四色问题的直观几何论证及单纯性地图四色定理
学校活动课四色定理

网络路由优化
总结词
网络路由优化是四色定理在网络领域的 应用,通过合理规划路由器的颜色配置 ,可以提高网络的性能和稳定性。
VS
详细描述
在网络路由优化中,四色定理的应用可以 帮助设计人员合理规划路由器的颜色配置 ,以确保网络的性能和稳定性。通过将路 由器分为四种颜色,可以有效地减少路由 器的配置复杂性和网络拥堵情况,提高网 络的传输效率和可靠性。这一应用在网络 工程和通信领域具有广泛的应用价值。
介绍四色定理在其他领域的应用,引 导学生探索更多的数学奥秘。
反思与改进
引导学生对实践活动进行反思,提出 改进意见和建议,以便于进一步提高 活动效果。
07 结论与展望
四色定理的重要性和影响
A
简化地图绘制
四色定理证明了给定任何平面地图,只需四种 颜色就可以确保相邻地区不会发生颜色冲突, 从而简化了地图绘制过程。
缩图法的关键在于如何有效地将地图分割成小块,并确保每 块都能用尽量少的颜色完成染色。这需要学生不断尝试和优 化,以找到最佳的分割方案。
反证法
反证法是一种通过假设四色定理不成立,然后推导出矛盾 ,从而证明四色定理的方法。这种方法有助于培养学生的 逆向思维和逻辑推理能力。
反证法的关键在于如何找到合适的矛盾点,并逐步推导出 与假设相矛盾的结论。这需要学生深入理解四色定理的本 质,并能够灵活运用所学知识进行推理。
05 四色定理的应用实例
地图染色问题
总结词
地图染色问题是四色定理最常见的应用实例,通过使用四色定理,可以确保给定地图只需要四种颜色 即可完成染色,避免了颜色过多导致混淆的情况。
详细描述
地图染色问题是一个经典的几何问题,它涉及到如何使用最少的颜色对地图进行染色,使得任意两个 相邻的区域都不同色。四色定理证明了一个平面地图可以使用四种颜色进行染色,无论地图的复杂性 如何。这一理论广泛应用于地图制作、地理信息系统等领域。
四色定理

解决历程
1.猜想的诞生 2.问题的提出
3.问题的证明
猜想的诞生
地图四色定理(Four color theorem)最先是由一位叫古德里Francis Guthrie的英国大学生提出来 的。德· 摩尔根Augustus De Morgan180618711852年10月23日致哈密顿的一封信提供了有关四 色定理来源的最原始的记载。四色问题又称四色猜想是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年毕业于伦敦大学的弗南西斯· 格思里来到一家科研单位搞地图 着色工作时,发现了一种有趣的现象“看来每幅地图都可以用四种颜色着色使得有共同边界的 国家都被着上不同的颜色。”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟 弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作 没有进展。 1852年10月23日他的弟弟就这个问题的证明请教了他的老师、著名数学家德· 摩尔根。摩尔根 也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密顿爵士请教。汉 密尔顿接到摩尔根的信后对四色问题进行论证。但直到1865年汉密尔顿逝世为止问题也没有能 够解决。
如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立只要
证明不存在一张正规五色地图就足够了。
问题的证明
肯普是用归谬法来证明的。大意是如果有一张正规的五色地图就会存在一张国数最少的“极小正规五色地图”。 如果极小正规五色地图中有一个国家的邻国数少于六个。就会存在一张国数较少的正规地图仍为五色的。这样一 来就不会有极小五色地图的国数也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是
缓慢的进展
当时由大数学家黎曼,康托尔,庞加莱等创立的拓扑学之发展可谓一日千里后来竟然盖过大数学家 高斯宠爱的数论成为雍荣华贵的数学女王。四色问题就是属于拓扑学范畴的一个大问题。拓扑学不 仅引进了全新的研究方式,对数学家来说他也是一场革命。回顾拓扑学的的历史就可以说明为什么 四色问题对于20世纪数学来说是重要的。通俗的说连续变换就是你可以捏,拉一个东西但不能将其 扯破也不能把原先不在一起的两个点黏在一起。比如26个大写英文字母一些拓扑学家就认为可将其 分为3类。
四色猜想 四色图猜想是什么-

四色猜想四色图猜想是什么?各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢四色猜想四色猜想此猜想已被证明不再是猜想是定理了四色原理世界近代三大数学难题之一.四色猜想的提出来自英国.1852年,毕业于伦敦大学的弗南西斯·格思里(Francis Guthrie)来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试.兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展.1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教.哈密尔顿接到摩尔根的信后,对四色问题进行论证.但直到1865年哈密尔顿逝世为止,问题也没有能够解决.1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题.世界上许多一流的数学家都纷纷参加了四色猜想的大会战.1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了.11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的.不久,泰勒的证明也被人们否定了.后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获.于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路.进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行.1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色.1950年,有人从22国推进到35国.1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国.看来这种推进仍然十分缓慢.电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程.1976年,在J. Koch的算法的支持下,美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明.四色猜想的计算机证明,轰动了世界,当时中国科学家也有在研究这原理.它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点.证明方法将地图上的无限种可能情况减少为1,936种状态,这些状态由计算机一个挨一个的进行检查.这一工作由不同的程序和计算机独立的进行了复检.在1996年,Neil Robertson、Daniel Sanders、Paul Seymour和Robin Thomas使用了一种类似的证明方法,检查了633种特殊的情况.这一新证明也使用了计算机,如果由人工来检查的话是不切实际的.四色定理是第一个主要由计算机证明的理论,这一证明并不被所有的数学家接受,因为它不能由人工直接验证.最终,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任.德·摩尔根:地图四色定理德·摩尔根致哈密顿的信我的一位学生今天请我解释一个我过去不知道,现在仍不甚了了的事实.他说如果任意划分一个图形并给各部分着上颜色,使任何具有公共边界的部分颜色不同,那么需要且仅需要四种颜色就够了.下图是需要四种颜色的例子.现在的问题是是否会出现需要五种或更多种颜色的情形.就我目前的理解,若四个不订分割的区域两两具有公共边界线,则其中三个必包围第四个而使其不与任何第五个区域相毗邻.这事实若能成立,那么用四种颜色即可为任何可能的地图着色,使除了在公共点外同种颜色不会.现画出三个两两具有公共边界的区域ABC,那么似乎不可能再画第四个区域与其他三个区域的每一个都有公共边界,除非它包围了其中一个区域.但要证明这一点却很棘手,我也不能确定问题复杂的程度一对此您的意见如何呢?并且此事如果当真,难道从未有人注意过吗?我的学生说这是在给一幅英国地图着色时提出的猜测.我越想越觉得这是显然的事情.如果您能举出一个简单的反例来,说明我像一头蠢驴,那我只好重蹈史芬克斯①的复辙了…….各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
四色定理

四色定理是一个著名的数学定理:如果在平面上划出一些邻接的有限区域,那么可以用四种颜色来给这些区域染色,使得每两个邻接区域染的颜色都不一样。另一个通俗的说法是:每个地图都可以用不多于四种颜色来染色,而且没有两个邻接的区域颜色相同。“是否只用四种颜色就能为所有地图染色”的问题最早是由一位英国制图员在1852年提出的,被称为“四色问题”或“四色猜想”。1976年,数学家凯尼斯·阿佩尔和沃夫冈·哈肯借助电子计算机首次得到了一个完全的证明,四色问题也终于成为了四色定理。这是首个主要借助计算机证明的定理。这个证明一开始并不为许多数学家接受,因为不少人认为这个证明无法用人手直接验证。尽管随着计算机的普及,数学界对计算机辅助证明更能接受,但仍有数学家希望能够找到更简洁或不借助计算机的证明。
世界地图为什么只有 4 种颜色?

世界地图为什么只有 4 种颜色?在一张世界地图上,要给相邻国家涂上不同的颜色,至少需要多少种颜色呢?答案是四种颜色。
这就是数学界非常有名的四色定理,这个最初源于给地图上国家上色的有趣问题被誉为世界近代三大数学问题之一。
数学家用了100 多年的时间才给出了真正的证明,所用的计算机证明也登上了数学舞台。
如今,在图论领域,还有许多由四色定理衍生出来的有趣问题。
例如,一个起源于收音机广播电台的问题:在一个无限大的网格纸上填入数字,同一个数字之间的“距离”必须大于这个数字本身,那么最少需要多少个数字能覆盖整个平面?年幼的你会对着书房墙面上的世界地图发呆吗?凝视着那五颜六色的图案,畅想着自己将来有一天能够环游世界。
而在 19 世纪的英国,一个古老且经典的数学问题——着色问题,就诞生于这样一份凝视。
应用四色定理填色的世界地图,图片来源:自然资源部标准地图服务系统四色问题的起源故事开始于 1852 年,英国地图制图师弗朗西斯·古特里(Francis Guthrie)在观察地图时提出了一个“给地图着色”的问题。
他发现只需要四种颜色就可以对地图进行着色,使得相邻的国家颜色不同。
但令他不解的是,这个数字“4”是否是最优的呢?于是他向他的弟弟弗雷德里克·古特里(Frederick Guthrie)及其朋友们寻求帮助。
在交流中,他们逐渐认识到这个问题与数学有着深刻的联系。
于是弗雷德里克向他的老师——伦敦大学学院的数学家奥古斯塔斯·德摩根(Augustus De Morgan)寻求帮助。
德摩根教授尝试之后也无能为力,于是写信将这个问题转交给了他的好友爱尔兰数学家威廉·哈密顿(William Hamilton)教授。
遗憾的是,充满智慧的哈密顿对这个问题并没有太大的兴趣。
摩尔根在信中写道:“一位学生今天让我说明一个事实,我们不知道它是否可作为一个事实。
他说将平面上的一个图形,任意划分成有限个部分并对其每个部分染色,使得相邻部分具有不同的颜色,而且只能用四种颜色。
学校活动课 四色定理

我 们 的 猜 想 与 假 设
猜想与假设二:因为三种颜色和五 种颜色不行。<4种颜色少了,>4 种颜色多了。
<4种颜色
所以,我们下来又做了进一步的准备。 为了更好的了解四色定理,我们组的同学 在网上查阅了相关的资料,询问了老师有 关四色定理的问题,发现这是一个世界上 著名的数学难题之一,但这并没有打退我 们前进的步伐。更想通过自己的思想证明 这一难题!
1、偶数套环偶数环: 如图:给定四种颜色为:A、B、 C、D 以点O为圆心向外建立任意个半 径不同的圆,在每个圆的圆周上 任意作偶数条垂线,与下一个圆 组成偶数个区域,组成偶数环套 偶数环的情景。 以任意一色作为第一层圆的颜色, 在下一层园中又以异于上一层的 两种不同颜色进行填充,此时, 每个圆内的区域可以被两种颜色 分开,而每下一层,圆环又可以 被异于这两种颜色的另外两色分 开,重复这样的规律一直填色下 去。 ∴四下载了, 一遍又一遍的 去玩,一遍又 一遍的去探索, 终于,在游戏 的启发下,我 们找到了方法!
我们在到了游戏,我们便反复 的去做,开始没什么进展。后 来,一位同学说:“哎呀,妳 点一种颜色,涂好后,又去点 另一种颜色,好麻烦啊。还不 如先在图上把一种颜色不重复 的填完,再把其他颜色一下一 下的带进去啊。”
于是,我在游戏中先把一 种颜色的用完,发现没有 地方可以在填这种颜色时, 再将其他颜色依次填入, 这样,用时又少,还零失 误呢!
在这个发现的基础上,我们又有了新的疑惑,而这一个重大而宝贵 的疑问,正把我们的思想转向奇偶性讨论————
为什么仅仅只要四种颜色就可以把区域分开?这和奇偶性有关 吗?我们开始从无穷的范围转化到绝对,比如,数,它的数量 是一个无穷的的值,但是,只要是数,非奇必偶,我们想,区 域会不会也是这样的呢?这样的思想,引导了我们对该定理的 分析。
四色问题

四色问题
英国人格思里于1852年提出四色问题(four colour problem,亦称四色猜想),即在为一平面或一球面的地图着色时,假定每一个国家在地图上是一个连通域,并且有相邻边界线的两个国家必须用不同的颜色,问是否只要四种颜色就可完成着色。
1878年英国数学家凯莱重新提出这问题,引起人们关注。
次年,英国数学家肯普提出用可约构形证明四色问题,虽然他的证明过程有漏洞,但为该问题的解决指出方向。
1890年英国人希伍德沿着这方向证明了任何地图只用五种颜色着色便够了,取得初步进展。
1913年美国数学家伯克霍夫发现一些新的可约构形。
1968年挪威数学家奥雷等人证明了用四种颜色一定可以把不超过四十个国家的地图着色,推进了四色问题的研究。
70年代初人们努力寻找可约构形中的不可免完备集,因为用它可以通过数学归纳法证明四色问题。
1976年美国数学家哈肯和阿佩尔花了1200多小时的电子计算器工作时间,找到一个由1936个可约构形所组成的不可免完备集,因而在美国数学会通报上宣称证明了四色猜想。
后来他们又将组成不可免完备集的可约构形减至1834个。
四色问题的研究对平面图理论、代数拓扑论、有限射影几何和计算器编码程序设计等理论的发展起了推动作用。
四色定理的最简单证明

四色定理,也被称为四色问题,是一个著名的图论问题,它提出了一个简洁而有趣的断言:任何平面地图都可以用不超过四种颜色进行着色,使得任意两个相邻的地区颜色不同。
尽管四色定理的最简单证明仍然非常复杂,需要使用高级数学工具,但我可以尝试为您提供一个基本的思路。
思路如下:
1. 假设存在一个需要五种或更多颜色才能正确着色的地图。
2. 选择其中一个地图并标记为A。
3. 找到A与其他地图相邻的地图,标记为B。
4. 找到A与B相邻的地图,标记为C。
5. 找到A、B和C都相邻的地图,标记为D。
6. 因为A、B、C和D都相邻,根据四色定理,它们应该可以用不超过四种颜色进行着色。
然而,根据假设,我们需要五种或更多颜色。
这导致了矛盾。
7. 因此,根据反证法,我们可以得出结论:任何平面地图都可以用不超过四种颜色进行着色。
需要注意的是,这只是一个简单的思路,而且四色定理的详细证明涉及复杂的图论和组合数学的技术。
数学家们在数十年的努力中最终证明了这个定理的正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年9月图学学报September 2013第34卷第5期JOURNAL OF GRAPHICS V ol.34 No.5四色问题的直观几何论证及单纯性地图四色定理张士庆1, 2,张号3(1. 辽宁工程技术大学,辽宁阜新123000;2. 中国矿业大学银川学院,宁夏银川 750011;3. 广东美的厨卫电器制造有限公司,广东佛山 528300)摘要:对地图染色问题的论证已困扰学术界160余年,根本原因在于它不是经典数学问题,而人们总想用经典数学方法去证明它。
用直观几何方法将其转换为染色等价的正规地图,并严格证明“相邻域定理”;建立并分析最小单元地图的染色,发现了单纯性和关联性两种地图染色模式;建立基本单元地图模型,创造由基本单元地图模型成长为地图的过程与染色相结合的直观方法;严格证明四色定理:任何单纯性地图可以至多用4种颜色染色,而任何关联性地图所需颜色数目不确定;创造“缩灭法则”去简化复杂地图;举出了《中国行政区划正规地图》应用实例。
关键词:正规地图;染色等价;单纯性地图;相邻域;缩灭法则中图分类号:k 99,O 189,TB 113文献标识码:A 文章编号:2095-302X (2013)05-0046-05Visualized Geometrical Demonstration of the Four Colors Problem and theFour Color Theorem of Simple MapZhang Shiqing1, 2, Zhang Hao3( 1. Liaoning Engineering and Technological University, Liaoning Fuxin 123000, China;2. China University of Mining and Technology Yinchuan College, Ningxia Yinchuan 750011, China;3. GD Midea Kitchen & Bath Appliances Mfg. Co., Ltd., Guangdong Foshan 528300, china )Abstract: The arguments of the least colors that should be used to dye the 2D net color block graph, such as maps and patterns, have puzzled the academia for one hundred and sixty years or more. The basic reason is that the scholars have been working on to solve the problem with classical mathematics methods, even though it is not a classical mathematics problem. Visualized engineering geometry is used to turn the 2D net color block graph into dyeing equivalence normal map, and critically adjacent domain axioms proved. The smallest unit of maps and their dyeing mode is also established. Two kinds of map dyeing mode are found in the process. The first is simple dyeing mode, and the second is the relevant dyeing mode. At the same time, a visualized method is developed combining the dyeing and the process of turning the smallest map unit into maps together. It is proven critically that any simple maps are suitable for the least four colors dyeing method, but for the relevant maps, the number of colors that should be used are uncertain.Key words: normal map; dyeing equivalence; simple map; adjacent domain; reducing rule收稿日期:2012-09-22;定稿日期:2013-04-01作者简介:张士庆(1947-),男,辽宁辽中人,教授,主要研究方向为图学理论及应用、图学教育、现代教育技术。
E-mail:comandnet@通讯作者:张号(1977-),男,辽宁阜新人,研发项目负责人,主要研究方向为家电产品研发设计、计算机及网络应用。
“四色问题又称四色猜想、四色定理”,自1850年前后提出以来,以“看起来最简单”但又无法得到严格证明而“特别惹人注目”,成为“世界近代数学三大难题之一”。
对“图论”、“拓扑学”的产生和发展影响深远。
[1-4]四色问题困扰学术界160余年,其根本原因在于它不是经典数学问题,而人们总想用经典数学方法去证明它。
地图染色问题的本质是区域的形状及其相互间的位置关系。
其形、位可以“变换无穷”,而染色结果也可能不是唯一的。
因此,染色问题不是单纯的数逻辑问题,也不在经典几何公理体系内,它是特殊的数逻辑与极复杂的形、位关系相结合,并主要是位置关系问题。
基于这一认识,并借前人在拓扑学方面已取得的某些成就[5-7],本文用直观几何方法,对四色问题作一个完整的论证。
1 正规地图染色等价定理若干简单封闭线(即区域的边界)将平面(注:球面和平面问题没有实质区别)分割为许多称为“区域”的部分,构成地图网络,如图1(a)所示。
定义 1 地图网络相邻的区域采用不同颜色,称为正确染色,简称染色。
如图1(a)之区域I 与区域II 、V ,必须采用不同颜色。
为使染色分析简明,对网络作如下染色等价变换。
(a) (b) (c) (d)图1 地图、相邻域、正规化地图定义2 若一顶点A所属区域数目大于3时,在A处增设一个小区域,如图1(b)所示,使每个顶点所属区域数目为3,成为3条线的汇聚点。
这一变换没有改变原地图各区域的邻域关系,称变换后的网络图为正规地图,如图1(c)所示。
正规地图染色等价定理(引理1) 正规地图Tn 正确染色后,则缩灭(减少)任意一个区域后的地图Tn-1也是正确染色。
简称:染色定理。
证明:设正规地图Tn 由区域A 、B 、C 、D ……组成。
将正规地图Tn 任意一个区域,例如A ,缩灭为一个点,得到地图Tn-1。
这一简单变换,没有改变地图Tn-1和地图Tn 上的对应区域B 、C 、D ……之间的相邻区域关系,即地图Tn 与地图Tn-1上的对应区域B 、C 、D ……染色可以相同。
称此两图染色等价。
如图1所示:将图1(c)图之区域A 缩灭为一点,即成图1(a)图;图1(c)图上的区域Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ与图1(a)上的对应区域Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ可以一一对应染相同颜色。
图1(d)是图1(c)区域Ⅱ缩灭为一点后的图形;两图上的区域Ⅰ、A 、Ⅲ、Ⅳ、Ⅴ、Ⅵ也一一对应。
证毕2 两两相邻域定理两两相邻域定理(引理2) 平面(或球面)上的地图网络,两两相邻的区域(注:以下简称相邻域)的最大数目是4。
简称:相邻域定理。
(a) (b) (c) (d)图2 最大两两相邻域数目为4第5期 张士庆等:四色问题的直观几何论证及单纯性地图四色定理 47证明:在平面(或球面)S2上作简单闭曲线C1,C1分S2为两个相邻域Ⅰ、Ⅱ,C1为公共边界[8],如图2(a)所示;在C1上任取两点a 、b ,将闭曲线C1分为两部分1、2。
任取区域Ⅰ、Ⅱ之Ⅱ(Ⅰ、Ⅱ没有实质区别),在Ⅱ内作一条含1(1、2没有实质区别)的简单闭曲线C2(如图2(a)虚线处所示),分区域Ⅱ为两个相邻区域Ⅱ、Ⅲ(注:分割后之Ⅱ是原区域Ⅱ的一部分,为讨论方便仍用Ⅱ标示;以后相似问题均如此处理);C2的一部分(即虚线,不含边界1)为Ⅱ、Ⅲ的公共边界。
区域Ⅱ、Ⅲ均与区域Ⅰ相邻,公共边界分别为2、1;得到3个“两两相邻区域”,如图2(b)所示。
若有区域Ⅳ与Ⅰ、Ⅱ、Ⅲ均相邻,则Ⅳ的外围边界线必含有Ⅰ、Ⅱ、Ⅲ的边界。
用上述原理及方法必能作出区域Ⅳ:分别在Ⅰ、Ⅱ边界线上任取一点d ,在Ⅱ、Ⅲ边界线上任取一点e ,将这两段边界线分为关于区域Ⅱ位置“对称”的两部分(即拓扑学意义上的等价,以下的“对称”是同样意义),在Ⅱ内作一条简单闭曲线,如图2(b)虚线处所示。
如图2(c)所示,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ即是4个两两相邻区域。
4个相邻域Ⅰ、Ⅱ、Ⅲ、Ⅳ的4条边界闭曲线各自皆由本区域分别与其它3个区域的“3段公共边界线”组成,类似4个“对称”的三角形:△abe 、△ebd 、△dba 、△ade (△ade 是类似反演形式三角形),如图2(d)所示意。
在这样的类三角形闭曲线上,不存在两个界点,将这条闭曲线分为“对称”的两部分,使每部分均含有3段公共边界;因此不可能在Ⅰ、Ⅱ、Ⅲ、Ⅳ之任意一个区域内分划出两个邻域,使它们同时与其它3个区域均相邻。
因此5个相邻域不存在。
没有5个相邻域,就不存在5个以上相邻域。
因为,如果存在6个相邻域必然包含5个相邻域,这与上述结论矛盾。
证毕3 基本单元地图模型地图是由若干基本单元组合而成。
基本单元地图的模型可归纳如图3所示。
图3(a)、图3(b)之图互为反演。
链式、内含式染色最少颜色数目不大于两两相邻式;图中各基本单元地图模型中“四域两两相邻式”(即4个相邻域Ⅰ、Ⅱ、Ⅲ、Ⅳ)必须4种颜色才能正确染色,其余仅需2~3色就能正确染色。
(a) (b)图3 基本单元地图模型4 地图染色类型若地图的每个区域染色均独立,称为单纯性地图;若存在两个以上区域染色关联,称为关联性地图。
例如两个区域Ⅳ1、Ⅳ2 同属一个国家Ⅳ,其中一部分Ⅳ2被其它国家Ⅴ隔开,成为一块飞地(或内含于第三区域);虽然Ⅳ1、Ⅳ2不相邻,但必须染成同一种颜色,如图5右图所示。
单纯性地图仅考虑相邻区域不同色。
关联性地图还必须考虑染色关联区域同色。