1.2 三种常用的正交坐标系

坐标系向国家大地坐标系的转换完整版

坐标系向国家大地坐标 系的转换 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

北京54坐标系向国家2000大地坐标系的转换 摘要:2000国家坐标系统提高了测量的绝对精度,并且可以快速获取精确的三维地心坐标,能够提供高精度、地心、实用、统一的大地坐标系,自此以后的测量成果要求坐标系统采用2000国家大地坐标系,本文就北京54坐标系和2000国家大地坐标系原理和转换方法进行简单的分析。 1引言大地坐标系是地球空间框架的重要基础,是表征地球空间实体位置的三维参考基准,科学地定义和采用国家大地坐标系将会对航空航天、对地观测、导航定位、地震监测、地球物理勘探、地学研究等许多领域产生重大影响。建立大地坐标框架,是测量科技的精华,与空间导航乃至与经济、社会和军事活动均有密切关系,它是适应一定社会、经济和科技发展需要和发展水平的历史产物。过去受科技水平的限制,人们不得不使用经典大地测量技术建立局部大地坐标系,它的基本特点是非地心的、二维使用的。采用地心坐标系,即以地球质量中心为原点的坐标系统,是国际测量界的总趋势,世界上许多发达和中等发达国家和地区多年前就开始采用地心坐标系,如美国、加拿大、欧洲、墨西哥、澳大利亚、新西兰、日本、韩国等。我国也于2008年7月开始启用新的国家大地坐标系—2000国家大地坐标系。 2北京54系我国北京54坐标系是采用前苏联的克拉索夫斯基椭球参数(长轴6378245ra,短轴635686m,扁率1/298.3),并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。其坐标的原点不在北京,而是在前苏联的普尔科沃。

正交试验设计常用正交表分析

选用正交表。根据提供的因素和水平进行正交表的选择, 选择的方法为试验的水平作为正 交表的水平, 试验的各个因素小于或等于正交表的列数,表格中没有数据的项空掉即可。 可以数据公式分析影响因子,也可以软件表征结果 (1) L 4(23) 任意两列间的交互作用为另外一列 (2) L 8(27) L 8(27)二列间的交互作用表 1 2 3 1 1 1 1 2 1 2 2 3 2 1 2 4 2 2 1 1 2 3 4 5 6 7 1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 2 3 1 2 2 1 1 2 2 4 1 2 2 2 2 1 1 5 2 1 2 1 2 1 2 6 2 1 2 2 1 2 1 7 2 2 1 1 2 2 1 8 2 2 1 2 1 1 2 1 2 3 4 5 6 7 (1) 3 2 6 4 7 6 (2) 1 5 7 4 5 (3) 7 6 5 4 (4) 1 2 3 (5) 3 2 (6) 1 (7) 列 号 试 验 号 列 号 试 验 号 列 号 列 号

L 8(27)表头设计 1 2 3 4 5 6 7 3 A B A ×B C A ×C B ×C 4 A B A ×B C ×D C A ×C B ×D B ×C A ×D D 4 A B C ×D A ×B C B ×D A ×C D B ×C A ×D 5 A D ×E B C ×D A × B C ×E C B ×D A ×C B ×E D A × E B ×C E A ×D (3) L 8(4×24) L 8(4×24)表头设计 1 2 3 4 5 2 A B (A ×B)1 (A ×B)2 (A ×B)3 3 A B C 4 A B C D 5 A B C D E 1 2 3 4 5 1 1 1 1 1 1 2 1 2 2 2 2 3 2 1 1 2 2 4 2 2 2 1 1 5 3 1 2 1 2 6 3 2 1 2 1 7 4 1 2 2 1 8 4 2 1 1 2 列 号 因 子 数 列 号 试 验 号 列 号 因 子 数

笛卡尔坐标系

笛卡儿坐标系 (在这篇文章内,向量与标量分别用粗体与斜体显示。例如,位置向量通常用表示;而其大小则用来表示。) 在数学里,笛卡儿坐标系(Cartesian坐标系),也称直角坐标系,是一种正交坐标系。参阅图1 ,二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。 采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。例如,一个圆圈,半径是 2 ,圆心位于直角坐标系的原点。圆圈可以用公式表达为:。 图1 历史 笛卡尔坐标系是由法国数学家勒内·笛卡尔创建的。1637年,笛卡尔发表了巨作《方法论》。这本专门研究与讨论西方治学方法的书,提供了许多正确的见解与良好的建议,对于后来的西方学术发展,有很大的贡献。为了显示新方法的优点与果效,以及对他个人在科学研究方面的帮助,在《方法论》的附录中,他增添了另外一本书《几何》。有关笛卡儿坐标系的研究,就是出现于《几何》这本书内。笛卡儿在坐标系这方面的研究结合了代数与欧几里得几何,对于后来解析几何、微积分、与地图学的建树,具有关键的开导力。 二维坐标系统 参阅图 2 ,二维的直角坐标系通常由两个互相垂直的坐标轴设定,通常分别称为x-轴和y-轴;两个坐标轴的相交点,称为原点,通常标记为O ,既有“零”的意思,又是英

语“Origin”的首字母。每一个轴都指向一个特定的方向。这两个不同线的坐标轴,决定了一个平面,称为xy-平面,又称为笛卡儿平面。通常两个坐标轴只要互相垂直,其指向何方对于分析问题是没有影响的,但习惯性地(见右图),x-轴被水平摆放,称为横轴,通常指向右方;y-轴被竖直摆放而称为纵轴,通常指向上方。两个坐标轴这样的位置关系,称为二维的右手坐标系,或右手系。如果把这个右手系画在一张透明纸片上,则在平面内无论怎样旋转它,所得到的都叫做右手系;但如果把纸片翻转,其背面看到的坐标系则称为“左手系”。这和照镜子时左右对掉的性质有关。 图2 为了要知道坐标轴的任何一点,离原点的距离。假设,我们可以刻画数值于坐标轴。那么,从原点开始,往坐标轴所指的方向,每隔一个单位长度,就刻画数值于坐标轴。这数值是刻画的次数,也是离原点的正值整数距离;同样地,背着坐标轴所指的方向,我们也可以刻画出离原点的负值整数距离。称x-轴刻画的数值为x-坐标,又称横坐标,称y-轴刻画的数值为y-坐标,又称纵坐标。虽然,在这里,这两个坐标都是整数,对应于坐标轴特定的点。按照比例,我们可以推广至实数坐标和其所对应的坐标轴的每一个点。这两个坐标就是直角坐标系的直角坐标,标记为。 任何一个点P 在平面的位置,可以用直角坐标来独特表达。只要从点P画一条垂直于x-轴的直线。从这条直线与x-轴的相交点,可以找到点P的x-坐标。同样地,可以找到点P 的y-坐标。这样,我们可以得到点P 的直角坐标。例如,参阅图 3 ,点P 的直角坐标 是。 直角坐标系也可以推广至三维空间与高维空间 (higher dimension) 。 参阅图 3 ,直角坐标系的两个坐标轴将平面分成了四个部分,称为象限,分别用罗马数字编号为,,,。依照惯例,象限的两个坐标都是正值;象限的x-坐标是负值,y-坐标是正值;象限的两

不同类型地图使用的投影与坐标系

不同类型地图使用的投影与坐标系 (2016-08-12 15:29:29) 不同类型地图使用的投影与坐标系 1.概念辨析 地图投影跟大地坐标系是完全两个东西,尽管具有相关性。地球椭球体则是另一个东西。实际上地图编绘涉及三个基本的东西:椭球体、地图投影、大地坐标系。三者密切关联。(百科知识) 要绘制地图,首先考虑用什么椭球体,这是投影和坐标系的基础——我国三代坐标系使用三种椭球体。 三者之间的关系:先有个椭球体,然后是投影到承影面,然后是添加经纬网。椭球体是基础,投影是转换函数,是数学关系,大地坐标系是参照系。因此,同一椭球体可以用不同的投影;而同一投影,也可以用不同的大地坐标系。 但是一般三者是协调一致的,如我国的三代坐标系,有对应的椭球体、投影类型、基准面(坐标系)。 从地图反映地球表面来看,整个过程涉及五个环节:地球~椭球体~投影~坐标系~地图。而地球是球面的,是一个曲面,而地图是平面的,二者的结构性矛盾,导致我们不得不采用一系列转换,这个转换中不可避免地产生扭曲、变形和误差。具体关系:总结:地球(地球表面,存在高低起伏)→椭球体(光滑球面,相关参数)→投影(投影方式:几何投影与解析投影)→坐标系(地理坐标系与平面直角坐标系)→地图。 2. 我国三代坐标系 我们经常给影像投影时用到的北京54、西安80和2000坐标系是投影直角坐标系,如下表所示为国内坐标系采用的主要参数。从中可以看到我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的大地基准面。 表:北京54、西安80和2000坐标系参数列表 坐标名称投影类型椭球体基准面 北京54Gauss Kruger (Transverse Mercator) Krasovsky D_Beijing_1954 西安80Gauss Kruger (Transverse Mercator) IAG75D_Xian_1980 CGCS2000Gauss Kruger CGCS2000D_China_2000

第二讲:三种常用的正交坐标系、梯度、散度1

1.2三种常用的正交坐标系 1.3标量场的梯度 1.4矢量场的通量与散度 1、了解三种常用坐标系的特点; 2、熟悉球坐标、柱坐标的基矢,基矢变化及空间微元表示; 3、理解梯度的物理意义,掌握其计算公式。 重点:1、基矢及空间微元表示, 2、梯度的物理意义及计算公式。 难点:基矢的变化。 讲授、练习 学时:2学时 §1.2三种常用的正交坐标系 一、坐标系的概念 1、坐标 确定一个空间点需要三个有序数()321,,q q q ,称为空间点的坐标。 2、坐标面、坐标线 两个坐标面的交线称为坐标线。若在空间任意一点,三个坐标面正交(基矢正交), 称为三维正交坐标系。 3、单位矢 用 321?,?,?e e e 分别表示坐标曲线321,,q q q 上的切向单位基矢。 规定:321?,?,?e e e 的方向关系构成右手系。 注意:在曲线坐标系中321?,?,?e e e 一般是空间点函数。 4、拉梅系数(度规系数) () ()()??? ??===z y x q q z y x q q z y x q q ,,,,,,33 2211()()()??? ??======333 222111,,,,,,c z y x q q c z y x q q c z y x q q 三个等值曲面,称为坐标曲面 由于空间点同时可用()z y x ,,表示,因此

在坐标系中,设()321,,q q q P 点的位置矢量为: ()321,,q q q r r = 则 33 2211dq q r dq q r dq q r r d ??+??+??= 式中 ????????? ? ?=??=??=??=??=??=??33333 2222 2 11111 ??????e h e q r q r e h e q r q r e h e q r q r 321,,h h h 称为坐标系的度规系数(拉梅系数)。这样, 111222333???d r e h dq e h dq e h dq =++ 1、坐标变量:()z y x ,, 2、坐标面:1C x =,2C y =,3C z = 坐标线:三条直线 3、基矢:()z y x e e e ?,?,?,正交且符合右螺旋 矢量表示:???x x y y z z A e A e A e A =++,例:位置矢量 ???x y z r e x e y e z =++ 4、空间微元: 线元: ???x y z dr e dx e dy e dz =++ 面元: ???,,x x y y z z dS e dydz dS e dxdz dS e dxdy === 5、拉梅系数:1321===h h h 三、柱坐标系 1、坐标变量:(),,z ρφ 2、坐标面:1C =ρ,2C φ=,3C z = 坐标线:两条直线、一个曲线 坐标变换:cos , sin ,x y z z ρφρφ=== x 为常数平面 x y z y 为常数平面 Z 为常数平面 e y ?e z ?x e ? (x,y,z ) p r 二、直角坐标系 x y 体元: dV dx dy dz =

我国三大常用坐标系区别

我国三大常用坐标系区别 (北京54、西安80和WGS-84) 北京, 西安, 坐标系 我国三大常用坐标系区别(北京54、西安80和WGS-84) Gis应用2009-09-27 10:06 阅读13 评论0 字号:大大中中小小我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 附: 我国常用高程系

正交分解法中坐标系的建立原则

正交分解法以退为进,将求解一般三角形的过程转化为求解直角三角形的过程,是处理多力平衡问题及多力产生加速度问题的常用方法;运动的分解可以将一个复杂的曲线运动变成两个简单直线运动的叠加,是处理匀变速曲线运动的基本方法。这两种方法中都涉及到直角坐标系的建立,直角坐标系建立的方法不同,实际运算过程有很大差异。那么,该如何确定直角坐标系的最佳建立方案呢?下面分别对正交分解法、运动的分解中坐标系建立的原则进行说明。 一、正交分解法中坐标系的建立原则 (一)正交分解法处理多力平衡问题 直角坐标系建立的基本原则是: 1.让尽可能多的力落在坐标轴上; 2.尽量不分解未知力。 原则一可以最大限度减少需要分解的力的个数,达到减少运算过程的目的;原则二能避免未知量后面带“小尾巴”(指或),同样降低了中间运算的难度。 例:一个倾角为(90°>>0°)的光滑斜面固定在竖直的光滑墙壁上, 一质量为m铁球在水平推力F作用下静止于墙壁与斜面之间,且推力的作用线通过球心,如图所示,求斜面与墙壁对铁球的弹力大小分别是多少?

分析:铁球受四个外力作用且处于静止状态,属多力平衡问题,可运用正交分解法处理,在轴沿水平方向时仅需分解一个外力,运算过程简单。 解:铁球受力如图,建立直角坐标系 由平衡条件可得: 解得:

说明:选择直角坐标系的建立方法时,应对照原则综合考虑,而且原则一优先于原则二,即在原则一满足的前提下再考虑原则二。 (二)正交分解法处理多力产生加速度的问题 直角坐标系建立的原则是: 1.让加速度和尽可能多的力落在坐标轴上; 2.坐标轴指向与加速度方向趋于相同; 3.尽量不分解未知量。 在这类问题中,建立直角坐标系时需要考虑的因素略多一些。首先,加速度是矢量,同样可以按需要进行分解,为了简化分解过程,应该把它也考虑进去;其次,坐标轴指向就是该方向上所有矢量的正方向,如果坐标轴指向与相应的加速度分量方向相反,必须在含加速度分量的一项前加一个负号,否者就会在矢量性上犯错误。最后,为了降低了中间运算的难度,要考虑避免未知量后面带“小尾巴”。 例:自动扶梯与水平方向成θ角,梯上站一质量为m的人,当扶梯以加速度a匀加速上升时,人相对于扶梯静止,求人受到的支持力和摩擦力。

正交曲线坐标系向量微分算子

曲线正交曲线坐标系()w v u ,,,每一点的单位正交标架()w v u e e e ,,构成右手系, 微分弧与曲线坐标的关系为()()()()2 2 2 2 dw h dv h du h ds w v u ++= 散度: 在直角坐标系下用高斯公式:()S d A dV A V V ?= ??? ?? 换成曲线正交坐标系下可得: ()? ?++= ???dudv h h A dwdu h h A dvdw h h A udvdw d h h h A v u w u w v w v u D w v u D 右边应用高斯定理的: ()()()udvdw d w h h A v h h A u h h A dudv h h A dwdu h h A dvdw h h A v u w u w v w v u D v u w u w v w v u D ? ? ?? ? ????+??+??= ++? 所以:()()()()dudvdw w h h A v h h A u h h A dudvdw h h h A D v u w u w v w v u D w v u ?? ?? ? ????+??+??= ?? 比较得曲正交标架下的散度公式:()()()??? ????+??+??= ??w h h A v h h A u h h A h h h A v u w u w v w v u w v u 1 旋度: 直角坐标下用斯托克斯公式:()? ? ??= ???S S l d A S d A 换成曲线正交坐标系下可得: ()()()dw h A dv h A du h A dudv h h A dwdu h h A dvdw h h A w w v v D u u v u w D u w v w v u ++= ??+??+??? ?? 右边应用斯托克斯公式: ()()()()()()dudv v h A u h A dwdu u h A w h A dvdw w h A v h A dw h A dv h A du h A u u v v D w w u u v v w w w w v v D u u ??? ????-??+??? ????-??+??? ????-??=++?? ? 所以: ()()()()()()()()()dudv v h A u h A dwdu u h A w h A dvdw w h A v h A dudv h h A dwdu h h A dvdw h h A u u v v D w w u u v v w w v u w D u w v w v u ?? ? ????-??+??? ????-??+??? ????-??=??+??+???? 对比两边可得旋度在曲正交标架下公式。 梯度: 有梯度的定义梯度等于个方向的方向导数乘以该方向的单位向量: w w v v u u e w h e v h e u h ??+??+??= ?????

最新地质工作中常用的坐标系

地质工作中常用的坐 标系

地质工作中常用的坐标系 坐标是表达地面位置的重要参数,从事地质勘查工作的人时时刻刻都在与坐标打交道,一切地质工作都建立在坐标定位之上,是地质工作的基础。 地球是一个球体,球面上的位置,是以经纬度来表示,我们把它称为“球面坐标系统”或“地理坐标系统”。在球面上计算角度距离十分麻烦,而且地图是印刷在平面纸张上,要将球面上的物体画到纸上,就必须展平,这种将球面转化为平面的过程,称为“投影”。经由投影的过程,把球面坐标换算为平面直角坐标。 § 1.1地理坐标系统 地质工作常用的地理坐标系统有北京54坐标系、西安80坐标系、美国WGS84坐标,目前在全国第二次土地调查中使用的2000国家大地坐标系,在地勘行业中不常用。 一个完整的坐标系统是由坐标系和基准2个方面要素所构成的。下面主要介绍 WGS-84大地坐标系、1954年北京坐标系和1980年国家大地坐标系、2000国家大地坐标系4种坐标系统及其参考椭球的基本常数(基准) 及手持GPS接收机WGS-84、1954年北京坐标系和1980年国家大地坐标系转换参数计算。 一、WGS-84大地坐标系 WGS-84(World Geodetic System,1984年)是美国国防部研制确定的大地坐标系,其坐标系的几何定义是:原点在地球质心,z轴指向BIHl984.0定义的协议地球极(CTP)方向,x轴指向BIHl984.0的零子午面和CTP赤道的交点,Y轴与x轴和z轴构成右手坐标系。该椭球的参数为: 长半轴:a=6378137m; 第一偏心率:e2=0.00669437999013; 第二偏心率:e”=0.006739496742227; 扁率:F=1/298.25223563。 二、1954年北京坐标系(BJ一54) 建国前,我国没有统一的大地坐标系统,建国初期,在苏联专家的建议下,我国根据当时的具体情况,建立起了全国统一的1954年北京坐标系。该坐标系以格拉索夫斯基椭球为基础,经局部平差后产生的坐标系,与苏联1942年建立的以普尔科夫天文台为原点的大地坐标系统相联系,相应的椭球为克拉索夫斯基椭球,该椭球的参数为:长半轴:a=6378245 m; 第一偏心率:e2=0.00669342162297: 第二偏心率:e”=0.00673852541468: 扁率:F=1/298.2。 高程采用1956黄海高程,系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。该原点以“1956年黄海高程系”计算的高程为72.289米。 该坐标系统的大地点坐标是经过局部分区平差得到的,因此存在着一定的缺陷。 三、1980年国家大地坐标系(C一80) 1978年,我国决定重新对全国天文大地网施行整体平差,并且建立新的国家大地坐标系统,其大地原点在我国中部,具体地点是陕西省径阳县永乐镇。该坐标系是参心坐标系,椭球的短轴z轴平行于地球的自转轴(由地球质心指向1968.0JYD地极原点方向),起始子午面平行于格林尼治平均天文子午面,x轴在大地起始子午面内与z轴垂直

坐标系的概念

坐标系的概念 东伪偏移falseEasting falEastng :投影平面中为避免横轴(经度方向)坐标出现负值,而所加的偏移量.我国规定将高斯-克吕格投影各带纵坐标轴西移500公里,因此高斯-克吕格投影东伪偏移值为500公里。如:500000,表示投影的东伪偏移值为500公里。 北伪偏移falseNorthing falNorthng :投影平面中为避免纵轴(纬度方向)坐标出现负值,而所加的偏移量,高斯-克吕格投影需在此注明北伪偏移值,我国高斯-克吕格投影北伪偏移值为0 。如:0,表示投影的北伪偏移值为0 。 一:需要用到的几个基本概念-------- 球面坐标系 1. 几个常涉及到的名词的中英文对照:地形面(Topography);大地水准面(Geoid);参考椭球面(Reference Ellipsoid);基准(Datum); 2. 基准:就是一组用于描述其他量的量,比如,描述空间位置的基准为位置基准;描述时间的基准为时间基准。具体的例子如:位置基准-----椭球有原点、尺度、定向;时间基准-----起点、尺度等。 3. 坐标系转换:首先坐标参照系是由基准和坐标系两部分构成的,坐标系转换实质上是在基准相同的情况下,坐标系之间的相互转换。比如:在同一基准下(即地球椭球的参数、定位、定向等不变),同一个点既可以用空间直角坐标表示,也可以用大地坐标表示;或者在站心坐标系中,同一个点级可以用站心地平坐标表示,也可以用站心极坐标法表示。(从这我们也就很容易地明白了:基准转换实质上是基准发生了变化即椭球及其定位定向发生了改变)(无论基准和坐标系哪一个发生了变化就会导致坐标参照系的改变) 4. 基准转换:实质上是将同一点从某一个基准或坐标参照系下的坐标转换到另一种坐标基准或者坐标参照系下去,即两种基准(椭球参数、定位、定向)之间的转换。比如:旧BJ54坐标系下的坐标和CGCS2000大地坐标系之间的转换(因为前者是参心坐标系,后者是地心坐标系) 5. 大地基准:是指用于定义地球参考椭球的一系列参数,主要包括: 椭球的大小和形状-----只要有长半轴a(Semo--major Axis)和扁率f (Flattening)即可(注意扁率和偏心率不是一个概念),其他参数均可由他们两个推导得出; 椭球短半轴(Semi--minor Axis)指向(Orientation):通常与地球的自转轴平行;(另外它还和极移和章动有联系) 椭球中心的位置:根据需要确定,若为地心则称为地心椭球,否则称为参心椭球;(注意参考和参心的不同含义)

我国三大常用坐标系区别

我国三大常用坐标系区别(北京54、西安80和WGS -84) 我国三大常用坐标系区别(北京54、西安80和WGS-84)我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954 年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率 1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 附: 我国常用高程系

我国三大常用坐标系区别.

我国三大常用坐标系区别 我国三大常用坐标系区别(北京54、西安80和WGS-84)我国三大常用坐标系区别(北京54、西安80和WGS-84)。 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。

常用坐标系

一、常用坐标系 1、北京坐标系 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、2000国家大地坐标系的定义 国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。采用广义相对论意义下的尺度。 2000国家大地坐标系,长半轴6378137m,扁率f=1/298.257222101,地心引力常数GM =3.986004418×1014m3s-2,自转角速度ω=7.292l15×10-5rads-1。 4、1984世界大地坐标系(WGS84坐标系WorldGeodeticSystem) wgs-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。wgs-84坐标系的定义是:原点是地球的质心,空间直角坐标系的z轴指向bih(1984.0)定义的地极(ctp)方向,即国际协议原点cio,它由iau和iugg共同推荐。x轴指向bih定义的零度子午面和ctp 赤道的交点,y轴和z,x轴构成右手坐标系。wgs-84椭球采用国际大地测量与地球物理联合会第17届大会测量常数推荐值,采用的两个常用基本几何参数: 长半轴a=6378137m;扁率f=1:298.257223563。 GPS广播星历是以WGS-84坐标系为根据的。

常用正交表++下载+word格式

附录1:常用正交表 (23) (1)L 4 列号 1 2 3 试验号 1 1 1 1 2 1 2 2 3 2 1 2 4 2 2 1 (27) (2)L 8 列号 1 2 3 4 5 6 7 试验 号 1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 2 3 1 2 2 1 1 2 2 4 1 2 2 2 2 1 1 5 2 1 2 1 2 1 2 6 2 1 2 2 1 2 1 7 2 2 1 1 2 2 1 8 2 2 1 2 1 1 2 (211) (3)L 12 列号 1 2 3 4 5 6 7 8 9 10 11 试验号 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 2 2 2 3 1 1 2 2 2 1 1 1 2 2 2 4 1 2 1 2 2 1 2 2 1 1 2 5 1 2 2 1 2 2 1 2 1 2 1 6 1 2 2 2 1 2 2 1 2 1 1 7 2 1 2 2 1 1 2 2 1 2 1 8 2 1 2 1 2 2 2 1 1 1 2

9 2 1 1 2 2 2 1 2 2 1 1 10 2 2 2 1 1 1 1 2 2 1 2 11 2 2 1 2 1 2 1 1 1 2 2 12 2 2 1 1 2 1 2 1 2 2 1 (4)L (34) 9 列号 1 2 3 4 试验号 1 1 1 1 1 2 1 2 2 2 3 1 3 3 3 4 2 1 2 3 5 2 2 3 1 6 2 3 1 2 7 3 1 3 2 8 3 2 1 3 9 3 3 2 1 (45) (5)L 16 列号 1 2 3 4 5 试验号 1 1 1 1 1 1 2 1 2 2 2 2 3 1 3 3 3 3 4 1 4 4 4 4 5 2 1 2 3 4 6 2 2 1 4 3 7 2 3 4 1 2 8 2 4 3 2 1 9 3 1 3 4 2 10 3 2 4 3 1 11 3 3 1 2 4

我国三大坐标系

我国三大常用坐标系区别(北京54、西安80和WGS-84) 我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 附: 我国常用高程系

坐标系定义

坐标系定义 为了说明质点的位置运动的快慢、方向等,必须选取其坐标系。在参照系中,为确定空间一点的位置,按规定方法选取的有次序的一组数据,这就叫做“坐标”。在某一问题中规定坐标的方法,就是该问题所用的坐标系。坐标系的种类很多,常用的坐标系有:笛卡尔直角坐标系、平面极坐标系、柱面坐标系(或称柱坐标系)和球面坐标系(或称球坐标系)等。中学物理学中常用的坐标系,为直角坐标系,或称为正交坐标系。简介如果物体沿直线运动,为了定量描述物体的位置变化,可以以这条直线为x轴,在直线上规定原点、正方向和单位长度,建立直线坐标系。一般来说,为了定量地描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系(coordinate system)。 为了说明质点的位置运动的快慢、方向等,必须选取其坐标系。在参照系中,为确定空间一点的位置,按规定方法选取的有次序的一组数据,这就叫做“坐标”。在某一问题中规定坐标的方法,就是该问题所用的坐标系。坐标系的种类很多,常用的坐标系有:笛卡尔直角坐标系、平面极坐标系、柱面坐标系(或

坐标系- 建立 坐标系建立 如果物体沿直线运动,为了定量描述物体的位置变化,可以以这条直线为x轴,在直线上规定原点、正方向和单位长度,建立直线坐标系。 一般来说,为了定量地描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系(coordinate system)。 直角坐标系的创建,在代数和几何上架起了一座桥梁。它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将先进的代数方法应用于几何学的研究。 笛卡尔在创建直角坐标系的基础上,创造了用代数方法来研究几何图形的数学分支——解析几何。他的设想是:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的。比如,我们把圆看成是一个动点对定点O作等距离运动的轨迹,也就可以把圆看作是由无数到定点O的距离相等的点组成的。我们把点看作是留

常用正交表对照图

L43因子2状态 L87因子2状态 L94因子3状态 L1211因子2状态 15因子2状态 L165因子4状态 1因子2状态和7因子3状态 L256因子5状态 L187因子3状态 7 13因子3状态 32因子两状态 1因子2状态和9因子4状态 11因子2状态和12因子3状态 1因子2状态和11因子5状态 1因子2状态和25因子3状态 31因子2状态 21因子4状态

L124因子2状态和1因子3状态 4

L122因子2状态和1因子6状态 2 L498因子7状态 8

19 3 5 7 2 4 6 1 3 20 3 6 1 3 5 7 2 4 21 3 7 2 4 6 1 3 5 22 4 1 4 7 3 6 2 5 23 4 2 5 1 4 7 3 6 24 4 3 6 2 5 1 4 7 25 4 4 7 3 6 2 5 1 26 4 5 1 4 7 3 6 2 27 4 6 2 5 1 4 7 3 28 4 7 3 6 2 5 1 4 29 5 1 5 2 6 3 7 4 30 5 2 6 3 7 4 1 5 31 5 3 7 4 1 5 2 6 32 5 4 1 5 2 6 3 7 33 5 5 2 6 3 7 4 1 34 5 6 3 7 4 1 5 2 35 5 7 4 1 5 2 6 3 36 6 1 6 4 2 7 5 3 37 6 2 7 5 3 1 6 4 38 6 3 1 6 4 2 7 5 39 6 4 2 7 5 3 1 6 40 6 5 3 1 6 4 2 7 41 6 6 4 2 7 5 3 1 42 6 7 5 3 1 6 4 2 43 7 1 7 6 5 4 3 2 44 7 2 1 7 6 5 4 3 45 7 3 2 1 7 6 5 4 46 7 4 3 2 1 7 6 5 47 7 5 4 3 2 1 7 6 48 7 6 5 4 3 2 1 7 49 7 7 6 5 4 3 2 1

相关文档
最新文档