;(3)由()cos ,(0,1)f x x x x =+∈,则()1sin ,(0,1)f x x x =-∈;(4)由2()3ln f x x x x =-+-,则'1()23f x x x=-+-;(5)由sin y x =,则'cos y x =;(6)由11x y x +=-,则'''22(1)(1)(1)(1)2(1)(1)x x x x y x x +⨯--+⨯-==---.18.求下列函数的导数:(1)221()(31)y x x =-+;(2)cos x y e x =;【答案】(1)y ′=18x 2+4x -3;(2)y ′=ex (cos x -sin x ).【详解】(1)2222(21)(31)(21)(31)4(31)3(21)1843y x x x x x x x x x '''=-++-+=++-=+-,(2)()cos (cos )cos sin (cos sin )x x x x x y e x e x e x e x e x x '''=+=-=-.19.求下列函数在指定点处的导数.(1)()πf x x =,1x =;(2)()sin f x x =,π2x =.【答案】(1)π(2)0【详解】(1)解:因为()πf x x =,所以()1f x x ππ-'=,所以()1f π'=.(2)解:因为()sin f x x =,所以()cos f x x '=,所以cos 022f ππ⎛⎫'== ⎪⎝⎭.20.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)5log y x =.【答案】(1)1112y x '=(2)54y x '=-(3)3ln3xy '=(4)1=ln5y x '【详解】(1)12y x =,则1112y x '=(2)441y x x -==,则41544y x x --'-==-(3)3x y =,则3ln3x y '=(4)5log y x =,则1=ln 5y x '21.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;【答案】(1)6sin =-'y x x ;(2)1ln 1y x x'=++【详解】解:(1)因为23cos =+y x x所以()()23cos 6sin y x x x x '''=+=-,即6sin =-'y x x(2)因为()1ln =+y x x所以()()()()111ln 1ln ln 1ln 1y x x x x x x x x x '''=+++=++⋅=++,即1ln 1y x x'=++22.求下列函数的导数.(1)()()22331y x x =+-;(2)1sin 1cos xy x-=+.【答案】(1)21849y x x '=-+(2)21cos sin (1cos )'--+=+x x y x 【详解】(1)解:因为326293y x x x =-+-,所以21849y x x '=-+(2)()()2cos (1cos )1sin sin (1cos )x x x x y x -+---=+',21cos sin (1cos )x xx --+=+.23.求下列函数的导数.(1)()()ln sin f x x x x =+;(2)()()521exx f x +=.【答案】(1)()ln sin cos 1f x x x x x '=+++(2)()()()42192e xx x f x +-'=【详解】(1)()()()1ln sin ln sin ln sin cos f x x x x x x x x x x x x ⎛⎫'''=+++=+++ ⎪⎝⎭ln sin cos 1x x x x =+++.(2)()()()()()()454525e 212121e 102121e e x x x xx x x x x f x '++-++-+'==()()()()442110212192e ex xx x x x +--+-==.24.求下列函数的导数:(1)()2sin 2x f x x x=+(2)()()3e ln 24xf x x =+【答案】(1)()()()()222cos 2sin 222x x x x x f x x x +-+'=+(2)()()33e 3e ln 224xxf x x x =+++'【详解】(1)()2sin 2xf x x x=+,()()()()222cos 2sin 222x x x x x f x xx +-+'=+(2)()()3e ln 24xf x x =+,()()()3333e 3e ln 242242e 3e ln 24x xxxx f x x x x '=++++=++.25.求下列函数的导数:(1)()f x =(2)()cos 21x y x+=.【答案】(1)21x x +(2)()()22sin 21cos 21x x x x -+-+(2)求商的导数,[]2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦,由复合函数的的导数得[]cos(21)sin(21)(21)2sin(21)x x x x ''+=-++=-+ .【详解】(1)因为()f x =所以()()122'211221x x x f x x -+⋅===+'.(2)()()()'2cos 21cos 21x x x x f x x ⎡⎤+-+⎣⎦''=()22sin 21cos(21)x x x x -+-+=.26.求下列函数的导函数.(1)()()22331y x x =+-;(2)233x y x +=+.【答案】(1)21849x x -+(2)()222633x x x--++【详解】(1)()()22331y x x =+- ,()()()()()()2222233123314313231849y x x x x x x x x x '''∴=+-++-=-++=-+;(2)233x x y +=+ ,()()()()()()()()()2222222222333332363333x x x x x x x x x xxxy ''∴++-+++-+--+=='=+++.27.求下列函数的导数:(1)32234y x x =--;(2)ln xy x=.【答案】(1)266x x -(2)21ln x x -【详解】(1)322(2)(3)(4)66y x x x x ''''=--=-(2)()2221ln ln ln ()1ln x xx x x x x x y x x x ⋅-''⋅-⋅-'===28.求下列函数的导数:(1)31x x y e-=(2)ln(52)y x =+(3)cos(21)x y x +=【答案】(1)3231e x x x y -+'+=(2)552y x '=+(3)22sin(21)cos(21)x x x y x +++'=-【详解】(1)∵31xx y e-=,则()()()()()()''333232221e 1e 31e 31e e e x xxxx xx x xx x x y ----++-++===',故3231e xx x y -+'+=.(2)设52u x =+,则ln ,52u y u u x ==+,则()()()()''''15ln 52552u y y u u x u x '==+=⨯=+,故552y x '=+.(3)∵cos(21)x y x+=,则[]()2222sin(21)cos(21)2sin(21)cos(cos(21)cos 2121)x x x x x x y x x x x x x x ''+⋅-+⋅⎡⎤⎣⎦'==-+-++++=-,故22sin(21)cos(21)x x x y x +++'=-.29.求下列函数的导数.(1)n 1l y x x =+;(2)sin cos 22x y x x =-;(3)cos ex xy =【答案】(1)211y x x '=-.(2)11cos 2y x '=-(3)sin cos e x x x y +'=-.【详解】(1)22111(ln )(y x x x x''=+=-;(2)由已知1sin 2y x x =-,所以11cos 2y x '=-;(3)22(cos )e cos (e )sin e cos e sin cos (e )e e x x x x x x xx x x x x xy ''--⋅-⋅+'===-.30.求下列函数的导数:(1)21y x x=+;(2)e sin x y x =;(3)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()e sin cos x y x x '=+(3)y '=()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x(2)解:()()()e sin e sin e sin e cos e sin cos x x x x x y x x x x x x '''=+=+=+(3)解:()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .31.()2ln 3=+y x x x .【答案】y '=()223ln 33x x x x ++++【详解】()()22ln 3ln 3y x x x x x x '⎡⎤''=+++⎣⎦()()221ln 3233x x x x x x =++⋅⋅++()223ln 33x x x x +=+++.32.21y x x =+;【答案】312y x -=-'【详解】221y x x x x-=+=+,()2312y x x x --'''=+=-.33.求下列函数的导数(1)2(2)(31)y x x =-+;(2)2cos 2x y x=【答案】(1)2272411y x x '=--(2)y '222cos(2)2sin(2)(cos 2)x x x x x +=【详解】(1)因为2232(2)(31)(2)(961)912112y x x x x x x x x =-+=-++=---,所以()()()32291211272411y x x x x x ''''=--=--(2)222222()cos 2(cos 2)2cos 2(2sin 2)cos 2(cos 2)(cos 2)x x x x x x x x x y x x x '''⎛⎫---'=== ⎪⎝⎭222cos(2)2sin(2)(cos 2)x x x x x +=34.求下列函数的导数(1)()2112f x x x x=--;(2)()e ln sin x f x x x =++【答案】(1)()3221x x f x x -+'=;(2)()1e cos xf x x x '=++【详解】(1)解:因为()2112f x x x x =--,则()3222111x x f x x x x -+=-+='.(2)解:因为()e ln sin x f x x x =++,则()1e cos xf x x x'=++.35.求下列函数的导数.(1)ln(21)y x =+;(2)sin cos x y x=;(3)()2ln 1y x x =+;(4)1()23()()y x x x =+++.【答案】(1)221y x '=+;(2)21cos y x =';(3)()2222ln 11x x xy +++'=;(4)231211y x x =++'.【详解】(1)函数ln(21)y x =+,所以()12212121y x x x '=⋅+=++'.(2)函数sin cos x y x =,所以()()''22222sin cos sin cos cos sin 1cos cos cos x x x x x x y x x x -+=='=.(3)函数2)ln(1y x x =+,所以22222212ln(1(1)())ln 111x x x x x x y x '++⋅⋅+=++++'=.(4)依题意,32123()()()6116y x x x x x x ==++++++,所以231211y x x =++'.36.求下列函数的导函数.(1)()4ln =+f x x x ;(2)()sin cos =-x f x x x;(3)()21e xf x -=.【答案】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+;(3)21()2e x f x '-=.【详解】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+.(3)2121(21()e )e 2x x x x f --'==⋅-'.37.求下列函数的导数.(1)y =(2)()()()123y x x x =+++;(3)y =【答案】(1)52322332sin cos 2x x x x x x y ---=-+-+';(2)231211y x x =++';(3)()221y x '=-【详解】(1) 13523222sin sin x x x x y x x x x -++==++∴()()3322sin y x x x x --'⎛⎫'''=++ ⎪⎝⎭52322332sin cos 2x x x x x x ---=-+-+.(2) ()()2323236116y x x x xx x =+++=+++,∴231211y x x =++'.(3)21y x===-∴()()()222122111y x x x '-'⨯-⎛⎫=== ⎪-⎝⎭--.38.求下列函数的导数:(1)()()311y x x =--;(2)sin 3y x =;(3)21ex x y +=.【答案】(1)32431y x x =--';(2)3cos 3y x =';(3)221e xx x y -+'=-【详解】(1)()()()()()()''3332321111131431y x x x x x x x x x =--+--=-+--'=-;(2)令3u x =,则sin y u =,所以()()''3sin 3cos 3cos3y x u u x =⋅==';(3)()()()()()()''2222221e 1e 2e 1e 21e e e x xx xxx xxx x x x x y +-+-+-+=='=-.39.求下列函数的导数:(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)()2ln 35y x =+.【答案】(1)21πcos 0,cos 2y x x x ⎛⎫'=+∈ ⎪⎝⎭;(2)()2223563535x x y x x '+'==++【详解】(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭()()()22cos cos sin sin sin 1πsin cos cos ,0,cos cos 2cos x x x x x y x x x x x x x '⋅-⋅-⎛⎫⎛⎫''=+=+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)()2ln 35y x =+()2223563535x xy x x '+'==++40.求下列函数的导数:(1)21y x x =+;(2)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x ;(2)()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .41.求下列函数的导数.(1)()2ln 2xx f x x +=;(2)()()3ln 45f x x =+.【答案】(1)()312ln ln 222xx x x -+-;(2)1245x +【详解】(1)函数()2ln 2xx f x x +=的定义域为()0+∞,.所以()()()()()()22232ln 2ln 212ln ln 222xxxx x x x x x f x x x ''+-+-+-'==(2)函数()()()3ln 453ln 45f x x x =+=+的定义域为54⎛⎫-+∞ ⎪⎝⎭,.所以()()'345124545x f x x x +==++'42.求下列函数的导数:(1)()2321cos y x x x =++;(2)2y =(3)18sin ln y x x x =+-;(4)32cos 3log xy x x x =-;(5)33sin 3log xy x x =-;(6)e cos tan x y x x =+.【答案】(1)()2(62)cos 321sin x x x x x +-++;(2)132291122x x --+;(3)17118cos x x x+-;(4)()332ln 2cos 2sin 3log 3log e x x x x x ---;(5)()313ln 3sin 3cos 3log e x x x x x +-⋅;(6)21e cos e sin cos x xx x x-+.【详解】(1)()()()22321cos 321cos y x x x x x x '''=+++++⋅()2(62)cos 321sin x x x x x =+-++.(2)3122235y x x x -==+-+,所以1222213331311222912y x x x x --'=⨯⋅+-⋅=-+.(3)17118cos y x x x'=+-.(4)()()()()332cos 2cos 3log log x x y x x x x x x'⎡⎤''''=+-+⎢⎥⎣⎦()332ln 2cos 2sin 3log 3log e x x x x x =---.(5)()()13sin 3sin 3ln 3x xy x x x '''=+-⋅()313ln 3sin 3cos 3log e x x x x x=+-⋅.(6)sin e cos tan e cos cos x xxy x x x x=+=+,故()()()()2sin cos cos sin e cos e cos cos x x x x x xy x x x''-'''=+⋅+21=e cos e sin cos x x x x x-+.43.求下列函数的导数:(1)2e axbxy -+=;(2)2sin(13)y x =-;(3)y(4)y =(5)2lg sin 2x y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦;(6)221cos e x x y ⎛⎫+= ⎪⎝⎭.【答案】(1)2(2)eax bxax b -+-+(2)6cos(13)x --(3)()()()231cos 2sin 22ln 213x x x x x --+⋅+⋅+(4)cos 2(1sin )x x +(5)22cos 122lg e 2sin 2x x x x x ⎛⎫+ ⎪⎛⎫⎝⎭+⋅⋅ ⎪⎛⎫⎝⎭+ ⎪⎝⎭(6)22(1)1sin 2e e x x x x ⎛⎫-+ ⎪⎝⎭【详解】(1)因为函数2e axbxy -+=可以看做函数e u y =和2u ax bx =-+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2e u ax bx ''=⋅-+()e 2u ax b =⨯-+2(2)e axbxax b -+=-+;(2)因为函数2sin(13)y x =-可以看做函数2sin y μ=和13u x =-的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2sin 13x μ''=⋅-()2cos 3μ=⨯-6cos(13)x =--;(3)因为函数y =y =()cos 2xu x =+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅,又因为函数()cos 2xu x =+可以看做函数cos t μ=和2x t x =+的复合函数,根据复合函数求导公式可得,xt x t μμ'''=⋅所以x u t xy y u t ''''=⋅⋅()()cos2xt x'''=⋅⋅+()()231sin2ln213xtμ-⎛⎫=⨯-⨯+⎪⎝⎭()()()231cos2sin22ln213x x xx x-⎡⎤=+-+⨯+⎣⎦()()()231cos2sin22ln213x x xx x-=-+⋅+⋅+;(4)函数y=()1ln1sin2y x=+因为函数()1ln1sin2y x=+可以看做函数1ln2yμ=和1sinu x=+的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,所以x u xy y u'''=⋅()1ln1sin2xμ'⎛⎫'=⋅+⎪⎝⎭1cos2xμ⎛⎫=⨯⎪⎝⎭cos2(1sin)xx=+;(5)因为函数2lg sin2xy x⎡⎤⎛⎫=+⎪⎢⎥⎝⎭⎣⎦可以看做函数lgy u=和2sin2xu x⎛⎫=+⎪⎝⎭的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,又因为函数2sin2xu x⎛⎫=+⎪⎝⎭可以看做函数sin tμ=和22xt x=+的复合函数,根据复合函数求导公式可得,x t xtμμ'''=⋅所以x u t xy y u t''''=⋅⋅()()2lg sin2xt xμ'⎛⎫''=⋅⋅+⎪⎝⎭()11cos2ln102t xμ⎛⎫⎛⎫=⨯⨯+⎪⎪⎝⎭⎝⎭22cos122lg e2sin2x xxx x⎛⎫+⎪⎛⎫⎝⎭=+⋅⋅⎪⎛⎫⎝⎭+⎪⎝⎭;(6)函数221cos e x x y ⎛⎫+= ⎪⎝⎭可化为211cos 2e 2x x y ⎛⎫++ ⎪⎝⎭=,因为函数2221cos e 2xx y ⎛⎫++ ⎪⎝⎭=可以看做函数1cos 2y μ+=和222e xx u +=的复合函数,根据复合函数求导公式可得,x u x y y u '''=⋅,所以xu x y y u '''=⋅21cos 222e xx μ''⎛⎫++⎛⎫= ⎪ ⎪⎝⎭⎝⎭()224e e 221sin 2e x x x x x μ⎡⎤-+⎢⎥=-⋅⎢⎥⎣⎦21242sin 2e x x x μ⎛⎫-+-=-⋅ ⎪⎝⎭22(1)1sin 2e e x x x x ⎛⎫-+= ⎪⎝⎭.44.求下列函数的导数.(1)()()1ln 2y x x =+;(2)21e x y x+=.【答案】(1)y '()1ln 21x x =++(2)212122e ex x x y x ++-='【详解】(1)()()()()()()()111ln 21ln 2ln 21ln 21y x x x x x x x x x'=+++=++⋅=++⎡⎤⎣'⎦'(2)()2121212122e e 2e e x x x x x x x y x x ++++'⋅-⋅-==''45.求下列函数的导数.(1)y =(2)()621e 1x y x -+=-【答案】(1)()241y x -'=-;(2)()()521e 182x y x x -+'=--【详解】(1)2211221x y x ++===-()()()()()22212212211x x x x x y x x '''+--+-+⎛⎫'== ⎪-⎝⎭-()()()()222122411x x x x --+-==--(2)()()()()666212121e 1e 1e 1x x x y x x x -+-+-+'''⎡⎤⎡⎤'=-=-+-⎣⎦⎣⎦()()()()6552121212e 1e 61e 182x x x x x x x -+-+-+=--+⋅-=--46.求下列函数的导数.(1)52234y x x =--;(2)e sin xy x=.【答案】(1)4106y x x '=-;(2)2e sin e cos sin x x x xy x-'=【详解】(1)()()()5252423423106y x x x x x x ''''-==--=-(2)()()2e sin sin e e sin sin x x xx x y x x '''-⎛⎫'== ⎪⎝⎭2e sin e cos sin x x x x x -47.求下列函数的导数:(1)2sin y x x =;(2)n 1l y x x=+;(3)tan y x x =⋅;(4)()()()123y x x x =+++;(5)()()22332y x x =+-;(6)cos e xxy =.【答案】(1)22sin cos y x x x x '=+(2)211y x x'=-(3)2tan cos x y x x '=+(4)231211y x x =++'(5)21889y x x '=-+(6)sin cos e xx xy +'=-【详解】(1)()()()2222sin sin sin 2sin cos y x x x x x x x x x x ''''==+=+;(2)()21111ln ln y x x x x x x''⎛⎫⎛⎫''=+=+=- ⎪ ⎪⎝⎭⎝⎭;(3)()()222sin cos sin tan tan tan tan tan cos cos x x x y x x x x x x x x x x x x '+⎛⎫'''=⋅=+=+⋅=+⋅ ⎪⎝⎭2tan cos x x x =+;(4)()()()()()()123123y x x x x x x '''=+++++++⎡⎤⎡⎤⎣⎦⎣⎦()()()()()()()()()123123123x x x x x x x x x '''=+++++++++++()()()()()()231312x x x x x x =++++++++231211x x =++.(5)()()()()()()2222233223324323231889y x x x x x x x x x '''=+-+++=-++=-+;(6)()2cos 1111sin cos cos cos sin cos e e e e e e e x x x x x x xx x x y x x x x ''+⎛⎫⎛⎫⎛⎫''==+=-⋅+⋅-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.。
导数的计算公式

导数的计算公式导数是微积分的基本概念之一,用于描述函数在某一点的变化率。
它可以通过计算函数的导数来获得,而导数的计算可以通过一些公式来简化。
一、导数的定义设函数 y=f(x),当自变量 x 在某一点 a 处有定义时,函数 f(x) 在该点的导数可以通过以下极限来定义:f'(a) = lim┬(h→0)〖(f(a+h)-f(a))/h〗其中 h 称为自变量的增量,表示自变量 x 在点 a 处的一个微小变化量。
导数 f'(a) 描述了函数 f(x) 在点 a 处的斜率,即函数图像在该点附近的切线的斜率。
二、常见导数的计算公式在微积分中,有一些常见函数的导数计算公式可以帮助简化导数的计算。
下面列举一些常见导数的计算公式:1. 常数函数导数公式:如果 y=c 是一个常数,那么它的导数为 f'(x)=0,即常数函数的导数为 0。
2. 幂函数导数公式:如果 y=x^n 是一个幂函数,那么它的导数为 f'(x)=nx^(n-1),即幂函数的导数等于指数与幂减一的乘积。
3. 指数函数导数公式:如果 y=a^x 是一个指数函数,且 a>0 且a≠1,那么它的导数为f'(x)=a^xln(a),即指数函数的导数等于函数值乘以底数的自然对数。
4. 对数函数导数公式:如果 y=loga(x) 是一个对数函数,且 a>0 且a≠1,那么它的导数为 f'(x)=1/(xln(a)),即对数函数的导数等于常数 1 除以函数自变量 x 与底数的乘积。
5. 三角函数导数公式:(1) sin 函数的导数:f'(x)=cos(x)(2) cos 函数的导数:f'(x)=-sin(x)(3) tan 函数的导数:f'(x)=sec^2(x)(4) cot 函数的导数:f'(x)=-csc^2(x)(5) sec 函数的导数:f'(x)=sec(x)tan(x)(6) csc 函数的导数:f'(x)=-csc(x)cot(x)这些导数的计算公式在微积分中是经常使用的,可以帮助简化复杂函数的求导过程。
导数的定义与计算方法
导数的定义与计算方法导数是微积分中的重要概念之一,用于研究函数的变化率和曲线的切线斜率。
本文将从导数的定义入手,介绍导数的计算方法,并给出一些例题来帮助读者更好地理解和应用导数。
一、导数的定义在数学上,给定一个函数y=f(x),其导数定义为函数在某一点x处的变化率。
导数可以用极限来表示,即:f'(x) = lim Δx→0 (f(x+Δx) - f(x))/Δx其中f'(x)表示函数f(x)在点x处的导数,Δx为自变量的增量。
导数的值可以表示函数在该点的切线斜率,即函数曲线在该点处的速率。
二、导数的计算方法导数的计算方法有多种,下面列举几种常见的:1. 基本导数公式对于常见的基本函数,存在一些导数的基本公式,如:- 常数函数导数为零:d/dx(c) = 0,其中c为常数;- 幂函数导数为功率减一:d/dx(x^n) = nx^(n-1),其中n为常数;- 指数函数导数等于自身:d/dx(e^x) = e^x;- 对数函数导数为倒数:d/dx(ln(x)) = 1/x。
通过应用基本导数公式,可以计算更复杂函数的导数。
2. 导数的四则运算规则对于已知的函数f(x)和g(x),导数的四则运算规则如下:- 和差法则:(f(x) ± g(x))' = f'(x) ± g'(x)- 积法则:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- 商法则:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2以上规则为导数的基本运算规则,可以根据需要进行组合和推广。
3. 链式法则如果函数y=f(g(x))是由两个函数复合而成,那么它的导数可以用链式法则来计算。
链式法则可以表示为:d/dx(f(g(x))) = f'(g(x)) * g'(x)通过链式法则,可以求解更复杂的复合函数的导数,进一步扩展了导数的计算方法。
求导基本公式表
导数是微积分学中的重要概念,它表示一个函数在某一点处的变化率。
导数公式是微积分学中的基本公式之一,用于计算函数的导数。
以下是导数的基本公式表:
1.函数y=kx的导数为y′=k,其中k为常数。
2.函数y=axn的导数为y′=naxn−1,其中a为常数,n为正整数。
3.函数y=loga(x)的导数为y′=x ln a1,其中a为常数且a>0且a=1。
4.函数y=ex的导数为y′=ex。
5.函数y=sin(x)的导数为y′=cos(x)。
6.函数y=cos(x)的导数为y′=−sin(x)。
7.函数y=tan(x)的导数为y′=(sec(x))2。
8.函数y=cot(x)的导数为y′=−(csc(x))2。
9.函数y=sec(x)的导数为y′=tan(x)sec(x)。
10.函数y=csc(x)的导数为y′=−cot(x)csc(x)。
这些公式可以在求解函数的导数时提供帮助。
但是需要注意,对于复杂的函数,可能需要使用更高级的导数公式才能求解其导数。
此外,导数的计算还涉及到一些基本的微积分知识和技巧,例如链式法则、乘法法则、指数函数求导法则等等,需要在学习微积分的过程中逐步掌握。
导数计算
看常见导函数的计算●交流与展示1(1)定义法求导数的步骤(2)导数和导函数的定义2用定义法求一下函数的导函数(1)y=x (2)y=x 2(3)y=x -1(4)y x = (5)2y kx =归纳(1)n y x =的导数(2)y=kf (x )的导数(3)常数函数的导数●知识梳理法则1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即 []()()''()'()f x g x f x g x ±=±法则2常数与函数的积的导数等于常数与函数的积的导数.即[]()'()'cf x cf x =法则3两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即 []()()''()()()'()f x g x f x g x f x g x =+法则4 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方, 即'2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ⎛⎫-=≠ ⎪⎝⎭●精讲点拨,凸显重点例1:求下列函数的导数:(1)37x y = (2)43x y -=(3)3534x x y +=(4)b a b ax x f 、()()(2+=为常数)例2:已知曲线331x y =上一点)382(,P ,求:(1)过点P 的切线的斜率; (2)过点P 的切线方程.●巩固案,温故知新1、求下列函数的导数:(1)1452+-=x x y (2)333x x y -+=(3)453223-+-=x x x y (4))3)(2()(x x x f -+=2、求曲线32x x y -=在1-=x 处的切线的斜率。
3若直线y x b =-+为函数1y x=图象的切线,求b 的值和切点坐标.4已知函数f(x)=x 3+bx 2+cx+d 的图象过点P(0,2),且在点M 处(-1,f(-1))处的切线方程为6x-y+7=0,求函数的解析式5 知函数f (x ),g (x )满足f (5)=5,'f (),()x g x 满足f (5)=5,'(5)3f = g (5)=4,'(5)g =1,求y=()2()f xg x +的图像在x=5处的切线方程。
导数的概念及运算知识点讲解(含解析)
导数的概念及运算一、知识梳理1.函数y =f(x)在x =x 0处的导数(1)定义:称函数y =f(x)在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx称为函数y =f (x )在开区间内的导函数.3.导数公式表4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3) ⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 y x ′=y u ′·u x ′.知识点小结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2. ⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2. 3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ) 解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错.(3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3C.9D.15解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 答案 C3.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8. 答案 -9.8t +6.5 -9.84.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A.e 2B.1C.ln 2D.e解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e xln x +e x·1x ,则f ′(1)=e.答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e xx =e x ⎝⎛⎭⎪⎫ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3. (3)因为y =ln1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( ) A.-eB.2C.-2D.e解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4考点二 导数的几何意义 角度1 求切线方程【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A.y =-2x B.y =-x C.y =2xD.y =x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3B.2C.1D.12(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 解析 (1)设切点的横坐标为x 0(x 0>0),∵曲线y =x 24-3ln x 的一条切线的斜率为12, ∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎪⎨⎪⎧1-a =2,2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________.解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组⎩⎪⎨⎪⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎪⎨⎪⎧x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1. ∴点P 的坐标为(1,-1)或(-1,1). (2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x三、课后练习1.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( ) A.1B.0C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b=⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2. 答案 D2.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________. 解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时, 由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]3.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________. 解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 224.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(理)1.2 导数的计算 1.2.1 几个常用函数的导数、基本初等函数的导数公式 (文)3.2 导数的计算 3.2.1 几个常用函数的导数、基本初等函数的导数公式 [素养目标] 1.能根据定义求几个常用函数的导数,从而培养逻辑推理的核心素养. 2.掌握基本初等函数的导数公式,并能进行简单的应用,培养数据分析,数学运算的核心素养。 【课前·预习案】 [问题导学] 知识点1. 几个常用函数的导数 [思考1] 用导数的定义求导数的步骤是怎样的? 【提示】①求函数值的变化量; ②求平均变化率; ③取极值,得导数.
[思考2] 根据定义求函数y=c,y=x,y=x2,y=1x
的导数. 【提示】根据定义可求得几个函数的导数,分别是
y′=0,y′=1,y′=2x,y=-1x2. 〖梳理〗几个常用函数的导数
知识点2. 基本初等函数的导数公式 [思考3]你能总结出函数y=xα的导数是什么吗? 【提示】能,归纳可得y=xα的导数是y′=αxα-1.
〖梳理〗 基本初等函数的导数公式
原函数 导函数 f(x)=c f′(x)=0 f(x)=xα(α∈Q*) f′(x)=α·xα-1 f(x)=sin x f′(x)=cos_x f(x)=cos x f′(x)=-sin_x f(x)=ax f′(x)=axln_a(a>0且a≠1) f(x)=ex f′(x)=ex
f(x)=logax f′(x)=1xln a(a>0且a≠1)
f(x)=ln x f′(x)=1x [达标自评] 1.判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”: (1)常数函数的导数为它本身.( ) (2)指数函数的导数还是指数函数. ( ) (3)正弦函数的导数是余弦函数,余弦函数的导数是正弦函数.( ) 解析:常数函数的导数为0.(1)错;(2)错;指数函数f(x)=ax (a>0且a≠1)的导数f′(x)=axlna(a>0且a≠1),当a=e时,f′(x)=ex是指数函数,当ae时f′(x)=axlna不是指数函数.(3)错. 正弦函数的导数是余弦函数,但余弦函数的导数是正弦函数的相反数.
答案:(1)× (2)× (3)×
函数 导数 f(x)=c(c为常数) f′(x)=0 f(x)=x f′(x)=1 f(x)=x2 f′(x)=2x
f(x)=1x f′(x)=-1x2
f(x)=x f′(x)=12x 2.下列结论不正确的是( ) A.若y=0,则y′=0 B.若y=5x,则y′=5 C.若y=x-1,则y′=-x-2
D.若y=x12,则y′=12x12 解析:当y=x12时,y′=(x12)′=(x)′=12x
=12x-12. D不正确. 答案:D
3.若y=cos2π3,则y′=( )
A.-32 B.-12 C.0 D.12 解析:常数函数的导数为0. 答案:C 4.函数f(x)=sin x,则f′(6π)=________. 解析: f′(x)=cos x,所以f′(6π)=1. 答案: 1 5.曲线y=x3上切线平行或重合于x轴的切点坐标是________. 解析:(x3)′=3x2,若切线平行或重合于x轴则切线斜率k=0,即3x2=0得x=0,∴y=0,即切点为(0,0). 答案:(0,0)
【课堂·探究案】 探究一 用求导公式求函数的导数
【例1】求下列函数的导数: (1)y=x-3;(2)y=3x;(3)y=xxx;(4)y=log5x;
(5)y=cosπ2-x;(6)y=sin π6;(7)y=ln x;(8)y=ex. 【分析】解答本题可先将解析式化为基本初等函数,再利用公式求导.
(1)y′=-3x-4.(2)y′=3xln 3.
(4)y′=1xln 5.(5)y=sin x,y′=cos x. (6)y′=0.(7)y′=1x.(8)y′=ex. 【方法总结】求简单函数的导函数有两种基本方法: (1)用导数的定义求导,但运算比较繁杂; (2)用导数公式求导,可以简化运算过程、降低运算
难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式. 【跟踪训练1】给出下列结论:
①(cos x)′=sin x;②sinπ3′=cosπ3;
③若y=1x2,则y′=-1x;④-1x′=12xx. 其中正确的个数是( ) A.0 B.1 C.2 D.3 解析: 因为(cos x)′=-sin x,所以①错误;
sinπ3=32,而32′=0,所以②错误;
1x2′=(x-2)′=-2x-3,所以③错误;
-
1
x′=(-x-12 )′=12x-32 =12xx,所以④
正确. 答案:B 探究二 利用导数公式求切线方程 [例2](1)(2018·高考全国高考卷II)曲线2lnyx
在点(1,0)处的切线方程为__________.
(2)在曲线y=f(x)=1x2上求一点P,使得曲线在该点处的切线的倾斜角为135°. 解析: (1)由2lnyfxx,得2fxx,
则曲线2lnyx在点1,0处的切线的斜率为12kf,
则所求切线方程为021yx,即22yx. 答案:2x-y-2=0. (2)设切点坐标为P(x0,y0),f′(x0)=-2x-30=tan 135°
=-1,即-2x-30=-1,∴x0=213 .
代入曲线方程得y0=2-23, ∴点P的坐标为213 , 2-23. 【方法总结】利用导数的几何意义解决切线问题的两种情况 (1)若已知点是切点,则在该点处的切线斜率就是该点处的导数. (2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解.
【跟踪训练2】已知函数f(x)=x3-4x2+5x-4. (1) 求曲线f(x)在点(2,f(2))处的切线方程; (2)求经过点A(2,-2)的曲线f(x)的切线方程.
解:(1)∵f′(x)=3x2-8x+5, ∴f′(2)=1. 又∵f(2)=-2, ∴曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,
即x-y-4=0. (2)设切点坐标为(x0,x30-4x20+5x0-4). ∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)(x-2). 又∵切线过点(x0,x30-4x20+5x0-4), ∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2).
整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1. 当x0=2时,f′(x0)=1, 此时所求切线方程为x-y-4=0; 当x0=1时,f′(x0)=0,此时所求切线方程为y+2=0. 故经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0. 探究三 导数的简单综合应用
[例3](1)质点的运动方程是S=sin t,则质点在t=π3
时的速度为_____;质点运动的加速度为_____. (2)已知两条曲线y=sin x,y=cos x,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.
解析:(1)v(t)=S′(t)=cos t,∴vπ3=cos π3=12,
即质点在t=π3时的速度为12. ∵v(t)=cos t, ∴加速度a(t)=v′(t)=(cos t)′=-sin t.
答案:12 -sin t (2)由于y=sin x,y=cos x,设这两条曲线的一个公共点为P(x0,y0).∴两条曲线在P(x0,y0)处的斜率分别为k1=cos x0,k2=-sin x0. 若使两条切线互相垂直,必须cos x0·(-sin x0)=-1, 即sin x0·cos x0=1, 也就是sin 2x0=2,这是不可能的. ∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直. 【方法总结】导数的简单应用 (1)导数在物理中的应用:位移对时间t的导数就是速度,速度对时间t的导数即为加速度. (2)导数在函数中的应用:利用导数的几何意义,即切线的斜率建立切点的横坐标与切线斜率之间的关系解决问题. 【跟踪训练3】如图,已知曲线f(x)=2x2+a(x≥0)与曲线g(x)=x(x≥0)相切于点P,且在点P处有相同的切线l.求点P的坐标及a的值.
解:设切点P(x0,y0),由直线l与曲线y=f(x)相切于点P,得切线l的斜率为 f ′(x0)=4x0. 由直线l与曲线y=g(x)也相切于点P,得切线
l的斜率为g′(x0)=12x0.
由f ′(x0)=g′(x0),得4x0=12x0,解得x0=14. ∴y0=x0=12,即点P的坐标为(14,12). 由点P(14,12)在曲线y=f(x)上,得2×(14)2+a=12,解得a=38.
∴点P的坐标为(14,12),a的值为38.