圆的有关概念、性质与圆有关的位置关系--知识讲解(提高)
12.圆的有关概念、性质及与圆有关的位置关系

设计:如皋教育培训集团 第五讲 圆的有关概念、性质及与圆有关的位置关系 教学目标: 1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念,探索并了解点与圆 的位置关系,探索并证明垂径定理; 2.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论,知道三角形 的内心和外心;
3.了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径的关系,会用三
角尺过圆上一点画圆的切线,探索并证明切线长定理,了解圆与圆的位置关系. 重点、难点: 重点:与圆有关的位置关系; 难点:和切线相关的知识. 教学过程:
一.“基础扫描”:题组展示,合作探究 1.两圆的半径分别为2和5,圆心距为7,则这两圆的位置关系为( ) A.外离 B.外切 C.相交 D.内切
2. O⊙的半径为10cm,弦AB=12cm,则圆心到AB的距离为( ) A. 2cm B. 6cm C. 8cm D. 10cm
3. 如图,∠AOB是⊙0的圆心角,∠AOB=80°,则弧AB所对圆周角 ∠ACB的度数是( ) A.40° B.45° C.50° D.80° 4. 已知Rt△ABC的两直角边的长分别为6cm和8cm,则它的外接圆的半径为_____________cm
5. 如图3,30MAB,P为AB上的点,且6AP,圆P与AM相切,则圆P的半径为 .
思考:在解答上面各题时,你用到了哪些知识、方法和技巧?请把它写下来.
二. “技能提升”:典型例题探究. 1. 如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为( ) A.5 B.4 C.3 D.2 设计:如皋教育培训集团 A B
C O
ABCDOB A C D
O
2. 如图,AB是⊙O的直径,CD是圆上的两点(不与A、B重合),已知BC=2,tan∠ADC=54,则AB=__________.
第1题图 第2题图 第3题图 3. 如图,已知:△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=24,则⊙O的直径等于 4. 已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?
圆的有关概念及性质 课件

4. 圆周角、圆周角定理及其推论
(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角
叫做圆周角. (2)①圆周角定理:一条弧所对的圆周角等于它所对的圆心 角的一半. ②推论1:同弧或等弧所对的圆周角相等. ③推论2:半圆(或直径)所对的圆周角是直角,90°的圆周 角所对的弦是直径. ④推论3:圆内接四边形的对角互补.
feixuejiaoyu
中考考点精讲精练
考点1 垂径定理和弧、弦、圆心角的关系
考点精讲
【例1】(2014佛山)如图1-5-1-1,⊙O的 直径为10 cm,弦AB=8 cm,P是弦AB上的一 个动点,求OP的长度范围. 思路点拨:过点O作OE⊥AB于点E,连接OB,
由垂径定理可知AE=BE=
AB,再根据勾股
考点演练 3. 如图1-5-1-5,AB是⊙O的直径, 34°,则∠AEO的度数是
A. 51° B. 56° C. 68°
∠COD= ( A ) D. 78°
4. 一条排水管的截面如图1-5-1-6所示,已知该排水管的半 径OA=10,水面宽AB=16,则排水管内水的最大深度CD的长为 ( D ) A. 8 B. 6 C. 5
( C ) D. 120°
feixuejiaoyu
考点演练 4. 如图1-5-1-11,已知点A,B,C均在⊙O上,若∠AOB= 80°,则∠ACB等于 ( D )
A. 80° B. 70° C. 60° D. 40°
5. 如图1-5-1-12,AB为⊙O的直径,CD为⊙O的弦,∠ABD= 53°,则∠BCD为 A. 37° B. 47° C. 45° ( A ) D. 53° feixuejiaoyu
2. (2015深圳)如图1-5-1-9,AB为⊙O直径,已知∠DCB= 20°,则∠DBA为 A. 50° B. 20° C. 60° ( D ) D. 70°
圆的概念和性质

单击此处添加标题
圆的直径:通过圆心且两端点在圆上的线段即为直径,直径等于半径的两倍
圆的度量单位
圆的周长与直径之比为常数,称为圆周率 圆的直径是从圆的一侧到另一侧的最长距离 圆的半径是从圆心到圆上任一点的线段长度 圆周长的度量单位是周长与直径的比值,即π
添加标题
添加标题
添加标题
添加标题
外切圆:两个圆有一个公共点, 称为外切圆
相离圆:两个圆没有任何公共点, 称为相离圆
圆和直线的位置关系
相交:直线与 圆有且仅有一
个交点
相切:直线与 圆有且仅有一
个公共点
相离:直线与 圆没有公共点
相交弦定理: 直线与圆相交 时,过圆心作 弦的垂线,垂 足为弦的中点
圆的周长和面积
添加标题
添加标题
添加标题
添加标题
圆上任一点到圆心的距离相等, 这个距离称为圆的半径。
圆心是圆中所有点的中心点,也 是圆的对称中心。
圆的形成
圆上三点确定一个圆
圆上所有点到定点(圆心)的距离相等
圆是平面内到定点(圆心)的距离等于定长(半径)的所有点组成的 图形 圆是平面内所有点与一定点(圆心)的距离之和等于定值(直径) 的点组成的图形
圆的基本性质
圆的对称性
圆关于任何直径对称 圆关于任何经过中心的直线对称 圆关于其本身对称 圆关于其直径的中点对称
圆心和半径的性质
圆心性质:圆心到圆上任一 点的距离相等
半径性质:半径是连接圆心 和圆上任意一点的线段,长 度相等
圆的有关概念与性质

圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。
3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90°,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。
39中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(基础)

中考总复习:圆的有关概念、性质与圆有关的位置关系—知识讲解(基础)【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD,(2)CD⊥AB,(3)AM=MB,(4)»»C CA B=,(5)»»AD BD=.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点诠释:圆周角性质的前提是在同圆或等圆中.考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.【典型例题】类型一、圆的性质及垂径定理的应用1.已知:如图所示,在⊙O中,弦AB的中点为C,过点C的半径为OD.(1)若AB=23OC=1,求CD的长;(2)若半径OD=R,∠AOB=120°,求CD的长.【思路点拨】如图所示,一般的,若∠AOB =2n °,OD ⊥AB 于C ,OA =R ,OC =h ,则AB =2R ·sin n °=2n ·tan n °=222R h -;CD =R -h ;»AD 的长180n R π=. 【答案与解析】解:∵半径OD 经过弦AB 的中点C ,∴半径OD ⊥AB .(1)∵AB =23,AC =BC =3.∵OC =1,由勾股定理得OA =2.∴CD =OD -OC =OA -OC =1,即CD =1.(2)∵OD ⊥AB ,OA =OB ,∴∠AOD =∠BOD .∴∠AOB =120°,∴∠AOC =60°.∵OC =OA ·cos ∠AOC =OA ·cos60°=12R , ∴1122CD OD OC R R R =-=-=. 【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.举一反三:【变式】在足球比赛场上,甲、乙两名队员互相配合向对方球门进攻,当甲带球冲到A 点时,乙已跟随冲到B 点(如图所示),此时甲是自己直接射门好还是迅速将球回传给乙,让乙射门好呢?(不考虑其他因素)【答案】解:过M 、N 、B 三点作圆,显然A 点在圆外,设MA 交圆于C ,则∠MAN <∠MCN .而∠MCN =∠MBN ,∴∠MAN <∠MBN .因此在B 点射门较好.即甲应迅速将球回传给乙,让乙射门.2.(2015•大庆模拟)已知AB是⊙O的直径,C是圆周上的动点,P是弧AC的中点.(1)如图1,求证:OP∥BC;(2)如图2,PC交AB于D,当△ODC是等腰三角形时,求∠A的度数.【思路点拨】(1)连结AC,延长PO交AC于H,如图1,由P是弧AC的中点,根据垂径定理得PH⊥AC,再根据圆周角定理,由AB是⊙O的直径得∠ACB=90°,然后根据OP∥BC;(2)如图2,根据圆心角、弧、弦的关系,以及三角形内角和等推论证来求得∠A的度数.【答案与解析】(1)证明:连结AC,延长PO交AC于H,如图1,∵P是弧AB的中点,∴PH⊥AC,∵AB是⊙O的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC;(2)解:如图2,∵P是弧AC的中点,∴PA=PC,∴∠PAC=∠PCA,∵OA=OC,∴∠OAC=∠OCA,∴∠PAO=∠PCO,当DO=DC,设∠DCO=x,则∠DOC=x,∠PAO=x,∴∠OPC=∠OCP=x,∠PDO=2x,∵∠OPA=∠PAO=x,∴∠POD=2x,在△POD中,x+2x+2x=180°,解得x=36°,即∠PAO=36°,当CO=CD,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD=2x,∴∠ODC=∠POD+∠OPC=3x,∵CD=CO,∴∠DOC=∠ODC=3x,在△POC中,x+x+5x=180°,解得x=()°,即∠PAO=()°.综上所述,∠A的度数为36°或()°.【总结升华】本题考查了圆周角定理及其推论同时考查了等腰三角形的性质、垂径定理和三角形内角和定理.举一反三:【变式】(2015•温州模拟)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.(1)求BE的长;(2)求△ACD外接圆的半径.【答案】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的角平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,∴BE=13﹣AC=13﹣5=8;(2)由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==,根据AD是△ACD外接圆直径,∴△ACD外接圆的半径为:×=.类型二、圆的切线判定与性质的应用3.如图所示,AB=AC,O是BC的中点,⊙O与AB相切于点D,求证:AC与⊙O相切.【思路点拨】AC与⊙O有无公共点在已知条件中没有说明,因此只能过点O向AC作垂线段OE,长等于⊙O的半径,则垂足E必在⊙O上,从而AC与⊙O相切.【答案与解析】证明:连接OD,作OE⊥AC,垂足为E,连结OA.∵AB与⊙O相切于点D,∴OD⊥AB.∵AB=AC,OB=OC,∴∠1=∠2,∴OE=OD.∵OD为⊙O半径,∴AC与⊙O相切.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.求△ABC的内切圆的半径.【答案】解:设△ABC 的内切圆与三边的切点分别为D 、E 、F ,根据切线长定理可得: AE =AF ,BF =BD ,CD =CE ,而AE+CE =b ,CD+BD =a ,AF+BF =c ,可求2a b c CE +-=. 连接OE 、OD ,易证OE =CE . 即直角三角形的内切圆半径2a b c r +-=.4.如图所示,已知:△ABC 内接于⊙O ,点D 在OC 的延长线上,1sin 2B =,∠D =30°. (1)求证:AD 是⊙O 的切线;(2)若AC =6,求AD 的长.【思路点拨】(1)连接OA,根据圆周角定理求出∠O的度数,根据三角形的内角和定理求出∠OAD,根据切线的判定推出即可;(2)得出等边三角形AOC,求出OA,根据勾股定理求出AD的长即可.【答案与解析】(1)证明:连接OA,∵1sin2B ,∴∠B=30°.∵∠AOC=2∠B,∴∠AOC=60°.∵∠D=30°,∴∠OAD=180°-∠D-∠AOD=90°.∴AD是⊙O的切线.(2)解:∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴OA=AC=6.∵∠OAD=90°,∠D=30°,∴AD=3AO=63.【总结升华】证明直线是圆的切线的方法:①有半径,证垂直;②有垂直,证半径.举一反三:【变式】如图所示,半径OA⊥OB,P是OB延长线上一点,PA交⊙O于D,过D作⊙O的切线交PO于C 点,求证:PC=CD.【答案】证明:连接OD.∵CE切⊙O于D,∴OD⊥CE.∴∠2+∠3=90°.∵OA⊥OB,∴∠P+∠A=90°.∵OD=OA,∴∠3=∠A..∴∠P=∠2.又∵∠1=∠2,∴∠P=∠1.∴PC=CD.类型三、切线的性质与等腰三角形、勾股定理综合运用5.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,求∠CDP的度数.【思路点拨】连接OC,根据题意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°.【答案与解析】解:连接OC,∵OC=OA,,PD平分∠APC,∴∠CPD=∠DPA,∠A=∠ACO,∵PC为⊙O的切线,∴OC⊥PC,∵∠CPD+∠DPA+∠A+∠ACO=90°,∴∠DPA+∠A=45°,即∠CDP=45°.【总结升华】本题主要考查切线的性质、等边三角形的性质、角平分线的性质、外角的性质,解题的关键在于做好辅助线构建直角三角形,求证∠CPD+∠DPA+∠A+∠ACO=90°,即可求出∠CDP=45°.6.如图所示,AB 是⊙O 的直径,AF 是⊙O 的弦,AE平分∠BAF ,交⊙O 于点E ,过点E 作直线ED ⊥AF 于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线;(2)若DE =4,sinC=35,求AE 的长.【思路点拨】构造半径、半弦、弦心距的直角三角形.【答案与解析】解:(1)证明:连接OE ,BF ,交于点G ,则BF ⊥AF ,BF ∥CD .∵OA =OE ,∴∠OAE =∠OEA .∵∠OAE =∠FAE ,∴∠OEA =∠FAE .∴OE ∥AF ,∵AF ⊥DE ,∴OE ⊥CD . B CD·O E∴CD 为⊙O 的切线.(2)解:∵ BF ∥DE ,OE ∥AF ,∠D =90°,∴四边形DEGF 为矩形.∴BF =2GF =2DE =8.∵BF ∥CD ,∴∠C =∠ABF .可求得OA =OB =5,OG =3.∴DF =EG =2,AF =AB ·sinC =6.∴AD =8,AE 224845+=.【总结升华】(1)通过挖掘图形的性质,将分散的条件sinC =35,DE =4,集中到一个直角三角形中,使问题最终得到解决;(2)本题第(2)问还可以适当改变后进行变式训练,如改为:若DF =2,sinC =35,求AE 的长; (3)第(2)问还可以过O 作OM ⊥AF 于M 后得OM =DE =4,sin ∠AOM =sinC =35加以解决.。
圆的知识点总结

圆的知识点总结一、圆的基本概念1、圆的定义平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
以点 O 为圆心的圆记作“⊙O”,读作“圆O”。
2、圆的要素圆心:确定圆的位置。
半径:决定圆的大小。
直径:通过圆心并且两端都在圆上的线段叫做直径。
直径是圆内最长的弦。
二、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆是中心对称图形,其对称中心是圆心。
2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
3、弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
同弧或等弧所对的圆周角相等。
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
三、圆的周长和面积1、圆的周长圆的周长 C =2πr 或 C =πd,其中 r 是半径,d 是直径,π 是圆周率,约等于 314。
2、圆的面积圆的面积 S =πr²四、圆与直线的位置关系1、相离直线和圆没有公共点。
2、相切直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个公共点叫做切点。
3、相交直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线。
五、切线的性质和判定1、切线的性质圆的切线垂直于经过切点的半径。
2、切线的判定经过半径的外端并且垂直于这条半径的直线是圆的切线。
六、圆与圆的位置关系1、外离两个圆没有公共点,并且每个圆上的点都在另一个圆的外部。
2、外切两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的外部。
3、相交两个圆有两个公共点。
高中圆知识点总结
高中圆知识点总结
一、圆的基本概念
定义:圆是平面上到一个定点距离等于定长的所有点的集合。
这个定点叫做圆心,定长叫做半径。
圆心:圆所在平面内到圆内任意点的距离都相等的点。
半径:圆心到圆上任意一点的距离。
直径:通过圆心且两端都在圆上的线段。
二、圆的基本性质
圆的对称性:圆是中心对称图形,也是轴对称图形,其对称轴是任意一条经过圆心的直线。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
三、圆与直线的位置关系
相离:直线与圆没有公共点。
相切:直线与圆有且只有一个公共点,叫做切点。
相交:直线与圆有两个公共点,叫做交点。
四、圆的方程
标准方程:(x - a)^2 + (y - b)^2 = r^2,其中(a, b)为圆心坐标,r为半径。
一般方程:x^2 + y^2 + Dx + Ey + F = 0,其中D^2 + E^2 - 4F > 0。
五、与圆有关的计算
圆的周长:C = 2πr,其中r为圆的半径。
圆的面积:S =
πr^2,其中r为圆的半径。
六、与圆相关的定理和推论
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
割线长定理:从圆外一点引圆的两条割线,它们的割线长满足一定的比例关系。
以上是高中圆的主要知识点总结。
在学习圆的过程中,应注重理解概念、掌握性质、熟悉定理,并结合具体的题目进行练习,以加深对知识点的理解和应用。
圆的知识点总结
圆的知识点总结圆作为几何学中的基本概念之一,在我们的生活中随处可见。
它的形状优美,简洁而又富有韵律感,丰富的数学知识隐藏其中。
本文将结合几何学和数学的角度,对圆的相关知识进行总结和解析。
一、圆的定义和性质圆是由一个平面内的一点到另一个平面内的一点的所有等长线段组成的集合。
圆的性质有以下几点:1. 圆周:圆的周长称为圆周长,通常用C表示。
根据数学公式,圆周长C与半径r之间存在着简单的关系:C = 2πr,其中π(读作pi)是一个无理数,约等于3.14。
2. 圆心角:圆上的两个点和圆心所组成的角被称为圆心角。
圆心角的度数是圆心的角的两倍。
特殊的圆心角是半圆角,它的度数为180度。
3. 切线和法线:与圆相切的直线称为切线,它与半径垂直。
切线和半径之间的夹角为90度,也就是垂直交角。
与切线垂直的直线称为法线。
二、圆的重要定理圆在几何学中有一些重要的定理,它们具有广泛的应用。
1. 两弦定理:如果两条弦在圆上相交,那么两弦所夹的圆心角相等。
这个定理在解决圆周角问题时特别有用。
2. 弧的性质:圆上的弧是两个端点之间的一段曲线。
圆上相等弧所对应的圆心角相等。
此外,对于同一个圆或等圆上的两个弧,如果两个弧的长度相等,则它们所对应的圆心角也相等。
3. 切线定理:切线和半径的夹角为90度。
这个定理可以用来解决切线和圆的位置关系问题,同时还可以用于求解切点的坐标。
三、圆与其他几何形状的关系圆无论是数学,还是物理,都与各种形状有着密切的关系。
下面将介绍圆与其他几何形状的一些重要关系。
1. 矩形与圆:当一个圆与一个矩形紧密相贴时,矩形的宽和高与圆的直径相等。
这是因为直径是圆内切矩形的对角线,而对角线相等于矩形的宽和高。
2. 正多边形与圆:正多边形的内接圆是指这个多边形的每条边刚好与一个圆相切。
正多边形的外接圆是指这个多边形的每个顶点在圆上。
对于正多边形,内接圆的半径和外接圆的半径之间存在简单的关系。
3. 圆锥与圆柱:圆锥是由一个顶点和与顶点不在一个平面上的圆所围成的空间图形。
九年级上数学第24章圆复习课件
做直线与这个圆相切. (3) 相交: 一条直线与一个圆有两个公共点,叫
做直线与这个圆相交.
直线与圆位置关系的识别:
r.
r.
r.
∟
∟ ∟
O d
dO
dO
l
l
l
设圆的半径为r,圆心到直线的距离为d,则:
(1)当直线与圆相离时d>r; (2)当直线与圆相切时d =r; (3)当直线与圆相交时d<r.
1.与圆有一个公共点的直线。 2.圆心到直线的距离等于圆的半
径的直线是圆的切线。 3.经过半径的外端且垂直于这条
半径的直线是圆的切线。
∟
.
O A
∵OA是半径,OA⊥ l l ∴直线l是⊙O的切线.
切线的性质: (1)圆的切线垂直于经过切点的半径. (2)经过圆心垂直于切线的直线必经过切点. (3)经过切点垂直于切线的直线必经过圆心.
.
∵直线l是⊙O的切线,切 点为A
A
B
•
O C
D
1. 在⊙O中,弦AB所对的圆心角∠AOB=100°,则
弦AB所对的圆周角为__5__0_0或___1_3_0_0_.(05年上海)
2.如图,AB是⊙O的直径,BD是
⊙O的弦,延长BD到点C,使
DC=BD,连接AC交⊙O与点F.
(1)AB与AC的大小有什么关
A
系?为什么? (2)按角的大小分类, 请你判断
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A
B
圆周角的性质:
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角). 性质4: 900的圆周角所对的弦是圆的直径.
《圆的基本性质》全章复习与巩固—知识讲解(提高)
《圆的基本性质》全章复习与巩固(提高)【学习目标】1.理解圆及其有关概念,了解点与圆的位置关系.2. 认识图形的旋转,理解图形的旋转的性质.3. 理解圆的性质,垂径定理,圆心角定理,圆周角定理.4. 理解圆内接四边形的性质.5.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积.6. 会初步综合应用圆的有关知识,解决一些简单的实际问题.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.(3)不在同一条直线上的三个点确定一个圆.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.点与圆的位置关系判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.定理2:平分弧的直径垂直平分弧所对的弦.4.与圆有关的角圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或者等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对量都相等.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.在同圆或者等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.5. 圆内接四边形圆内接四边形的对角互补.要点二、图形的旋转在平面内,一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转.这个定点叫做旋转中心,转过的角叫做旋转角.图形经过旋转所得的图形和原图形全等.对应点到旋转中心的距离相等.任何一对对应点与旋转中心连线所成的角度等于旋转的角度.要点三、正多边形各边相等,各内角也相等的多边形是正多边形.要点诠释:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).正多边形的外接圆和圆的内接正多边形正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.要点四、弧长及扇形的面积圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识1. 如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行(或重合)的直线与⊙O有公共点, 设OP=x,则x的取值范围是().A.-1≤x≤1 B.x≤2C.0≤x≤2 D.x>2有公共点时,0≤OP≤,举一反三:类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,已知在⊙O 中,AB 是⊙O 的直径,弦CG ⊥AB 于D ,F 是⊙O 上的点,且CF CB =,BF 交CG 于点E ,求证:CE =BE .【答案与解析】证法一:如图(1),连接BC ,∵ AB 是⊙O 的直径,弦CG ⊥AB ,∴ CB GB =.∵ CF BC =,∴ CF GB =.∴ ∠C =∠CBE .∴ CE =BE .证法二:如图(2),作ON ⊥BF ,垂足为N ,连接OE .∵ AB 是⊙O 的直径,且AB ⊥CG ,∴ CB BG =.∵ CB CF =,∴ CF BC BG ==.∴ BF =CG ,ON =OD .∵ ∠ONE =∠ODE =90°,OE =OE ,ON =OD ,∴ △ONE ≌△ODE ,∴ NE =DE .∵ 12BN BF =,12CD CG =, ∴ BN =CD ,∴ BN-EN =CD-ED ,∴ BE =CE .证法三:如图(3),连接OC 交BF 于点N .∵ CF BC =,∴ OC ⊥BF .∵ AB 是⊙O 的直径,CG ⊥AB ,∵ BG BC =,CF BG BC ==.∴ BF CG =,ON OD =.∵ OC =OB ,∴ OC-ON =OB-OD ,即CN =BD .又∠CNE =∠BDE =90°,∠CEN =∠BED ,∴ △CNE ≌△BDE ,∴ CE =BE .【总结升华】上述各种证明方法,虽然思路各异,但都用到了垂径定理及其推论.在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【变式】如图所示,在⊙O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .20【答案】如图,延长AO交BC于点D,过O作OE⊥BC于E.则三角形ABD为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt△ODE中,∠ODE=60°,∠DOE=30°,则DE=12OD=2,BE=BD-DE=10OE垂直平分BC,BC=2BE=20. 故选D类型三、图形的旋转3.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°【思路点拨】利用旋转和平移的性质得出,∠A′B′C=60°,AB=A′B′=A′C=4,进而得出△A′B′C是等边三角形,即可得出BB′以及∠B′A′C的度数.【答案】B;解:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6-4=2,∴平移的距离和旋转角的度数分别为:2,60°.【总结升华】此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角形是解题关键.类型四、圆中有关的计算4.(2016•绵阳)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF ⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.【思路点拨】(1)先连接OD、AD,根据点D是的中点,得出∠DAO=∠DAC,进而根据内错角相等,判定OD∥AE,最后根据DE⊥OD,得出DE与⊙O相切;(2)先连接BC交OD于H,延长DF交⊙O于G,根据垂径定理推导可得OH=OF=4,再根据AB是直径,推出OH是△ABC的中位线,进而得到AC的长是OH长的2倍.【答案与解析】解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC交OD于H,延长DF交⊙O于G,由垂径定理可得:OH⊥BC,==,∴=,∴DG=BC,∴弦心距OH=OF=4,∵AB是直径,∴BC⊥AC,∴OH∥AC,∴OH是△ABC的中位线,∴AC=2OH=8.【点评】本题主要考查了直线与圆的位置关系,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,通常连接过该公共点的半径,证明该半径垂直于这条直线.本题也可以根据△ODF与△ABC相似,求得AC的长.举一反三:【变式】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF+S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.类型五、圆与其他知识的综合运用5..【答案与解析】延长DB至点E,使BE=DC,连结AE∵△ABC是等边三角形∴∠ACB=∠ABC=60°,AB=AC∴∠ADB=∠ACB=60°∵四边形ABDC是圆内接四边形∴∠ABE=∠ACD在△AEB和△ADC中,∴△AEB≌△ADC∴AE=AD∵∠ADB=60°∴△AED是等边三角形∴AD=DE=DB+BE∵BE=DC∴DB+DC=DA.【总结升华】由已知条件,等边△ABC可得60°角,根据圆的性质,可得∠ADB=60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC.本例也可以用其他方法证明.如:(1)延长DC至F,使CF=BD,连结AF,再证△ACF≌△ABD,得出AD=DF,从而DB+CD=DA.(2)在DA上截取DG=DC,连结CG,再证△BDC≌△AGC,得出BD=AG,从而DB+CD=DA.6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π【答案】B;【解析】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【总结升华】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.即可求解.举一反三:【变式】某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( ).A. B.72 C.36 D.72【答案】本题解法很多,如两个小半圆面积和减去两个弓形面积等.但经过认真观察等腰直角三角形其对称性可知,阴影部分的面积由两个小半圆面积与三角形面积的和减去大半圆面积便可求得,所以由已知得直角边为,小半圆半径为(cm),因此阴影部分面积为.故选C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国名校中考数学复习优质专题汇编(附详解) 中考总复习:圆的有关概念、性质与圆有关的位置关系 —知识讲解(提高) 【考纲要求】 1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现; 2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.
【知识网络】
【考点梳理】 考点一、圆的有关概念及性质 1.圆的有关概念 圆、圆心、半径、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧; 三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定 不在同一直线上的三个点确定一个圆. 要点诠释:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 全国名校中考数学复习优质专题汇编(附详解) 要点诠释:在图中(1)直径CD,(2)CD⊥AB,(3)AM=MB,(4)CCAB,(5)ADBD.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB不能为直径.
5.圆心角、弧、弦之间的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角 圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1 在同圆或等圆中,相等的圆周角所对的弧也相等. 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中. 7.圆内接四边形 (1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形. (2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角). 考点二、与圆有关的位置关系 1.点和圆的位置关系 设⊙O的半径为r,点P到圆心的距离OP=d,则有: 点P在圆外d>r; 点P在圆上d=r; 点P在圆内d<r. 要点诠释:圆的确定: ①过一点的圆有无数个,如图所示.
②过两点A、B的圆有无数个,如图所示. ③经过在同一直线上的三点不能作圆. ④不在同一直线上的三点确定一个圆.如图所示. 全国名校中考数学复习优质专题汇编(附详解) 2.直线和圆的位置关系
(1)切线的判定 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线. (会过圆上一点画圆的切线) (2)切线的性质 切线的性质定理 圆的切线垂直于过切点的半径. (3)切线长和切线长定理 切线长 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 切线长定理 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l. (4)三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. (5)三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积
的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径). (3) 三角形的外心与内心的区别: 全国名校中考数学复习优质专题汇编(附详解) 名称 确定方法 图形 性质 外心(三角形外接圆的圆心) 三角形三边中垂线的交点 (1) 到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部
内心(三角形内切圆的圆心) 三角形三条角平分线的交点 (1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.
3.圆和圆的位置关系 (1)基本概念 两圆相离、相切、外离、外切、相交、内切、内含的定义. (2)请看下表:
要点诠释: ①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点. ②同心圆是内含的特殊情况. ③圆与圆的位置关系可以从两个圆的相对运动来理解. ④“R-r”时,要特别注意,R>r.
考点三、与圆有关的规律探究 1.和圆有关的最长线段和最短线段 了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述. (1)圆中最长的弦是直径. 如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦. 全国名校中考数学复习优质专题汇编(附详解) 过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦. (2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上. 如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.
(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上. 如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.
2.与三角形内心有关的角 (1)如图所示,I是△ABC的内心,则∠BIC1902A°.
(2)如图所示,E是△ABC的两外角平分线的交点,1902BECA°. (3)如图所示,E是△ABC内角与外角的平分线的交点,12EA. 全国名校中考数学复习优质专题汇编(附详解) (4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A. (5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFEA°. (6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902DPEA°. 【典型例题】 类型一、圆的性质及垂径定理的应用
1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.
【思路点拨】 要用好60°角,构造直角三角形.在圆中常用的是作出弦的弦心距,由弦心距,半弦长及半径构成直角三角形. 【答案与解析】 全国名校中考数学复习优质专题汇编(附详解) 解:过O作OM⊥BC于M,连接OC. 在Rt△OPM中,∠OPC=60°,
OP122OA,
∴PM=1,OM=3. 在Rt△OMC中, BC=2MC=222213OCOM.
【总结升华】 圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.
2.如图所示,在⊙O中,弦AB与CD相交于点M,ADBC,连接AC. (1)求证:△MAC是等腰三角形; (2)若AC为⊙O直径,求证:AC2=2AM·AB.
【思路点拨】 (1)证明∠MCA=∠MAC;(2)证明△AOM∽△ABC. 【答案与解析】
证明:(1) ∵ADCB,∴∠MCA=∠MAC. ∴△MAC是等腰三角形. (2)连接OM.∵AC为⊙O直径,∴∠ABC=90°.
∵△MAC是等腰三角形,OA=OC, ∴MO⊥AC.∴∠AOM=∠ABC=90°. ∵∠MAO=∠CAB,∴△AOM∽△ABC, 全国名校中考数学复习优质专题汇编(附详解) ∴AOABAMAC,∴AO·AC=AM·AB, ∴AC2=2AM·AB. 【总结升华】 本题考查的是圆周角定理,涉及到全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的判定与性质及三角形内角和定理,涉及面较广,难度适中. 举一反三: 【变式】如图所示,在⊙O中,AB=2CD,则( )
A.2ABCD B.2ABCD C.2ABCD D.AB与2CD的大小关系无法确定 【答案】
解:要比较AB与2CD的大小有两种思路. (1)把AB的一半作出来,比较12AB与CD的大小; (2)把2CD作出来,比较AB与2CD的大小. 如图所示,作OE⊥AB,垂足为E,交AB于F.则AFBF,且12AEAB. ∵AB=2CD.∴AE=CD. 在Rt△AFE中,AF>AE=CD. ∴AF>CD.
∴22AFCD,即2ABCD. 答案A.
【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题2】
3.已知:如图所示,△ABC内接于⊙O,BD⊥半径AO于D.