2010年高考江苏理科数学试题

合集下载

2010江苏省高考数学真题含答案清晰版

2010江苏省高考数学真题含答案清晰版

2010江苏高考试卷锥体的体积公式:Sh V 31=锥体,其中S 是锥体的底面面积,h 是高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应的位置上.......... 1. 设集合{}3,1,1-=A ,{}4,22++=a a B ,{}3=⋂B A ,则实数a 的值为 . 2. 设复数z 满足i i z 46)32(+=-(其中i 为虚数单位),则z 的模为 . 3. 盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是 . 4. 某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有 根在棉花纤维的长度小于20mm. 5. 设函数))(()(R x ae e x x f x x ∈+=-是偶函数,则实数a = .6. 平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标 是3,则M 到双曲线右焦点的距离是 .7. 右图是一个算法的流程图,则输出S 的值是 .8. 函数)0(2>=x x y 的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5 = .9. 在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线0512=+-c y x 的距离为1,则实数c 的取值范围是 . 10. 定义在区间⎪⎭⎫⎝⎛20π,上的函数x y cos 6=的图像与x y tan 5=的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与x sin =的图像交于点P 2,则线段P 1P 2的长为 .11. 已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是 .12. 设实数y x ,满足94,8322≤≤≤≤y x xy ,则43yx 的最大值是 .13. 在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,6cos b aC a b +=,则tan tan tan tan C CA B+= . 14. 将边长为m 1正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记2(S =梯形的周长)梯形的面积,则S 的最小值是 .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤.15.(本小题满分14分)在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1). (1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长; (2)设实数t 满足(OC t AB -)·OC =0,求t 的值.(第4题图)(第7题图)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900. (1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.17. (本小题满分14分)某兴趣小组测量电视塔AE 的高度H(单位:m ),如示意图,垂直放置的标杆BC 的高度m h 4=,仰角 ∠ABE=α,∠ADE=β. (1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m ,试问d 为多少时,α-β最大?(第17题图)在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左右顶点为A,B ,右顶点为F ,设过点T (m t ,)的直线TB TA ,与椭圆分别交于点M ),(11y x ,),(22y x N ,其中0>m ,0,021<>y y .(1)设动点P 满足422=-PB PF ,求点P 的轨迹;(2)设31,221==x x ,求点T 的坐标;(3)设9=t ,求证:直线MN 必过x 轴上的一定点.(其坐标与m 无关)19.(本小题满分16分)设各项均为正数的数列{}n a 的前n 项和为n S ,已知3122a a a +=,数列{}nS 是公差为d 的等差数列.(1)求数列{}n a 的通项公式(用d n ,表示)(2)设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立,求证:c 的最大值为29. (第18题图)设)(x f 是定义在区间),1(+∞上的函数,其导函数为)('x f .如果存在实数a 和函数)(x h ,其中)(x h 对任意的),1(+∞∈x 都有)(x h >0,使得)1)(()('2+-=ax x x h x f ,则称函数)(x f 具有性质)(a P . (1)设函数)(x f )1(12)(>+++=x x b x h ,其中b 为实数 (ⅰ)求证:函数)(x f 具有性质)(b P ; (ⅱ)求函数)(x f 的单调区间;(2)已知函数)(x g 具有性质)2(P ,给定为实数,设m x x x x ,),,1(,2121<+∞∈21)1(x m mx -+=α,21)1(mx x m +-=β,且1,1>>βα,若|)()(βαg g -|<|)()(21x g x g -|,求m 的取值范围.2010高考数学答案11。

2010江苏高考数学试卷清晰版

2010江苏高考数学试卷清晰版

2010年江苏高考数学试题一、填空题1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲________2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲________3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。

5、设函数f(x)=x(e x +ae -x ),x ∈R ,是偶函数,则实数a =_______▲_________6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是___▲_______7、右图是一个算法的流程图,则输出S 的值是______▲_______8、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____▲_____9、在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是______▲_____ 10、定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_______▲_____11、已知函数⎩⎨⎧<≥+=01012x ,x ,x )x (f ,则满足不等式)x (f )x (f 212>-的x 的范围是____▲____12、设实数x,y 满足3≤2xy ≤8,4≤y x 2≤9,则43yx 的最大值是_____▲____13、在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,C cos b a a b 6=+,则=+Btan Ctan A tan C tan __▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=梯形的面积梯形的周长)2(,则S 的最小值是_______▲_______二、解答题15、(14分)在平面直角坐标系xOy 中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长 (2)设实数t 满足(t -)·=0,求t 的值16、(14分)如图,四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900 (1)求证:PC ⊥BC(2)求点A 到平面PBC 的距离DCBAPE17、(14分)某兴趣小组测量电视塔AE 的高度H(单位m ),如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=α,∠ADE=β(1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,,请据此算出H 的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m ,问d 为多少时,α-β最大18.(16分)在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左右顶点为A,B ,右顶点为F ,设过点T (m t ,)的直线TA,TB①设动点P 满足422=-PB PF ,求点P ②设31,221==x x ,求点T 的坐标 ③设9=t ,求证:直线MN 必过x (其坐标与m 无关)19.(16分)设各项均为正数的数列{}n a 的前n 项和为n S ,已知3122a a a +=,数列{}nS 是公差为d 的等差数列.①求数列{}n a 的通项公式(用d n ,表示)②设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立。

2010年江苏高考数学试题详析(完整版

2010年江苏高考数学试题详析(完整版

2010年江苏高考数学试题一、填空题1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲________ 简析:由集合中元素的互异性有a+2=3或a 2+4=3,⇒a=1或a 2=-1(舍) ⇒a=1 2z 的模为______▲_________▲__ 100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。

简析:观察频率分布直方图,知有0.06×5×100=30根长度小于20mm 5、设函数f(x)=x(e x +ae -x ),(x ∈R )是偶函数,则实数a =_______▲_________简析:由偶函数⇒f(-x)=f(x) ⇒x(e x +ae -x )=-x(e -x +ae x ) ⇒x(e x +e -x )(1+a)=0 ⇒x ∈R a=-16、在平面直角坐标系xOy 中,双曲线x 24-y 212=1上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的7、右图是一个算法的流程图,则输出S 的值是______▲_______简析:读图知这是计算S=1+21+22+…+2n 的一个算法,由S=2n -1≥33且n 为正整数知n=5时跳出循环,此时,输出S=1+21+22+…+25=638、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____▲_____ 简析:对原函数求导得y '=2x (x>0),据题意,由a 1=16=24依次求得a 2=8,a 3=4,a 4=2,a 5=1,所以a 1+a 3+a 5=219、在平面直角坐标系xOy 中,已知圆x 2+y 2=4四个点到直线12x -5y+c=0的距离为1,则实数c 的取值范10、定义在区间(0,π2)上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP与y=sinx 的图像交于点P ,则线段P P 的长为_______▲_____ 11、已知函数f(x)=⎩⎨1 ,x<0,则满足不等式f(1-x 2)>f(2x)的x 的范围是____▲____12、设实数x,y 满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是_____▲____13、在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,b +a =6cosC ,则tanC +tanC=__▲14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=(梯形的周长)2梯形的面积,二、解答题15、(14分)在平面直角坐标系xOy 中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长 (2)设实数t 满足(AB →-t ·OC →)·OC →=0=0,求t 的值简析:⑴据题意,本小问解法不唯一,如利用平行四边形性质求出第四点D ,然后运用两点间距离公式求两对角线;又如,亦可利用向量知识,求向量AB →与AC →和、差的模;16、(14分)如图,四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900 (1)求证:PC ⊥BC(2)求点A 到平面PBC 的距离16题图17、(14分)某兴趣小组测量电视塔AE 的高度H(单位m ),如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=α,∠ADE=β(1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,,请据此算出H 的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m ,问d 为多少时,α-β最大解析:⑴⑵18.(16分)在平面直角坐标系xoy 中,如图,已知椭圆x 29+y 25=1的左右顶点为A,B ,右焦点为F ,设过点T(t,m)的直线TA,TB 与椭圆分别交于点M(x 1,y 1),N(x 2,y 2),其中m>0,y 1>0,y 2<0.⑴设动点P 满足PF 2-PB 2=4,求点P 的轨迹 ⑵设x 1=2,x 2=13,求点T 的坐标⑶设t=9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)19.(16分)设各项均为正数的数列{a n }的前n 项和为S n ,已知2a 2=a 1+a 3,数列{S n }是公差为d 的等差数列.⑴求数列{}n a 的通项公式(用d n ,表示)⑵设c 为实数,对满足m+n=3k 且m ≠n 的任意正整数m ,n ,k ,不等式S m +S n >cS k 都成立。

2010年高考真题——数学(江苏卷)

2010年高考真题——数学(江苏卷)

绝密★启用前2010年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题参考公式:锥体的体积公式:V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。

一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位置........上..1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =___________.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为___________.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是___.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有____根在棉花纤维的长度小于20mm 。

5、设函数f(x)=x(e x +ae -x )(x R)是偶函数,则实数a =________________注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。

本卷满分160分,考试时间为120分钟。

考试结束后,请将本卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。

作答必须用0.5毫米黑色墨水的签字笔。

请注意字体工整,笔迹清楚。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

6.请保持答题卡卡面清洁,不要折叠、破损。

6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是__________7、右图是一个算法的流程图,则输出S 的值是_____________8、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=_________9、在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是___________10、定义在区间⎪⎭⎫ ⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为____________。

2010年江苏高考数学试题

2010年江苏高考数学试题

数学公式数学公式,是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。

如一些基本公式抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点...b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。

椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+ta nA^10)·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积”南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

【数学】2010年高考试题——数学(江苏版)

【数学】2010年高考试题——数学(江苏版)

绝密★启用前2010年一般高等学校招生全国一致考试(江苏卷)数学Ⅰ试题参照公式:锥体的体积公式: V锥体=Sh,此中S是锥体的底面积,h 是高。

一、填空题:本大题共14 小题,每题 5 分,共 70 分。

请把答案填写在答题卡相应的地点上 .1、设会合 A={-1,1,3} ,B={a+2,a2+4},A∩ B={3} ,则实数 a=___________.[ 分析 ] 考察会合的运算推理。

3B,a+2=3, a=1.2、设复数 z 知足 z(2-3i)=6+4i(此中 i 为虚数单位),则 z 的模为 ___________.[ 分析 ] 考察复数运算、模的性质。

z(2-3i)=2(3+2i),2-3i 与 3+2 i 的模相等, z 的模为 2。

3、盒子中有大小同样的 3 只白球, 1 只黑球,若从中随机地摸出两只球,两只球颜色不一样的概率是 _ __.[ 分析 ] 考察古典概型知识。

4、某棉纺厂为了认识一批棉花的质量,从中随机抽取了100 根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间 [5,40]中,其频次散布直方图如下图,则其抽样的 100 根中,有 ____根在棉花纤维的长度小于20mm。

[ 分析 ] 考察频次散布直方图的知识。

100×( 0.001+0.001+0.004 )× 5=305、设函数 f(x)=x(ex+ae-x)(xR)是偶函数,则实数a=________________[ 分析 ] 考察函数的奇偶性的知识。

g(x)=ex+ae-x 为奇函数,由 g(0)=0 ,得 a=-1。

6、在平面直角坐标系xOy 中,双曲线上一点M,点 M的横坐标是3,则 M到双曲线右焦点的距离是 __________[ 分析 ] 考察双曲线的定义。

,为点7、右图是一个算法的流程图,则输出M到右准线的距离,=2, MF=4。

S 的值是 _____________[ 分析 ] 考察流程图理解。

2010年江苏省高考数学真题(解析版)

2010年江苏省高考数学真题(解析版)

绝密★启用前2010年普通高等学校招生全国统一考试(江苏卷)数学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1、本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题~第20题)两部分。

本试卷满分160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2、答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在试卷及答题卡上。

3、请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符。

4、作答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效。

作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其它答案。

5、如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚。

参考公式:锥体的体积公式:V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。

一、填空题:本大题共1小题,每小题5分,共70分.1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____.[解析]考查集合的运算推理。

3∈B,a+2=3,a=1.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____.[解析]考查复数运算、模的性质。

z(2-3i)=2(3+2i),2-3i 与3+2i 的模相等,z 的模为2。

3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__.[解析]考查古典概型知识。

3162p ==4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。

[解析]考查频率分布直方图的知识。

【强烈推荐免费】2010年江苏省高考数学试卷以及答案Word版

【强烈推荐免费】2010年江苏省高考数学试卷以及答案Word版

2010年普通高等学校招生全国统一考试数 学(江苏卷)一、填空题1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______________1;2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______________133、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是___21 4、设函数f(x)=x(e x +ae -x ),x ∈R ,是偶函数,则实数a =________________-15、右图是一个算法的流程图,则输出S 的值是_____________63;6、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=__21;7、已知函数⎩⎨⎧<≥+=01012x ,x ,x )x (f ,则满足不等式)x (f )x (f 212>-的x 的范围是_______()12,1--8、在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,C cos b a a b 6=+,则=+Btan C tan A tan C tan _______4 二、解答题15、(14分)在平面直角坐标系xOy 中,点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长(2)设实数t 满足(t -)·=0,求t 的值 解:(1)(3,5),(1,1)AB AC ==- 求两条对角线长即为求||AB AC + 与||AB AC - ,由(2,6)AB AC +=,得||AB AC += (4,4)AB AC -=,得||AB AC -=(2)(2,1)OC =-- ,∵(OC t AB -)·OC 2AB OC tOC =- ,易求11AB OC =- ,25OC = ,所以由(OC t AB -)·OC =0得115t =-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年普通高等学校招生全国统一考试数学(江苏卷)一、填空题1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______ _____. 2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______ _____.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ __.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花根中,有____5、设函数_________6点M 78、函数a 1=16,则a 1+a 3+a 59、1,则实数c 10⊥x 轴于点P 1,直线PP 11112、设实数x,y 满足3≤2xy ≤8,4≤y x 2≤9,则43yx 的最大值是 。

13、在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,6cos b a C a b +=,则tan tan tan tan C CA B+=____ _____。

14、将边长为1m 正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记2(S =梯形的周长)梯形的面积,则S 的最小值是____ ____。

二、解答题15、(本小题满分14分)在平面直角坐标系x-O-y 中,点A(-1,-2)、B(2,3)、C(-2,-1)。

(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长; (2)设实数t 满足(OC t AB )·OC =0,求t 的值。

16、(本小题满分14分)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900。

(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离。

17、(14分)某兴趣小组测量电视塔AE 的高度H(单位m ),如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=α,∠ADE=β(1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,,请据此算出H 的值(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m ,问d 为多少时,α-β最大BAED18、(本小题满分16分)在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F 。

设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。

(1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标;(3)设=t19、(1(2)设c 求证:c20、设)(x f 是定义在区间),1(+∞上的函数,其导函数为)('x f 。

如果存在实数a 和函数)(x h ,其中)(x h 对任意的),1(+∞∈x 都有)(x h >0,使得)1)(()('2+-=ax x x h x f ,则称函数)(x f 具有性质)(a P 。

(1)设函数)(x f 2ln (1)1b x x x +=+>+,其中b 为实数。

(i)求证:函数)(x f 具有性质)(b P ; (ii)求函数)(x f 的单调区间。

(2)已知函数)(x g 具有性质)2(P 。

给定1212,(1,),,x x x x ∈+∞<设m 为实数,21)1(x m mx -+=α,21)1(mx x m +-=β,且1,1>>βα,若|)()(βαg g -|<|)()(21x g x g -|,求m 的取值范围。

数学Ⅱ(附加题)21.[选做题AB 是圆O 延长线于点C 选修4-4选修4-5设a 、b 22,二等品率为10%1件乙产(1)记X (223、(本小题满分10分) 已知△ABC 的三边长都是有理数。

求证cosA 是有理数;(2)求证:对任意正整数n ,cosnA 是有理数。

2010年普通高等学校招生全国统一考试(江苏卷)数学试题(理工农医类)参考解答及评分标准说明 1.[解析] 考查集合的运算推理。

3∈B ,a+2=3, a=1.2.[解析] 考查复数运算、模的性质。

z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。

3.[解析]考查古典概型知识。

24.[解析]考查频率分布直方图的知识。

100×(0.001+0.001+0.004)×5=305.[解析]考查函数的奇偶性的知识。

g(x)=e x+ae -x为奇函数,由g(0)=0,得a =-1。

6.[解析]7.[解析]8.[解析]在点(a k所以1k a +=9.[解析]圆心(0,10.[解析且其中的x 11.[解析 12.[解析22()x y ∈13.[解析(方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性。

当A=B 或a=b 时满足题意,此时有:1cos 3C =,21cos 1tan 21cos 2C C C -==+,tan 22C =,1tan tan tan 2A B C===,tan tan tan tan C CA B+= 4。

(方法二)226cos 6cos b a C ab C a b a b +=⇒=+,2222222236,22a b c c ab a b a b ab +-⋅=++=2tan tan sin cos sin sin cos sin sin()1sin tan tan cos sin sin cos sin sin cos sin sin C C C B A B A C A B CA B C A B C A B C A B +++=⋅=⋅=⋅由正弦定理,得:上式=22222214113cos ()662c c c c C ab a b =⋅===+⋅14.[解析] 考查函数中的建模应用,等价转化思想。

一题多解。

22()S x=()S x '当x ∈故当x 令3-故当1t 15.[(1)(方法一)由题设知(3,5),(1,1)AB AC ==-,则(2,6),(4,4).AB AC AB AC +=-= 所以|||AB AC AB AC +=-=故所求的两条对角线的长分别为。

(方法二)设该平行四边形的第四个顶点为D ,两条对角线的交点为E ,则:E 为B 、C 的中点,E (0,1),又E (0,1)为A 、D 的中点,所以D (1,4)故所求的两条对角线的长分别为BC=AD=;(2)由题设知:OC =(-2,-1),(32,5)AB tOC t t -=++。

由(OC t AB -)·=0,得:(32,5)(2,1)0t t ++⋅--=, 从而511,t =-所以115t =-。

或者:2· AB OC tOC = ,(3,5),AB =2115||AB OC t OC ⋅==-16.[(1由∠所以BC (2)易证DE 又点A由(1因为易知因为AB 从而由PD 因为PD 又由PC ⊥BC ,BC=1,得PBC ∆的面积PBC S ∆=A PBC P ABC V V --=,1133PBC S h V ⋅== ,得h =故点A 到平面PBC分析:此题关键要找出C 点的位置,清楚α-β最大时tan(α-β)也最大 解:(1)因为: tan ,tan AE AE BCBA DA DBαβ===,AE H =则:tan H BA α=,tan H DA β=,4tan DB β= 因为 DA DB BA =+ 所以4tan tan tan H Hββα=+带入tan α=1.24,tan β=1.20 得41.20 1.20 1.24H H=+,所以H=124m (2)由题意知:125tan d α=,4tan DBβ=≤0 直线NTB 方程为:2010393=---,即62y x =-。

联立方程组,解得:7103x y =⎧⎪⎨=⎪⎩,所以点T 的坐标为10(7,)3。

(3)点T 的坐标为(9,)m直线MTA 方程为:03093y x m -+=-+,即(3)12my x =+, 直线NTB 方程为:03093y x m --=--,即(3)6my x =-。

分别与椭圆15922=+y x 联立方程组,同时考虑到123,3x x ≠-≠, 解得:23(80)40(m m M -23(20)20()m m-令0y =当12xx =所以直线MN此时直线MN 若12x x ≠直线ND 因此,直线18.[解析] 本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力。

满分16分。

(1)由题意知:0d >,(1)(1)n d n d =-=-21323213233()a a a a S S S S =+⇒=⇒-=,2221)]2),d a d -=化简,得:2211,a d d d a d -+===22(1),n d n d nd S n d =+-==,当2n ≥时,222221(1)(21)n n n a S S n d n d n d -=-=--=-,适合1n =情形。

故所求2(21)n a n d =- (2)(方法一)222222222m n k S S cS m d n d c k d m n c k +>⇒+>⋅⇒+>⋅, 222m n c k+<恒成立。

又n m k n m ≠=+且3,222222292()()9m n m n m n k ++>+=⇒>,故92c ≤m n S S +=另一方面条件,且(m n S S +=19.[解析] 距离知;若满分16(1)(i)'()f x 222121(1)(1)(1)b x bx x x x x +=-=-+++ ∵1x >时,21()0(1)h x x x =>+恒成立,∴函数)(x f 具有性质)(b P ; (ii)(方法一)设222()1()124b b x x bx x ϕ=-+=-+-,()x ϕ与)('x f 的符号相同。

当210,224b b ->-<<时,()x ϕ0>,)('x f 0>,故此时)(x f 在区间),1(+∞上递增;当2b =±时,对于1x >,有)('x f 0>,所以此时)(x f 在区间),1(+∞上递增;当2b <-时,()x ϕ图像开口向上,对称轴12b x =<-,而(0)1ϕ=, 对于1x >,总有()x ϕ0>,)('x f 0>,故此时)(x f 在区间),1(+∞上递增;(方法二)当2b ≤时,对于1x >,222()121(1)0x x bx x x x ϕ=-+≥-+=->所以)('x f 0>,故此时)(x f 在区间),1(+∞上递增;,综合以上讨论,得:所求m 的取值范围是(0,1)。

相关文档
最新文档