异步电动机矢量控制研究

异步电动机矢量控制研究
异步电动机矢量控制研究

1 绪论1

1.1交流电机调速系统发展的现状1

1.2矢量控制的现状5

1.3课题的研究背景及其意义5

1.4本课题的主要内容6

2 异步电动机数学模型建立6

2.1矢量控制中的坐标变换7

2.2三相异步电动机的数学模型9

2.3转子磁场定向异步电动机矢量控制基本原理13

2.4脉宽调制技术14

3 矢量控制的基本原理17

3.1异步电动机的电磁转矩17

3.2 矢量控制方法思路的演变过程17

3.3 矢量变换的原理及实现方法20

3.4 三相异步电动机数学模型的解耦23

3.5 矢量控制的磁场定向28

3.6 三相异步电动机的状态方程及传递函数30

3.7 转子磁链观测器32

4矢量控制系统仿真研究34

4.1 MATLAB/SIMULINK简介34

4.2 系统仿真模型的建立及仿真结果分析35

5 结论41

参考文献42

致谢44

1 绪论

1.1交流电机调速系统发展的现状

在当今用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、防、科技及社会生活的方方面面[1] [2] [3] [4]。电动机负荷约占总发电量的60%~70%,成

为电量最多的电气设备。根据采用的电流制式不同,电动机分为直流电动机和交

电动机两大类,交流电动机分为同步电动机和异步电动机两种。电动机作为把能转换为机械能的主要设备,在实际的应用中,一是要使电动机具有较高的机能量转换效率:二是要根据生产机械的工艺要求控制并调节电动机的转速。电动的调速性能直接影响着产品质量、劳动生产效率和节电性能。

但是直到20世纪70年代,凡是要求调速范围广、速度控制精度高和动态响性能好的场合,几乎全都采用直流电动机调速系统。其原因主要是:(1>不论异步电动机还是同步电动机,唯有改变定子供电频率调速是最为方便的,而且以获得优异的调速特性。但大容量的变频电源却在长时期内没有得到很好的解;(2>异步电动机和直流电动机不同,它只有一个供电回路—定子绕阻,致其速度控制比较困难,不像直流电动机那样通过控制电枢电压或控制励磁电流可方便地控制电动机的转速。但交流电机,特别是笼式异步电动机,拥有结构单、坚固耐用、价格便宜且不需要经常维修等优点,正是这些突出的优点使得气工程师们没有放弃对电力牵引交流传动技术的探索和发展。进入20世纪70代,由于电力电子器件制造技术和微电子技术的突破和发展,先进的控制理论矢量控制、直接转矩控制等具有高动态控制性能的新技术开始被采用,使得交传动进入一个崭新的阶段。

交流电动机的诞生已有一百多年的历史,时至今日已经研制出了形式、用途容量等各种不同的品种。交流电动机分为同步电动机和异步电动机两大类。同电动机的转子转速与定子电流的频率保持严格不变的关系:异步电动机则不保这种关系。其中交流异步电动机拥有量最多,提供给工业生产的电量多半是通交流电动机加以利用的。据统计,交流电动机用电量约占电机总用电量的85%。

1.1.2交流调速方式的发展及现状

上个世纪前半期,由于科技的发展限制,交流调速系统的发展长期处于调速性能差、低效耗能的阶段[5][6]。20世纪60年代后,由于生产发展的需要和能源的同趋紧张,对调速及节能的需求日益增长,世界各国都开始重视交流调速技术的研究与开发。20世纪70年代后,科学技术的迅速发展为交流调速技术的发展创造了极有利的技术条件和物质基础。交流调速理论和应用技术有以下几个方面的发展[7]:

(1>电力电子器件的发展换代为交流技术的迅速发展提供了物资基础。20世纪80年代中期以前,变频装置功率回路主要采用的是晶闸管,装置的效率、可靠性、成本、体积等均无法与同容量的直流调速装置相比。80年代中后期开始用第二代

电力电子器件GTR、GTO、IGBT等制造的变频装置可以在性价比上与直流调速装置

相媲美。随着大电流、高电压、高频化、集成化、模块化的电力电子器件的出现,第三代电力电子器件成为90年代制造变频器的主流产品。20世纪90年代末开始电

力电子器件的第四代发展期。

由于GTR、GT0器件本身存在的不可克服的缺陷,功率器件进入第三代以来,GTR器件已经被淘汰不再使用。进入第四代以后,GT0器件也正在被逐步淘汰。第

四代电力电子器件的模块化智能化更加成熟。

(2>脉宽调制(PWM>技术随着电压型逆变器在高性能电力电子装置(如交流传动、无功补偿器>中的广泛应用,脉宽调制技术(PWM技术>作为其共同的核心技术,引

起人们的高度关注,并得到越来越深入的研究[8][9]。PWM技术最初是在1964年的时

候Ashconung和H.stemmelr发表文章把通信系统的调制技术应用到交流传动中,

从此产生了正弦脉宽调制变频变压的思想,为现代交流调速技术的发展和实用化

开辟了一新的道路。PWM技术的发展过程经历了从最初的追求电压波形的正弦到电

流波形的正弦,再到异步电机磁通的正弦:从效率最优,转矩脉动最小,到消除

谐波噪声等。到目前为止,仍然不断的有新方案提出。从实际应用来看,SPWM在

各种产品中仍占主导地位,并一直是人们研究的热点,从最初采用模拟电路完成

三角调制波和参考正弦波的比较,产生PWM信号,以控制功率器件的开关,到八十

年代末到九十年代初使用专门的正弦PWM波产生芯片如HEF4752等,再到如今采用

高速微处理器SOCl96MC,80C196KC,TMS320C24x,TMS320LF2407A等实时在线PWM

信号输出,基本实现了全数字化的方案。从最初的自然采样正弦脉宽调制开始,

人们不断探索改进脉宽调制方法,对自然采样的SPVVM做简单的近似,得到规则采

样算法,在此基础上,又提出了准优化PWM技术,其实质为在一个基波上面叠加一

个幅值为基波1/4的三次谐波,以提高直流电压利用率。而后出现的空间电压矢

量PWM技术初始是以保持电机磁链幅值不变(在平面坐标中轨迹为圆形>为出发点得

到的,后来被推广成为当前最有效的工程应用方法。其等效的调制波仍然也含有

一定的三次谐波,由于其具有控制简单、数字化实现极其方便的特点,目前也逐

渐有取代传统SPWM的趋势。而最近几年研究很多的优化PWM技术具有电流谐波畸变

率最小、效率最优、转矩脉动最小的特点,尽管具有计算复杂、实时控制较难,

但由于与其它PWM技术相比,具有电压利用率最高、开关次数少、可以实现特定优

化目标等突出优点,随着微处理器速度的不断提高,这种PWM技术也逐渐走入实用

化阶段。而另外一种应用较多的PWM技术是电流滞环比较PWM以及在它基础上发展

起来的无差拍控制PWM均具有实现简单的特点,当开关频率足够高的时候,可以得

到非常接近理想正弦的电流波形。到八十年代中后期,人们出于对PWM逆变器产生

的电磁噪声给予的越来越多的关注,由于PWM逆变器的电压电流中含有不少的谐波

成分,这些谐波产生的转矩脉动作用在定转子上,使电机绕组产生振动而发出噪声。人们为了解决此问题想出了两种方法,一个是提高开关频率,使之高于人耳

能感受的范围,另一种方法就是使用随机脉冲频率PWM技术,从改变谐波的频谱出发,使逆变器输出电压电流谐波均匀地分布在较宽的频带范围内,以达到抑制噪

声和机械共振的目的。

(3>磁场定向控制20世纪70年代初期提出了两项突破性的研究成果:德国西门

子公司的F.Balschke等提出的“感应电机磁场定向的控制原理”和美国P.C.Custmna与A.A.Clakr申请的专利“感应电机定子电压的坐标变换控制”,奠定了矢量控制的基础。这种原理的基本出发点是,考虑到异步电机是一个多变量、强耦合、非线性的时变参数系统,很难直接通过外加信号准确控制电磁转矩,但若以转子磁通这一旋转的空间矢量为参考坐标,利用从静止坐标系到旋转坐标

系之间的变换,则可以把定子电流中的励磁电流分量与转矩电流分量变成标量独

立开来,进行分别控制。这样,通过坐标变换重建的电机模型就可以等效为一台

直流电机,从而可像直流电机那样进行快速的转矩和磁通控制。其基本出发点还

是在于追求加在电机三相绕组上的电压电流的正弦性好。

80年代中期,磁场定向矢量控制基本理论研究成熟并形成商品化。磁场定向

矢量控制的最重要的特点就是选择和计算出一个紧跟在转子磁通或转子励磁电流

上的坐标系。通过电机统一理论和坐标变换理论,把交流电动机的定子电流分解

成磁场定向坐标系下的磁场电流分量和转矩电流分量,从而实现定子电流的解耦。矢量控制方法的提出,使交流传动系统的动态特性得到了显著的改善和提高,从

而使交流调速最终取代直流调速成为可能。实践证明:采用矢量控制的交流调速

系统的性能可以同直流调速系统相媲美。传统的矢量控制系统需要电机的精确数

学模型,但当由于磁饱和或电机绕组温度变化引起参数变化时,会影响控制效果,针对电机参数的时变特点,可以在矢量控制系统中采用先进的控制策略与算法,

将模糊控制、自适应控制及神经元控制等应用在矢量控制系统中,进而帮助解决

这个问题。现代控制理论的发展为提高矢量控制的性能提供了基础和条件。

1.2矢量控制的现状

自20世纪70年代,德国西门子公司的EBlasehke提出了“磁场定向控制的理论”和美国的PC.Custmna与A.AQark申请了专利“感应电机定子电压的坐标交换控制”,矢量控制技术发展到今天己形成了各种较成熟并已产品化的控制方案,且

都已实现无速度传感器控制,即用转速估算环节取代传统的速度传感器(如测速发

电机、编码盘等>。

矢量控制的理论根据就是电机统一理论,在实现上将异步电动机的定子三相交流

电流i

A 、i

B

、i

C

过坐标变换变换到同步旋转坐标系de-q轴系下的两相直流电流

[10][11]。实质上就是通过数学变换把三相交流电动机的定子电流分解成两个分量:用来产生旋转磁动势的励磁分量和用来产生电磁转矩的转矩分量。然后像控制直流电机那样在同步旋转坐标系上设计和进行磁场与转矩的独立控制,再由变换方程把这些控制结果转换为随时间变化的瞬时变量,达到控制电机转速和转矩的目的。

1.3课题的研究背景及其意义

矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制、变结构滑模控制等方法。20世纪80年代中期,德国鲁尔大学德彭布罗(DPeneborkc> 4教授首先取得了直接转矩控制(以下简称DTC>技术实际应用的成功。近十几年的实际应用表明,直接转矩控制技术与矢量控制方法相比可以获得更大的瞬时转矩和极快的动态响应,与矢量控制技术一样也是一种很有发展前途的控制技术。DTC 变频器采用砰一砰控制带来较好的转矩响应,同时由于其开关频率是不确定,随机变化的,使DTC变频器存在以下问题:

·无法像矢量控制那样,在确定的开关频率条件下,采用消除谐波的PWM控制方法

·变频器输出电压、电流的谐波较大

·变频器输出电压偏低

·变频器效率略低

·在相同电力电子元器件条件下,变频器输出容量略小

也就是说,DTC控制变频器的稳态指标要比VC差,这在清华大学的实验报告

中也有证明。这对于那些不要求较高动态性能指标的通用变频器,例如风机、水泵节能传动,一般工业机械传动,变频器的效率,容量利用率,谐波就显得更

为重要,在这些应用场合VC显然要优于DTC。

1.4本课题的主要内容

在异步电机的高性能控制方法中,保证矢量控制方法有效性的一个重要条件

是对电机转速的准确测量,却不希望安装转速传感器,所以无速度传感器的矢量

控制方法引起广泛的关注。由于控制系统的结构和算法日益复杂,对系统CPU的运

算能力的要求也越来越高,电机控制专用的DSP既有强大运算能力,又有完备外围

控制电路,所以在电机控制中得到了普遍应用。

本文所做的主要工作作包括:

(1>介绍本课题的选题背景,发展现状和研究意义。

(2>详细分析了异步电动机的数学模型。

(3>设计了SPWM型异步电动机直接矢量控制系统的整体结构,进一步分析了各

个结构部分的原理,对各个子模块的构建进行了详细叙述。

(4>对整个系统软件部分作了部分的设计,并在Simulink平台上建立了真个系

统的各部分模型模块,包括Park、Clarke变换及Park逆变换模块、转子磁链位置

计算模块以及PI模块。并对异步电动机的调速做了仿真,对仿真结果进行了分析。

2异步电动机数学模型建立

目前,交流异步电机的矢量控制策略已发展成为一个比较完整的体系[12][13]。从理论上说,只要可以构建出精准的异步电机的数学模型,就可以对一部电动机的各个参数和输入量进行精确控制,从而达到优秀的调速模式。因而建立异步电动机的数学模型是对异步电动机进行矢量控制的前提,而且异步电动机模型的精

确程度哦直接影响着其调速效果。在建立了异步电动机的数学模型之后,又考虑到异步电机是一个多变量、强耦合、非线性的时变参数系统,而且很难直接通过外加信号准确控制异步电动机的电磁转矩,但若以转子磁通这一旋转的空间矢量为参考坐标,利用从静止坐标系到旋转坐标系之间的变换,则可以把定子电流中的励磁电流分量与转矩电流分量变成标量独立开来,进行分别控制。这样,通过坐标变换重建的电机模型就可以等效为一台直流电机,从而可像直流电机那样进行快速的转矩和磁通控制。其基本出发点还是在于追求加在电机三相绕组上的电压电流的正弦性好。

2.1矢量控制中的坐标变换

我们知道,对一个物理对象的数学模型,在不改变控制对象物理特性的前提下采用一定的变换手段,可以获得相对简单的数学描述,以简化对控制对象的控制。对异步电机的数学分析也不例外,在分析异步电机的数学模型时主要用到的是坐标变换[14][15][16][17][18]。

2.1.1坐标变换的约束条件

电机是电磁能量转化的物理实体,为了不改变电机在坐标变换后的物理特性,在变换时必须遵循一定的原则,在确定电流变换矩阵时,采用遵守变换前后所产生的旋转磁场等效的原则;在确定电压变换矩阵和和阻抗变换矩阵时,采用遵守变换前后电机功率不变的原则。设在某坐标系下的电路或系统的电压和电流向量分别为U和f,在新的坐标系下,其中:

; (2-1>

而; (2-2>

定义新向量与原向量的坐标变换关系为

(2-3>

(2-4>

和分别为电压与电流的变换阵。

如果变换前后的功率不变,则

(2-5>

把式(2-3>、(2-4>代入式(2-5>

(2-6>

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref 和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM

异步电机矢量控制

目录 1引言 (1) 1.1 交流电机调速系统发展的现状 (1) 1.2 矢量控制的现状 (1) 1.3 课题的研究背景及意义 (2) 1.4 本课题的主要内容 (2) 2 矢量控制的基本原理 (4) 2.1 坐标变换的基本思路 (4) 2.2 矢量控制坐标变换 (5) 2.3 矢量控制系统结构 (8) 3 转子磁链定向的矢量控制方程及解耦控制 (10) 4 转速、磁链闭环控制的矢量控制系统 (13) 4.1 带磁链除法环节的直接矢量控制系统 (13) 4.2 带转矩内环的直接矢量控制系统 (13) 5 控制系统的设计与仿真 (15) 5.1 矢量控制系统的设计 (15) 5.2 异步电动机的重要子模块模型 (16) 5.3 系统仿真结果和分析 (18) 6 结论 (21) 参考文献 (22) 致谢.............................................................................................. 错误!未定义书签。

1引言 1.1 交流电机调速系统发展的现状 在当今用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、防、科技及社会生活的方方面面[1] [2] [3] [4]。电动机负荷约占总发电量的60%~70%,成为电量最多的电气设备。根据采用的电流制式不同,电动机分为直流电动机和交电动机两大类,交流电动机分为同步电动机和异步电动机两种。电动机作为把能转换为机械能的主要设备,在实际的应用中,一是要使电动机具有较高的机能量转换效率:二是要根据生产机械的工艺要求控制并调节电动机的转速。电动的调速性能直接影响着产品质量、劳动生产效率和节电性能。 但是直到20世纪70年代,凡是要求调速范围广、速度控制精度高和动态响性能好的场合,几乎全都采用直流电动机调速系统。其原因主要是:(1)不论异步电动机还是同步电动机,唯有改变定子供电频率调速是最为方便的,而且以获得优异的调速特性。但大容量的变频电源却在长时期内没有得到很好的解;(2)异步电动机和直流电动机不同,它只有一个供电回路—定子绕阻,致其速度控制比较困难,不像直流电动机那样通过控制电枢电压或控制励磁电流可方便地控制电动机的转速。但交流电机,特别是笼式异步电动机,拥有结构单、坚固耐用、价格便宜且不需要经常维修等优点,正是这些突出的优点使得气工程师们没有放弃对电力牵引交流传动技术的探索和发展。进入20世纪70代,由于电力电子器件制造技术和微电子技术的突破和发展,先进的控制理论矢量控制、直接转矩控制等具有高动态控制性能的新技术开始被采用,使得交传动进入一个崭新的阶段。 交流电动机的诞生已有一百多年的历史,时至今日已经研制出了形式、用途容量等各种不同的品种。交流电动机分为同步电动机和异步电动机两大类。同电动机的转子转速与定子电流的频率保持严格不变的关系:异步电动机则不保这种关系。其中交流异步电动机拥有量最多,提供给工业生产的电量多半是通交流电动机加以利用的。据统计,交流电动机用电量约占电机总用电量的85%。 1.2 矢量控制的现状 自20世纪70年代,德国西门子公司的EBlasehke提出了“磁场定向控制的理论”和美国的PC.Custmna与A.AQark申请了专利“感应电机定子电压的坐标交换控

异步电机矢量控制仿真

2.5异步电机基于磁场定向的矢量控制系统仿真 学号:S16085207020 姓名:李端凯 图1 矢量控制仿真模型整体结构图 图2 id*求解模块 图3 iq*求解模块

图4 DQ到ABC坐标转换模块 图5 求解转子磁链角模块 图6-1 ABC到DQ坐标转换模块 在这一部分转换中包含两种变换——3/2变换和旋转变换。在交流电动机中三相对称绕组通以三相对称电流可以在电动机气隙中产生空间旋转的磁场,在功率不变的条件下,按磁动势相等的原则,三相对称绕组产生的空间旋转磁场可以用两相对称绕组来等效,三相静止坐标系和两相静止坐标系的变换则建立了磁动势不变情况下,三相绕组和两相绕组电压、电流和磁动势之间的关系。图1绘出了ABC 和αβ两个坐标系中的磁动势矢量,按照磁动势相等的等效原则,三相合成磁动势与两相合成磁动势相等,故两套绕组磁动势在α、β轴上的投影都应相等,于是得:

()233332333cos60cos6011 ()22 sin 60sin 602a b c a b c b c b c N i N i N i N i N i i i N i N i N i N i i αβ=--=--=-=+ 写成矩阵形式: 图6-2 ABC 和αβ两个坐标系中的磁动势矢量 111220a b c i i i i i αβ???-- ?????=??????????? 再就是旋转变换,两相静止坐标系和两相旋转坐标系的变换(简称2s/2r 变换),两相静止绕组,通以两相平衡交流电流,产生旋转磁动势。如果令两相绕组转起来,且旋转角速度等于合成磁动势的旋转角速度,则两相绕组通以直流电流就产生空间旋转磁动势。从两相静止坐标系到两相旋转坐标系的变换,称为两相旋转-两相静止变换,简称2s/2r 变换。其变换关系为: cos sin sin cos d q i i i i αβφφφφ-??????=???????????? 由此整理得到: 111cos sin 22sin cos 0a d b q c i i i i i φφφφ????-- ????????=?????-?????????? 同理可得:DQ 到ABC 坐标转换则是其逆变换。 图7 求解磁链模块

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

异步电机的矢量控制系统

电力拖动课程结题报告 题目:异步电机的矢量控制系统 班级:K0312417 姓名:罗开元 学号:K031241723 老师:郎建勋老师 2015年 6月 22 日

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke 和W .Flotor 提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink 中SimPowerSystems 模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步 电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的 VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标 系上的定子交流电机A i 、B i 、C i ,通过3/2变换可以等效成两相静止坐标系上的交流电流 α i 和 β i ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 d i 和q i 。如果观察 者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。 把上述等效关系用结构图的形式画出来,得到图l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链

感应电机矢量控制系统的仿真

《运动控制系统》课程设计学院: 班级: 姓名: 学号: 日期: 成绩:

感应电机矢量控制系统的仿真 摘要:本文先分析了异步电机的数学模型和坐标变换以及矢量控制基本原理,然后利用Matlab /Simulink软件进行感应电机的矢量控制系统的仿真。采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明了该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性和有效性。 关键词:异步电机;坐标变换;矢量控制;Simulink仿真 一、异步电机的动态数学模 型和坐标变换 异步电机的动态数学模型是一个 高阶、非线性、强耦合的多变量系统, 异步电机的数学模型由下述电压方 程、磁链方程、转矩方程和运动方程 组成。 电压方程: 礠链方程: 转矩方程: 运动方程: 异步电机的数学模型比较复杂, 坐标变换的目的就是要简化数学模 型。异步电机数学模型是建立在三相 静止的ABC坐标系上的,如果把它变 换到两相坐标系上,由于两相坐标轴 互相垂直,两相绕组之间没有磁的耦 合,仅此一点,就会使数学模型简单 了许多。 (1)三相--两相变换(3/2变换) 在三相静止绕组A、B、C和两相 静止绕组a、b 之间的变换,或称三相 静止坐标系和两相静止坐标系间的变 换,简称 3/2 变换。 (2)两相—两相旋转变换(2s/2r变 换) 从两相静止坐标系到两相旋转坐 标系 M、T 变换称作两相—两相旋转 变换,简称 2s/2r 变换,其中 s 表 示静止,r 表示旋转。

异步电机矢量控制设计

异步电机的矢量控制设计及仿真

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke和W .Flotor提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink中SimPowerSystems模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势 为准则,在三相坐标系上的定子交流电机A i、B i、C i,通过3/2变换可以等效成

异步电机矢量控制Matlab仿真实验

基于Matlab/Simulink异步电机矢量控制系统仿真 一.理论基础 矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。其中等效的直流电动机模型如图1-1所示,在三相坐标系上的定子交流电流iA、iB、iC ,通过3/2变换可以等效成两相静止正交坐标系上的交流isα和isβ,再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流ism和ist。 图1-1 异步电动机矢量变换及等效直流电动机模型 从图1-1的输入输出端口看进去,输入为A、B、C三相电流,输出为转速ω,是一台异步电动机。从内部看,经过3/2变换和旋转变换2s/2r,变成一台以ism和ist为输入、ω为输出的直流电动机。m绕组相当于直流电动机的励磁绕组,ism相当于励磁电流,t绕组相当于电枢绕组,ist相当于与转矩成正比的电枢电流。 按转子磁链定向仅仅实现了定子电流两个分量的解耦,电流的微分方程中仍存在非线性和交叉耦合。采用电流闭环控制,可有效抑制这一现象,使实际电流快速跟随给定值,图1-2是基于电流跟随控制变频器的矢量控制系统示意图。

图1-2矢量控制系统原理结构图 通过转子磁链定向,将定子电流分量分解为励磁分量i sm 和转矩分量i st ,转子磁链r ψ仅由定子电流分量i sm 产生,而电磁转矩e T 正比与转子磁链和定子电流转矩分量的乘积,实现了定子电流的两个分量的解耦。简化后的等效直流调速系统如图1-3所示。 图1-3简化后的等效直流调速系统 二.设计方法 1.电流模型设计 转子磁链在实用的系统中多采用按模型计算的方法,即利用容易测得的电压、电流或转速等信号,借助于转子磁链模型,实时计算磁链的幅值与空间位置。转子磁链模型可以从电动机数学模型中推导出来,也可以利用专题观测器或状态估计理论得到闭环的观测模型。在计算模型中,由于主要实测信号的不同,又分为电流模型和电压模型两种。本设计采用在αβ坐标系上计算转子磁链的电流模型。 由实测的三相定子电流通过3/2变换得到静止两相正交坐标系上的电流i sα和i sβ,在利用αβ坐标系中的数学模型式计算转子磁链在αβ轴上的分量 ?? ? ?? ?? ++-=+--=β αβχαβααωψψψωψψψs r r r s r r r i Tr Lm Tr dt d i Tr Lm Tr dt d 11 (2-1-1) 也可表述为:

基于MTPA的永磁同步电动机矢量控制系统

基于MTPA的永磁同步电动机矢量控制系统 1 引言 永磁同步电动机由于自身结构的优点,再加上近年来永磁材料的发展,以及电力电子技术和控制技术的发展,永磁同步电动机的应用越来越广泛。而对于凸极式永磁同步电动机,由于具有更高的功率密度和更好的动态性能,在实际应用中越来越受到人们的重视[1]。 高性能的永磁同步电动机控制系统主要采用的矢量控制。交流电机的矢量控制由德国学者blaschke在1971年提出,从而在理论上解决了交流电动机转矩的高性能控制问题。该控制方法首先应用在感应电机上,但很快被移植到同步电机。事实上,在永磁同步电动机上更容易实现矢量控制。因为该类电机在矢量控制过程中不存在感应电机中的转差频率电流而且控制受参数(主要是转子参数)的影响也小。 永磁同步电动机的矢量控制从本质上讲,就是对定子电流在转子旋转坐标系(dq0坐标系)中的两个分量的控制。因为电机电磁转矩的大小取决于上述的两个定子电流分量。对于给定的输出转矩,可以有多个不同的d、q轴电流的控制组合。不同的组合将影响系统的效率、功率因数、电机端电压以及转矩输出能力,由此形成了各种永磁同步电动机的电流控制方法。[2]针对凸极式永磁同步

电动机的特点,本文采用最优转矩控制(mtpa),并用一种更符合实际应用的方法进行实现,并进行了仿真验证。

图1 电流id、iq和转矩te关系曲线 2 永磁同步电动机的数学模型 首先,需要建立永磁同步电动机在转子旋转dq0坐标系下的数学模型,这种模型不仅可用于分析电机的稳态运行性能,还可以用于分析电机的暂态性能。 为建立永磁同步电机的dq0轴系数学模型,首先假设: (1)忽略电动机铁芯的饱和; (2)不计电动机中的涡流和磁滞损耗; (3)转子上没有阻尼绕组; (4)电动机的反电动势是正弦的。 这样,就得到永磁同步电动机dq0轴系下数学模型的电压、磁链和电磁转矩方程,分别如下所示:

转差频率控制的异步电动机矢量控制系统的仿真建模

转差频率控制的异步电动机矢量控制系统 的仿真建模 *** (江南大学物联网工程学院,江苏无锡214122) 摘要:矢量控制是目前交流电动机的先进控制方式,本文对异步电动机的动态数学模型、转差频率矢量控制的基本原理和概念做了简要介绍,并结合Matlab/Simulink软件包构建了异步电动机转差频率矢量控制调速系统的仿真模型,并进行了试验验证和仿真结果显示,同时对不同参数下的仿真结果进行了对比分析。该方法简单、控制精度高,能较好地分析交流异步电动机调速系统的各项性能。 关键词:转差频率;交流异步电动机;矢量控制;Matlab Modeling and Simulation of induction motor vector control system Based on Frequency control Luxiao (School of Communication and Control, Jiangnan University, Wuxi, Jiangsu 214036,China) Abstract: Vector control is an advanced AC motor control, this paper dynamic mathematical model of induction motor, slip frequency vector control of the basic principles and concepts are briefly introduced, and combined with Matlab / Simulink software package ,give the slip frequency vector Control System of the simulation model of the induction motor .Showed the simulation results, and simulation results under different parameters were compared. The method is simple, high control precision, can better analyze the AC induction motor drive system of the performance. Keywords: AC asynchronism motor; vector control; modeling and simulation; Matlab; 引言: 由于交流异步电动机属于一个高阶、非线性、多变量、强耦合系统。数学模型比较复杂,将其简化成单变量线性系统进行控制,达不到理想性能。为了实现高动态性能,提出了矢量控制的方法。所谓矢量控制就是采用坐标变换的方法,以产生相同的旋转磁势和变换后功率不变为准则,建立三相交流绕组、两相交流绕组和旋转的直流绕组三者之间的等效关系,从而求出异步电动机绕组等效的直流电机模型,以便按照对直流电机的控制方法对异步电动机进行控制。因此,它可以实现对电机电磁转矩的动态控制,优化调速系统的性能。 Matlab是一种面向工程计算的高级语言,其Simulink环境是一种优秀的系统仿真工具软件,使用它可以大大提高系统仿真的效率和可靠性。本文在此基础上构造了一个矢量控制的交流电机矢量控制调速系统,包含了给定、PI调节器、函数运算、二相/三相坐标变换、PWM脉冲发生器等环节,并给出了仿真结果。 1.异步电动机的动态数学模型 异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。在研究异步电动机的多变量非线性数学模型时,常作如下的假设: 1)忽略空间谐波,设三相绕组对称,在空间中互差120°电角度,所产生的磁动势沿

Simulink异步电机矢量控制(全文)

异步电动机矢量控制系统的仿真研究 摘要: 本文根据异步电动机矢量控制的基本原理,基于Matlab 软件构造了按转子磁场定向的矢量控制系统的仿真模型。通过仿真试验验证了模型的正确性,结果表明所建立的调速系统具有良好的动态性能,实现了系统的解耦控制。 关键词:异步电动机矢量控制Matlab 仿真 Simulation of Vector Control System for Asynchronous Motor Abstract: According to the basic principles of induction motor vector control,this paper constructssimulation model of rotor magnetic field oriented vector control system based on the MATLAB software.It verifies the accuracy of the model by simulation. Results show that it has good dynamic performance,andit realizes the decoupling control system. Key words: asynchronous-motor; vector control; matlab simulation 0 引言 异步电动机具有非线性、强耦合、多变量的性质,要获得良好的调速性能,必须从其动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。矢量控制就是基于动态模型的高性能的交流电动机调速系统的控制方案之一。所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。 1异步电动机矢量控制原理及基本方程式 1.1基本公式 矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。异步电动机在两相同步旋转坐标系上的数学模型包括电压方程、磁链方程和电磁转矩方程。分别如下: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? + - + - + - - + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? rq rd sq sd r r r s m m s r s r r m m m m s s s m m s s s rq rd sq sd i i i i P L R L P L L L P L R L P L P L L P L R L L P L L P L R u u u u ω ω ω ω ω ω ω ω 1 1 1 1 1 (1) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? rq rd sq sd r m r m m s m s rq rd sq sd i i i i L L L L L L L L ψ ψ ψ ψ (2) ) ( rq sd rd sq m p e i i i i L n T- =(3)当两相同步旋转坐标系按转子磁链定

交流异步电动机的矢量控制系统设计原理

交流异步电动机的矢量控制系统设计原理 本文主要利用电机矢量控制系统原理,提出了一种异步电机矢量控制系统及其控制策略总体设计方案,采用Simulink工具构建了矢量变频调速系统数学模型,详细介绍了各个子模块的构建方法和功能。通过仿真可得系统的动态及稳态性能,表明系统具有较高的响应能力和鲁棒性,为矢量控制技术提供了一种前期检验方法和研究手段。 0引言 异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,矢量控制是电机控制系统的一种先进控制方法,由于其交流调速时的优越性被广泛应用到异步电机调速系统中。基于Simulink的交流异步电机仿真可以验证系统设计方案的有效性,在实验室应用过程中可能遇到系统设计难题。 本文以双闭环矢量控制系统为研究对象,在Simu-link中进行仿真来验证控制系统的有效性。通过分析仿真结果得到矢量控制系统的动静态特性,从而证实了本设计方案的可行性。 1矢量控制原理 矢量控制系统,简称VC系统,坐标变换是核心思想。矢量控制的基本思想是以产生同样的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流等效成两相静止坐标系上的交流电流,在通过坐标旋转变换将其等效成同步旋转坐标系上的直流电流,等效过程中实现磁通和转矩的解耦控制,达到直流电机的控制效果,得到直流电动机的控制量。便可将三相异步电动机等效为直流电动机来控制,获得与直流调速系统接近的动、静态性能。 矢量控制中矢量变换包括三相-两相变换和同步旋转变换,将d轴沿着转子总磁链矢量φr的方向称为M轴,将q轴逆时针转90°,即垂直于矢量φr的方向称为T轴,经过变换电压-电流方程改写为式(1),磁链方程为式(2):

异步电动机矢量控制系统

异步电动机矢量控制系统 由于DSP能对输入数据进行高速处理,克服了一般单片机处理能力有限的问题,而且电路设计较为简单,能获得较强的抗干扰能力,另外DSP具有专业化的指令集,提高了数字滤波器的运算速度,使得DSP在控制器的规则实施、矢量控制和矩阵变换等方面具有独特的优势。在电机控制系统中多用DSP作为核心控制器,以满足对实时性、稳定性及可靠性的要求。控制器选用TMS320F2812,具有丰富的电机控制外设电路,16个12位A/D转换通道,12个PWM输出通道,能控制两台三相电机,体积小、价格低、可靠性高,能在高度集成的环境中实现高性能电机控制。基本结构如下:

通过芯片内部自带的ADC转换模块中的3个A/D转换通道捕捉霍尔位置传感器的3个相位置信号,接到ADCINA3、ADCINA4、ADCINA5引脚上,可以检测转子的转动位置。 F2812同时需要3个A/D转换通道对霍尔电流传感器电流进行采集,以获得3个相电流信号。霍尔电流传感器采集电机相电流的瞬时值,估计电机的实时运行状态,如转矩的大小和方向、电机的转速和滑差。 测量电机转速常用的方法有增量编码器和测速发电机。本设计采用光电编码器,F2812包含一个正交编码单元,电机的码盘信号通过CAP1和CAP2端口进行捕捉。捕捉到的数据存放在寄存器中,通过比较捕捉到的两相脉冲值可以确定当前电机转子的速度和方向,完成这些仅需两个数字量输入和一个内部寄存器。为防止电流过高对DSP造成损坏,信号经过一个光耦合器件连接到DSP引脚。 2.A/D转换模块 F2812内部集成了16路12位A/D转换模块,模拟量的输入范围是0-3.3V,通道分为两组,0-7为一组,8-15为一组,每组具有一个专门的输入端。事件转换器可将ADC配置成两个独立的8通道模块,也可串接成一个16通道模块。8通道模块将8路输入信号自动排序,并按序选择一路信号进行转换,完成后的结果保存在对应的结果寄存器中。串接模式下,成为16通道的A/D转换器模块允许对同一个通道信号进行多次转换,主要用于过采样的算法中。 3.电机驱动器 F2812有16路PWM输出口供电机使用,通过控制PWM波的占空比来改变加在电机两端的电压,从而改变电机的转速。由于DSP发出的PWM波功率不足以驱动大功率电机,需要经过IGBT进行功率转换。设计中采用功率芯片如PM100DSA120等,这类芯片利用TTL电平即可实现功率驱动,而且具有完整的隔离及保护功能,如过流、过压保护等。 主要软件设计如下: 1.初始化程序; CLRC CNF SETC OVM SPM 0 SETC SXM LAR AR0,#DEC_MS LAR AR1,#(24-1) LACC #ANGLES_ LARP AR0 INIT_TBL TBLR *+,AR1 ADD #1 BANZ INIT_TBL,AR0 LAR AR4,#79H LDP #0E0H SPLK #68H,WDCR SPLK #0284H,SCSR1 LDP #0E1H

基于Matlab的交流电机矢量控制系统仿真..

基于MATLAB交流异步电机矢量控制系统建 模与仿真 摘要:在分析异步电机的数学模型及矢量控制原理的基础上,利用MATLAB,采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性、有效性。 关键词:交流异步电机,矢量控制,MATLAB 一、引言 交流电动机由于动态数学模型的复杂性,其静态和动态性能并不是很理想。因此在上世纪前期需要调速的场合下采用的都是直流电动机,但是直流电动机结构上存在着自身难以克服的缺点,导致人们对交流调速越来越重视。从最初的恒压频比控制到现在的直接转矩控制和矢量控制,性能越来越优良,甚至可以和直流电机的性能相媲美。 本文研究交流异步电机矢量控制调速系统的建模与仿真。利用MATLAB中的电气系统模块构建异步电机矢量控制仿真模型,并对其动、静态性能进行仿真试验。仿真试验结果验证了矢量控制方法的有效性、可行性。 二、交流异步电机的矢量控制原理 矢量控制基本思想是根据坐标变换理论将交流电机两个在时间相位上正交 的交流分量,转换为空间上正交的两个直流分量,从而把交流电机定子电流分解成励磁分量和转矩分量两个独立的直流控制量,分别实现对电机磁通和转矩的控制,然后再通过坐标变换将两个独立的直流控制量还原为交流时变量来控制交流电机,实现了像直流电机那样独立控制磁通和转矩的目的。 由于交流异步电机在A-B-C坐标系下的数学模型比较复杂,需要通过两次坐标变换来简化交流异步电机的数学模型。一次是三相静止坐标系和两相静止坐标系

永磁同步电动机矢量控制模型的设计与仿真

永磁同步电动机矢量控制模型的设计与 仿真 交流调速理论包括矢量控制和直接转矩控制。1971年,由F.Blaschke 提出的矢量控制理论第一次使交流电机控制理论获得了质的飞跃。矢量控制采用了矢量变换的方法,通过把交流电机的磁通与转矩的控制解耦使交流电机的控制类似于直流电动机。矢量控制方法在实现过程中需要复杂的坐标变换,而且对电机的参数依赖性较大。直接转矩控制是1985年Depenbrock教授在研究异步电机控制方法时提出的。该方法是在定子坐标系下分析交流电机的数学模型,强调对电机的转矩进行直接控制,对转矩进行砰一砰控制,无需解耦,省掉了矢量旋转变换计算。控制定子磁链而不是转子磁链,不受转子参数变化的影响,但不可避免地产生转矩脉动,低速性能较差,调速范围受到限制。而且由于它对实时性要求高、计算量大,对控制系统微处理器的性能要求也较高。 矢量控制的基本思想是在普通的三相交流电动机上设法模拟直流电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分解成为产生磁通的励磁电流分量和产生转矩的转矩电流分量,并使得两个分量互相垂直,彼此独立,然后分别进行调节。这样交流电动机的转矩控制,从原理和特性上就和直流电动机相似了。 控制策略的选择上是PID控制,传统的数字PID控制是一种技术成熟、应用最为广泛的控制算法,其结构简单,调节方便。 1 永磁同步电机的数学模型 1.1 永磁同步电机系统的结构 永磁同步电机的基本组成:定子绕组、转子、机体。定子绕组通过三相交流电,产生与电源频率同步的旋转磁场。转子是用永磁材料做成的永磁体,它在定子绕组产生的旋转磁场的作用下,开始旋转。 1.2 坐标变换

交流异步电动机矢量控制调速系统设计

目录 摘要 ................................................................................................. I 1绪论 . (1) 1.1交流调速技术概况 (1) 1.2异步电动机矢量控制原理 (2) 2矢量控制理论 (4) 2.1矢量控制 (4) 2.2异步电机的动态数学模型 (5) 2.3坐标变换 (7) 3矢量控制系统硬件设计 (9) 3.1矢量控制结构框图 (9) 3.2矢量控制系统的电流闭环控制方式思想 (9) 3.3各个子系统模块 (10) 3.4矢量控制的异步电动机调速系统模块 (12) 4 SIMULINK仿真 (13) 4.1MATLAB/S IMULINK概述 (13) 4.2仿真参数 (13) 4.3仿真结果 (14) 5总结 (16) 参考文献 (17)

摘要 异步电机的物理模型之所以复杂,关键在于各个磁通间的耦合。本设计把异步电动机模型解耦成有磁链和转速分别控制的简单模型,就可以模拟直流电动机的控制模型来控制交流电动机。综合矩阵变换的控制策略及异步电动机转子磁场定向理论,采用计算机仿真方法分别建立了矩阵变换仿真模型以及基于矩阵变换的异步电动机矢量控制系统仿真模型,对矩阵变换的控制原理、输入、输出性能以及矢量控制系统的优质的抗扰能力及四象限运行特性进行分析验证,展现了该新型交流调速系统的广阔发展前景,并针对基于矩阵变换的异步电动机矢量控制系统的特点,着重对矢量控制单元进行了软件设计。直接矢量控制就是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果。本文研究了矢量控制系统中磁链调节器的设计方法。并用MATLAB最终得到了仿真结果。 关键词:坐标变换;矢量控制;MATLAB/simulink

异步电机矢量控制系统设计

异步电机矢量控制系统设计

存档日期:存档编号: 本科生毕业设计(论文) 论文题目: 姓名:刘成成 学院:电气工程及自动化学院 专业:自动化 班级、学号:08电5108285008 指导教师:甘良志 江苏师范大学教务处印制 异步电机矢量控制系统设计

摘要 目前广泛研究应用的异步电机调速技术有恒压频比控制方式、矢量控制、直接转矩控制等。本论文中所讨论的是异步电机矢量控制调速法,相对于恒压频比控制和直接转矩控制,它有优秀的动态性能和低速性能,还有其调速范围宽的优点。 在给出异步电动机的矢量控制原理的同时,一并给出了矢量变换实现的步骤,解释了三相异步电动机数学模型的解耦方法。在论述了三相异步电功机的磁场定向原理之后,又介绍了转子磁链计算方法并设计了转子磁链观测器。详细分析了转矩调节器,转速调节器和磁通调节器的工作原理,并根据各个调节器的原理对各个调节器进行了相应的设计。以DSP为控制核心,设计了异步电机矢量控制系统的硬件电路,并编制了软件程序。 运用了MATLAB的工具软件SIMULINK对磁通闭环的控制矢量系统进行了仿真,并给出了仿真结果。 关键词:异步电机矢量控制 DSP处理器

Abstract At present, the asynchronous motor velocity modulation, vector control and direct torque check etc. Are in detailed studies. This paper discusses the modulation method of asynchronous and wide velocity modulation scope. This paper points out the process of implementing vector transformation and explains how to work in pairs in the mathematical models of asynchronous motors in turns while elaborating the vector control principle in asynchronous motor. It introduces the computational method of rotor flux linkage and designed the visualizer for rotor flux linkage. This paper analyzes the working principles of magnetic flux regulator, torque regulator and RPM control and has designed all of them. Taking DSP as the control core, it has also designed the hardware of the vector controlling system in the asynchronous motor and has written the software program. It has applied the SIMULINK tool software in MATLAB to carry on the simulation to the controlling system of the magnetic closed loop vector and give the simulation result and the analysis of the result. Key words:Asynchronous Motor Vector Control Digital Signal Processors

相关文档
最新文档