圆与扇形经典题汇总

圆与扇形经典题汇总
圆与扇形经典题汇总

圆与扇形

——公式与割补

内容提要

本讲主要讲解与圆和扇形有关的概念,及周长、面积公式等.下面我们来说说这方面的基础知识.

圆是我们在生活中经常见到的图形,它也是最完美的平面图形:有无数条通过圆心的对称轴,绕圆心旋转任何角度还保持原状.而且,所有的平面图形在周长相同的情况下,圆的面积是最大的.

我们知道,圆的周长和直径的比值是一个固定不变的数,这正是圆周率,用π表示.另外,一般把直径记作d,半径记作r,如图1所示.

如图3,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫扇形.它是圆的一部分,所以关于扇形的各种计算可以应用圆里面的结论.

图1

扇形的圆心角为n °时,它的弧长和面积应该分别是圆周长和圆面积的360

n .

我们先来熟悉一下这些公式. 练习:

1. 半径是2的圆的面积和周长分别是多少?

2.

3.

4. 直径是5的圆的面积和周长分别是多少?

5.

6.

7. 周长是10π的圆的面积是多少? 8. 9.

10. 面积是9π的圆的周长是多少? 11. 12.

例题

n °

r

图3

一、基本公式运用

例题1.已知扇形的圆心角为120°,半径为2,则这个扇形的面积和周长各是多少(圆周率按计算)

例题2.已知扇形面积为平方厘米,圆心角为60°,则这个扇形的半径和周长各是多少(圆周率按计算)

60

例题3.

例题4.

随堂练习:

1.已知一个扇形的弧长为厘米,圆心角为45,这个扇形的半径和周长各是多

少?

2.

3.

4.扇形的面积是平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角

是多少?

5.

6.如图,直角三角形ABC的面积是45,分别以B,C为圆心,3为半径画圆.已

知图中阴影部分的面积是.请问:角A是多少度(π取)

7.

8.

二、 圆中方,方中圆

9. 如图,左下图和右下图中的正方形边长都是2,那么大圆、小圆的面积分别为________、________.

10.

11. 随堂练习:

1.

已知外面大圆的半径是4,里面小圆的面积是多少(答案用

π表示)

2.

二、割补法

12. 求下列各图中阴影部分的面积(图中长度单位为厘米,圆周率按计算): (

1

(2)

2

随堂练习:

求下图中阴影部分的面积(图中长度单位为厘米,圆周率按计算):

1)

(2)

求下列各图中阴影部分的面积(图中长度单位为厘米,圆周率按计

算):

(1)

(2) (2)

(3)

(4) (5) (6) (7) (8) (9) (10) (11)

13. 已知图中正方形的边长为2,分别以其四个顶点为圆心的直角扇形恰好交于

正方形中心,那么图中阴影部分的面积为________.(答案用 表示)

4

7

2

14. 15. 16.

17. 根据图中所给数值,求下面图形的外周长和总面积分别是多少(π取)

18.

作业:

1. 半径为4

厘米的圆的周长是________厘米,面积是________平方厘米; 2.

3. 半径为4厘米,圆心角为

90?的扇形周长是________厘米,面积是________

平方厘米.(π取) 4.

5. 家里来客人了,淘气到超市买了4瓶啤酒,售货员阿姨将4瓶

啤酒捆扎在一起(如下图所示),捆4圈至少要用绳子________厘米.(π取,接头处忽略不计)

6. 求下列各图中阴影部分的面积(图中长度单位为厘米,圆周率按计算):

7. (

1

)(2)

1

1

8.

9.

10.

下列图形中的正方形的边长为

2,则下图中各个阴影部分面积的大小分别为______、______.(π取)

11.

12.用一块面积为36π平方厘米的圆形铝板下料,

从中裁出了7

个同样大小的圆铝板.问:所余下的边角料的总面积是多

少平方厘米

圆与扇形

旋转与重叠

知识总结:

学习如何利用割补法和包含排除的思想计算图形中特定部分的面积;学会分析几何图形的运动过程,并由此得出点的轨迹和图形扫过的区域.

例题:

一、重叠问题

例题1.下图中甲区域比乙区域的面积大57平方厘米,且半圆的半径是10厘米,

那么其中直角三角形的另一条直角边的长度是多少(圆周率?取)

例题2.

例题3.下图中有一个等腰直角三角形ABC ,一个以AB 为直径的半圆,和一个以BC

为半径的扇形.已知10AB BC ==厘米.图中阴影部分的面积为多少平方厘米(π取)

例题4.

随堂练习

1. 如图17-13,以AB 为直径做半圆,三角形ABC 是直角三角形,阴影部分①比

阴影部分②的面积小28平方厘米,AB 长40厘

米.求BC 的长度.(?取.)

2.

3. 4.

5. 6.

例题5.如图,直角三角形的两条直角边分别为

3和5,分别以三条边做了3个半

A C

B

B

C

圆(直角顶点在以斜边为直径的半圆上),那么阴影部分的面积为______.

例题6.

例题7. 例题8. 例题9.图

1是一个直径是3厘米的半圆,AB 是直径.如图2所示,让A 点不动,

把整个半圆逆时针转60°,此时B 点移动到C 点.请问:图中阴影部分的面积是多少平方厘米(π取)

例题10.

例题11. 例题12. 例题13.

二、 动态扫面积问题

例题14.如图,正方形

ABCD 边长为1厘米,依次以A 、B 、C 、D 为圆心,以AD 、

BE 、CF 、DG 为半径画出四个直角扇形,那么阴影部分的面积为________平方厘

米.( 取)

例题15. 例题16.

图1

A

B

图2

5

例题17.

例题18.

例题19.

例题20.

例题21.

例题22.

例题23.

例题24.如图所示,以等边三角形的B、C、A三点分别为圆心,分别以AB、CD、AE为半径画弧,这样形成的曲线ADEF被称为正三角形ABC的渐开线,如果正三角形ABC的边长为3厘米,那么此渐开线的长度为多少厘米,图中I、II、III三部分的面积之和是多少平方厘米?

例题

E

例题26.

例题27.

三、运动圆扫面积

例题28.图中正方形的边长是4厘米,而圆环的半径是1厘米.当圆环绕正方形无滑动地滚动一周又回到原来位置时,其扫过的面积有多大(π取)

例题29.

例题30.

随堂练习

1.图中长方形的长是10厘米,宽是4厘米,而圆环的半径是1厘米.当圆环

绕正方形无滑动地滚动一周又回到原来位置时,其扫过的面积有多大(π取)

2.

例题31.图中等边三角形的边长是3厘米,而圆环的半径是1厘米.当圆环绕等边三角形无滑动地滚动一周又回到原来位置时,其扫过的面积有多大(π取)

例题32.

例题33.

例题34.

例题35.思考题

如图所示,一只小狗被拴在一个边长为4米的正五边形的建筑物的一个顶点处,四周都是空地.绳长刚好够小狗走到建筑物外墙边的任一位置.小狗的活动范围是多少平方米(建筑外墙不可逾越,小狗身长忽略不计,π取3)

作业:

1. 图17-14由一个长方形与两个90?角的扇形构成,其中阴影部分的面积

是_______平方厘米.(?取.) 2.

3.

4. 图中有一个矩形和两个半径分别为5和2的直角扇形,那么两个阴影部

分的面积相差为_______.(π取)

5.

6. 如图,直角三角形的两条直角边长分别是10cm 和6cm ,分别以直角边为

直径作出两个半圆,这两个半圆的交点恰好落在斜边上,那么阴影部分的面积是_______cm

2.(?取)

7. (17??30)

图17-14

8.

9.图1是一个直径是3厘米的半圆,AB是直径.如图2所示,让A点不动,

把整个半圆逆时针转60°,此时B点移动到C点.请问:图中阴影部分的面积是_______平方厘米(π取)

10.

11.图中正方形的边长是6厘米,而圆环的半径是1厘米.当圆环绕正方形

无滑动地滚动一周又回到原来位置时,其扫过的面积有______.(π取)

12.

13.图中等边三角形的边长是5厘米,圆形的半径是1厘米.当圆形绕等边

三角形滚动一周又回到原来位置时,扫过的面积有________.(π取)

14.

图1 A B

图2

10cm

6

几何计数

知识总结:

例题:

一、枚举或分类解题

利用枚举法以及分类的方法进行几何计数,特别是对于正方形和三角形的计数问题.通常按照面积的大小或者包含基本图形的多少来对图形进行分类.例题1.小杰瑞把巧克力棒摆成了如图所示的形状,其中每一条小短边代表一个巧克力棒.请问:

例题2.(1)一共有多少个巧克力棒?

例题3.

例题4.(2)这些巧克力棒共构成了多少个三角形?

例题5.

例题6.(3)嘴馋的小杰瑞吃掉一个巧克力棒后(图中两端带有箭头的小边),剩下的图形中还有多少个三角形?

例题7.

随堂练习

1.图中共有_______个三角形;

2.

例题8.如图,它是由

18个大小相同的小正三角形拼成的四边形,其中某些相邻的

小正三角形可以拼成较大的正三角形.图中包含“?”的各种大小的正三角形一共有_______.

例题9.

例题10.

例题11.如图,AB ,CD ,EF ,MN

互相平行,则图中三角形个数是_______.

例题12.

例题13.

例题14.图中有多少个正方形

例题15.

例题16. 例题17.

二、 与排列组合有关的计数

利用排列组合的方法进行几何计数,特别是对于矩形和四边形的计数问题

例题18.如图,线段

AB ,BC ,CD ,DE 的长度都是3厘米.请问:

B M

A

E F D N

?

例题19.(1)图中一共有多少条线段? 例题20.

例题21.(2)这些线段的长度之和是多少厘米?

例题22.

随堂练习

1. 求图中一共有多少条线段.

2. 3.

4. 5.

例题23.求

图中一共有多少条线段.求图中一共有多少个矩

形.

例题24. 例题25. 例题26. 例题27. 例题28. 例题29. 例题30.

随堂练习

1. 如图,四条边长度都相等的四边形称为菱形.用16个同样大小的菱形组成

3厘米 3厘3厘米 3厘米

A

B C D E

如图的一个大菱形.数一数,图中共有多少个菱形?

2.

3.

例题31.右图是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形,

那么:

例题32.1)从中可以数出_______个矩形. 例题33.2)从中可以数出_______个正方形.

例题34.3)从中可以数出包含_______个,正方形有________个. 例题35.

随堂练习

(1)图中包含★的长方形有_______个.包含?的正方形又有_______个. (2)图中同时包含?和★的长方形有_______个.

三、 与容斥原理有关的几何计数

例题36.图中一共包含多少个矩形多少个正方形? 例题37. 例题38.

例题39.

例题40.

随堂练习

1.图中有_______个矩形

2.

3.

思考题

用16个边长为1的等边三角形拼成一个边长为4的大等边三角形,那么组成的图形中可以找出多少个平行四边形?

作业

1.数一数图中一共有多少条线段?

2.

3.图中共有_______个三角形.

4.

【分析与解】按边长分类数,图中共有93113

++=个三角形;平行四边形共有333215

?+?=个.

5.在图中,包含※的长方形共有________个.

6.

图中有_______个矩形,_______个正方形.

【分析与解】图中共有718+=个正方形,19个长方形.这道题适合按大小分类数.

7.

图中有三角形_______个,梯形_______个.

8. 9.

【分析与解】三角形有()312318?++=个,梯形有()()1212318+?++=个.

10. 图中有_______个正方形,_______个长方形.

11.

【分析与解】答案

是38,144.长方形有()()()()123123452123123144++?++++?-++?++=???? 个

,正方形有()()352413294138?+?+??-++=个(这里给出正方形的求法比较巧妙,如果不合适,请按正方形的边长分类枚举).

行程

知识总结:

本讲重点学习在小升初中和各个杯赛中的较复杂的行程问题,行程问题主要有三组共9个基本公式:

B

C

(1) =?路程速度时间;=÷速度路程时间;=÷时间路程速度;

(2) =?相遇路程速度和时间;=÷速度和相遇路程时间;=÷时间相遇路程速度和; (3) =?追及路程速度差时间;=÷速度差追及路程时间;=÷时间追及路程速度差. 要会灵活运用公式,通过已知的条件求出未知的路程、速度或时间. 此时,我们还经常需要用到以下这三个基本倍数关系: 当运动的速度相同时,时间的倍数关系等于路程的倍数关系; 当运动的时间相同时,速度的倍数关系等于路程的倍数关系;

当运动的路程相同时,时间的倍数关系等于速度的倍数关系,但注意时间长的速度慢,时间短的速度快.

例题1. ( )甲、乙两地间的路程是600千米,上午8点客车以平均每小时

60千米的速度从甲地开往乙地,货车以平均每小时50千米的速度从乙地开往甲地.要使两车在全程的中点相遇,货车必须在上午几点出发? 例题2. 例题3.

例题4. ( )某学校组织学生去春游,以2米/秒的速度前进,一名学生以

4米/秒的速度从队尾跑到队头,再回到队尾,共用6分钟,那么队伍的总长为多少米? 例题5. 例题6.

例题7. A 城在一条河的上游,B 城在这条河的下游.A 、B 两城的水路距离为396

千米.一艘在静水中速度为每小时12千米的渔船从B 城往A 城开,一艘在静水中速度为每小时30千米的治安巡逻艇从A 城往B 城开.已知河水的速度为每小时6千米,从A 流向B .两船在距离A 城180千米的地方相遇.巡逻艇在到达B 城后得到消息说他们刚才遇到的那艘渔船上有一名逃犯,于是巡逻艇立刻返回去追渔船.请问巡逻艇能不能在渔船到达A 城之前追上渔船如果能的话,请问巡逻艇在距A 城多远的地方追上渔船;如果不能的话,请算出巡逻艇比渔船慢多少小时到A 城. 例题8.

初三圆经典练习题

圆的概念和性质例2.已知,如图,CD是直径,? = ∠84 EOD,AE交⊙O于B,且AB=OC,求∠A的度数。 例3 ⊙O平面内一点P和⊙O上一点的距离最小为3cm。例4 在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm 例6.已知:⊙O的半径0A=1,弦AB、AC的长分别为3 ,2 【考点速练】 1.下列命题中,正确的是() A.三点确定一个圆B.任何一个三角形有且仅有一个外接圆 C.任何一个四边形都有一个外接圆 D.等腰三角形的外心一定在它的外部 2.如果一个三角形的外心在它的一边上,那么这个三角形一定是() A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形 3.圆的内接三角形的个数为()A.1个B.2 C.3个D.无数个 4.三角形的外接圆的个数为()A.1个B.2 C.3个D.无数个 5.下列说法中,正确的个数为() ①任意一点可以确定一个圆;②任意两点可以确定一个圆;③任意三点可以确定一个圆;④经过任一点可以作圆;⑤经过任意两点一定有圆. A.1个 B.2个 C.3个 D.4个 6.与圆心的距离不大于半径的点所组成的图形是( ) A.圆的外部(包括边界); B.圆的内部(不包括边界); C.圆; D.圆的内部(包括边界) 7.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长( ) A.等于6cm B.等于12cm; C.小于6cm D.大于12cm 8.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数, 则满足条件的点P有( ) A.2个 B.3个 C.4个 D.5个 9.如图,A是半径为5的⊙O内一点,且OA=3,过点A且长小于8的弦有( ) A.0条 B.1条 C.2条 D.4条 11.如图,已知在ABC ?中,? = ∠90 A,A为圆心,AC长为半径画弧交CB的延长线于点D,求CD的长. 12、如图,有一圆弧开桥拱,拱的跨度AB= 13、△ABC中,AB=AC=10,BC=12 14、如图,点P是半径为5的⊙O内一点,且OP=3,在过点P 条数为__。 1、在半径为2的圆中,弦长等于的弦的弦心距为 ____ B P A O

初三数学圆的知识点总结及经典例题详解

1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧. 9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。 直线与圆的位置关系 1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角. 4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线. 6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径. 圆与圆的位置关系 1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦. 3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点. 正多边形基本性质 1.正六边形的中心角为60°. 2.矩形是正多边形. 3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.

1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . ° ° ° ° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 . ° ° ° ° 4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=90 5.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cm D.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . ° ° ° 7.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . ° ° ° 8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 . ° ° ° ° 9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm. .4 C D. 10 10. 已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . ° ° ° ° 12.在半径为5cm 的圆中,有一条弦长为6cm,则圆心到此弦的距离为 . A. 3cm B. 4 cm C.5 cm D.6 cm 点、直线和圆的位置关系 1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 . A.相离 B.相切 C.相交 D.相交或相离 2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 相离或相交 3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定 4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . 个 个 个 D.不能确定 5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 不能确定 6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系? D B C A O ? ? C B A O ? B O C A D ? B O C A D ? B O C A D ? C B A O

圆的面积练习题及答案

(人教新课标)六年级数学上册圆的面积 班级______姓名______ 一、填空。 1.圆周率是一个()的小数。 2.圆的周长总是()的π倍。 3.半径是3分米的一个圆,它的面积是()平方分米。周长是()米。 4.一根长62.8米的铁丝围成一个圆形,这个圆形的面积是()平方米。 5.一个直径为20米的圆形游泳池,占地面积是()平方米;它的周长是()米。 6.一个直径是4厘米的半圆形,它的周长是()厘米;它的面积是()平方厘米。 二、判断。 1.圆周率指的是圆的周长和直径的比值。 () 2.圆的半径是2,它的周长和面积相等。 () 3.周长相等的两个圆,面积也一定相等。 () 4.如果圆的半径扩大2倍,那么它的周长也扩大2倍,面积扩大4倍。 () 三、应用题。 1.一个圆环铁片零件,内圆半径是2厘米,外圆半径是3厘米。它的面积是多少平方厘米? 2.在一块周长是80米的正方形花坛里,用一串红围出一个最大的圆形,这个圆形的面积是多少平方米?这个花坛还剩下多少平方米的空地? 3.从一块长5分米,宽4分米的长方形木板上锯下一个最大的圆,剩下的木板是多少平方分米?

多少平方米? 参考答案 一、填空。 1. 无限不循环

2. 它的直径 3. 28.26 18.84 4. 314 5. 314、62.8 6. 10.28、12.56 二、判断。 1.√ 2.× 3.√ 4.√ 三、应用题。 1. 3.14×(32-22)=15.7 2. 202-314=86(平方米) 3. 20-3.14×4=7.44(平方分米) 4. 12 5.6÷4=31.4(米) 31.4÷3.14=10(米) (10×2)2+3.14×102×2=400+628=1028(平方米)

圆经典例题精析

圆经典例题精析 考点一、圆的有关概念和性质 1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ) (A)4个(B)3个(C)2个(D)1个 【考点】本题考查直径、过不在同一条直线上的三点的圆、外心、等圆与等弧等概念, 【思路点拨】其中第②个命题不对的原因在于忽视了过三点作图的条件.若三点在一条直线上,则不能作出过这三点的圆,故②不对. 【答案】B. 2.下列判断中正确的是( ) (A)平分弦的直线垂直于弦 (B)平分弦的直线也必平分弦所对的两条弧 (C)弦的垂直平分线必平分弦所对的两条弧 (D)平分一条弧的直线必平分这条弧所对的弦 【考点】垂径定理 【解析】弦的垂直平分线平分弦、垂直于弦,因此平分弦所对的两条弧.A中被平分的弦应不是直径; B理由同A;D中平分弧的直线的直线应过圆心. 【答案】C. 3.如图,在两半径不同的同心圆中,∠AOB=∠A′OB′=60°,则( ) (A)(B) (C)的度数=的度数(D)的长度=的长度 【思路点拨】因为在圆中,圆心角的度数与它所对的弧的度数相等,而∠AOB=∠A′OB′,所以的 度数=的度数. 【答案】C. 4.如图,已知圆心角∠AOB的度数为100°,则圆周角∠ACB的度数是( ) A.80° B.100° C.120° D.130°

【考点】同弧所对的圆周角等于圆心角的一半,圆内接四边形的对角互补. 【思路点拨】可连结OC,则由半径相等得到两个等腰三角形, ∵∠A+∠B+∠ACB=360°-∠O=260°,且∠A+∠B=∠ACB,∴∠ACB=130°. 或在优弧AB上任取一点P,连结PA、PB,则∠APB=∠O=50°, ∴∠ACB=360°-∠APB =130°. 【答案】D. 总结升华:圆的有关性质在解决圆中的问题时,应用广泛,运用简便. 举一反三: 【变式1】某公园的一石拱桥是圆弧形(劣弧),跨度为24米,拱的半径为13米,则拱高为_____. 【考点】垂径定理. 【思路点拨】本题可用几何语言叙述为:如图,AB为⊙O的弦,CD为拱高,AB=24米,半径OA=13米,求拱高CD的长. 【解析】由题意可知:CD⊥AB,AD=BD,且圆心O在CD的延长线上.连结OA, 则OD===5(米).所以CD=13-5=8(米). 【答案】8米. 【变式2】如图,AB是⊙O的直径,∠ACD=15°,则∠BAD=__________°. 【考点】同弧所对的圆周角相等,直径所对的圆周角是90°. 【思路点拨】AB是直径,则∠ADB=90°,∠ACD=∠ABD=15°,可求得∠BAD. 【答案】75°. 【变式3】如图,⊙O的直径AB和弦CD相交于点E,且AE=1cm,EB=5cm,∠DEB=60°,求CD的长. 【解析】因为AE=1cm,EB=5cm,所以OE=(1+5)-1=2(cm),半径等于3cm.在Rt△OEF中可求EF

圆与方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1).设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=. (2) 当0422=-+F E D 时,方程表示一个点??? ??--2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形.

注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0r r d ; ② 条公切线外切321??+=r r d ; ③ 条公切线相交22121??+<<-r r d r r ; ④ 条公切线内切121??-=r r d ; ⑤ 无公切线内含??-<<210r r d ;

(完整版)六年级圆的面积经典题型讲解+练习

圆(二)圆的面积 知 知识梳理 1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S 表示。 2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。 3、圆面积公式的推导: (1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化 抽象为具体。 (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。 (3)、拼出的图形与圆的周长和半径的关系。 圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长 因为: 长方形面积 = 长 × 宽 所以: 圆的面积 = 圆周长的一半 × 圆的半径 S 圆 = πr × r 圆的面积公式: S 圆 = πr 2 r 2 = S ÷ π 4、环形的面积:一个环形,外圆的半径是R ,内圆的半径是r 。(R =r +环的宽度.) S 环 = πR2-πr2 或 环形的面积公式: S 环 = π(R2-r2)。 5、扇形的面积计算公式: S 扇 = πr 2 × 360 n (n 表示扇形圆心角的度数) 6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。 而面积扩大或缩小的倍数是这倍数的平方倍。 例如: 在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。 7、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。 8、(选学)两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。 例如: 两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9 9、常用平方数 典题探究 例1 填空 1.鼓楼中心岛是半径 10米的圆,它的占地面积是( )平方米。

高中数学圆的方程典型例题总结归纳(极力推荐)

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(2 2 . ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 解:∵点()42, P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422 =++-k k 解得4 3 = k

初中数学圆 经典练习题(含答案)

圆的相关练习题(含答案) 1、已知:弦AB 把圆周分成1:5的两部分,这弦AB 所对应的圆心角的度数为 。 2、如图:在⊙O 中,∠AOB 的度数为1200,则 的长是圆周的 。 3、已知:⊙O 中的半径为4cm ,弦AB 所对的劣弧为圆的3 1,则弦AB 的长为 cm , AB 的弦心距为 cm 。 4、如图,在⊙O 中,AB ∥CD , 的度数为450,则∠COD 的度数为 。 5、如图,在三角形ABC 中,∠A=700,⊙O 截△ABC 的三边所得的弦长相等,则 ∠BOC=( )。 A .140° B .135° C .130° D .125° (第2题图) (第4题图) (第5题图) 6、下列语句中,正确的有( ) (1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦; (3)长度相等的两条弧是等弧; (4) 圆是轴对称图形,任何一条直径都是对称轴 A .0个 B .1个 C .2个 D .3个 7、已知:在直径是10的⊙O 中, 的度数是60°,求弦AB 的弦心距。 8、已知:如图,⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB , 求证:

600 9. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么? 10. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm ,求油面的最大深度。 11. 如图所示,AB 是圆O 的直径,以OA 为直径的圆C 与圆O 的弦AD 相交于点E 。你认为图中有哪些相等的线段?为什么? 答案:1.60度 2. 3 2 3. 1 3 4 4.90度 5.D 6.A 7.2.5 8.提示:连接OE ,求出角COE 的度数为60度即可 9.略 10.100毫米 11.AC=OC , OA=OB , AE=ED B

新初中数学圆的经典测试题含答案

新初中数学圆的经典测试题含答案 一、选择题 1.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆. 下列说法中错误的是( ) A .勒洛三角形是轴对称图形 B .图1中,点A 到?BC 上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等 【答案】C 【解析】 【分析】 根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误. 【详解】 鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确; 点A 到?BC 上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误; 鲁列斯曲边三角形的周长=3×60180DE DE ππ?=? ,圆的周长=22 DE DE ππ?=? ,故说法正确. 故选C. 【点睛】 主要考察轴对称图形,弧长的求法即对于新概念的理解. 2.如图,在ABC ?中,90ABC ∠=?,6AB =,点P 是AB 边上的一个动点,以BP 为

九年级上册圆经典题型汇编

九年级上册圆经典题汇总 1、(2013泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是 的中点,则下列结论不成立的是() A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 2、(2013?黔西南州)如图所示,线段AB是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()

3、(2013?毕节地区)在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为() A.2,22.5°B.3,30°C.3,22.5°D.2,30° 4. (2013台湾、17)如图,圆O与正方形ABCD的两边AB、AD相切,且DE 与圆O相切于E点.若圆O的半径为5,且AB=11,则DE的长度为何?() A.5 B.6 C. D. 5、(2013?苏州)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧

的弧长为.(结果保留π) 6、(2013?天津)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C 的大小为(度). 7、(2013年广东省9分、24)如题24图,⊙O是Rt△ABC的外接 圆,∠ABC=90°,弦BD=BA,AB=12,BC=5, BE⊥DC交DC的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE的长; (3)求证:BE是⊙O的切线. 8. (2013?湖州)如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB. (1)求BC的长; (2)求证:PB是⊙O的切线.

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

小学数学-圆的面积精选练习题

圆的面积练习精选 一、填空 1.一个圆形桌面的直径是2米,它的面积是()平方米。 2.已知圆的周长c,求d=(),求r=()。 3.圆的半径扩大2倍,直径就扩大()倍,周长就扩大()倍,面积就扩大()倍。 4.环形面积S=()。 5.用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是()厘米,画出的这个圆的面积是()平方厘米。 6.大圆半径是小圆半径的4倍,大圆周长是小圆周长的()倍,小圆面积是大圆面积的()。 7.圆的半径增加1/4圆的周长增加(),圆的面积增加()。 8.一个半圆的周长是20.56分米,这个半圆的面积是()平方分米。 9.将一个圆平均分成1000个完全相同的小扇形,割拼成近似的长方形的周长比原来圆周长 长10厘米,这个长方形的面积是()平方厘米。 10.在一个面积是16平方厘米的正方形内画一个最大的圆,这个圆的面积是()平方厘米; 再在这个圆内画一个最大的正方形,正方形的面积是()平方厘米。

11.大圆半径是小圆半径的3倍,大圆面积是84.78平方厘米,则小圆面积为()平方厘米。 12.大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,小圆面积是()平方厘米。 13.鼓楼中心岛是半径10米的圆,它的占地面积是()平方米。 14.小华量得一根树干的周长是75.36厘米,这根树干的横截面大约是()平方厘米 15.一只羊栓在一块草地中央的树桩上,树桩到羊颈的绳长是3米。这只羊可以吃到() 平方米地面的草。 16.一根2米长的铁丝,围成一个半径是30厘米的圆,(接头处不计),还多()米, 围成的面积是() 17.用一根10.28米的绳子,围成一个半圆形,这个半圆的半径是(),面积是()18.从一个长8分米,宽5分米的长方形木板上锯下一个最大的圆,这个圆的面积是() 19.大圆的半径等于小圆的直径,大圆的面积是小圆面积的() 20.一个圆的周长扩大3倍,面积就扩大()倍。 21.用三根同样长的铁丝分别围成一个长方形、一个正方形、和一个圆,其中()面积最小,()面积最大 二、应用题

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

初三数学圆经典例题

一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆: 锐角三角形的外心在,直角三角形的外心在 ,钝角三角形的外心在。 考点5 点和圆的位置关系设圆的半径为r,点到圆心的距离为d,

则点与圆的位置关系有三种。 ①点在圆外?d >r ;②点在圆上?d=r ;③点在圆? d <r ; 【典型例题】 例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD 是直径,?=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。 例3 ⊙O 平面一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。 例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长. 例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数. A B D C O · E

(word完整版)六年级圆的面积经典题型讲解+练习

圆(二) 圆的面积 知 知识梳理 1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母 S 表示。 2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。 3、圆面积公式的推导: (1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化 抽象为具体。 (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。 (3)、拼出的图形与圆的周长和半径的关系。 4、环形的面积 : 一个环形,外圆的半径是 R ,内圆的半径是 r 。( R =r +环的宽度.) 环形的面积公式: S 环 = πR2-πr2 S 环 = π ( R2-r 2)。 或 5、扇形的面积计算公式: 2n S 扇 = π r × ( n 表示扇形圆心角的度数) 360 6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。 而面积扩大或缩小的倍数是这倍数的平方倍。 例如: 在同一个圆里,半径扩大 3 倍,那么直径和周长就都扩大 3 倍,而面积扩大 9 倍。 7、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时, 长方形的周长最长,正方形居中,圆周长最短。 8、( 选学 )两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。 例如: 两个圆的半径比是 2∶3,那么这两个圆的直径比和周长比都是 2∶3,而面积比是 4∶ 9 9、常用平方数 典题探究 例1 填空 1.鼓楼中心岛是半径 10 米的圆,它的占地面积是( 2.小华量得一根树干的周长是 75.36 厘米,这根树干的横截面大约是( )平方厘米 因为: 所以: 圆的半径 圆的周 长的一半 长方形 面积 长方形的宽 长方形的长 长 S 圆的面积公式: 圆的面积 = 圆 = S 圆 = × 圆周长的一半 × π r × r 2 πr 圆的半径 )平方米。

2020年中考总复习圆的经典题型汇总(含答案)

1、如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP (1)求证:∠BAC=2∠ACD; (2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径. 2、如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O 交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF. (1)求证:四边形DCFG是平行四边形. (2)当BE=4,CD=AB时,求⊙O的直径长. 3、如图,在?OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数. (2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.

4、如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC. (1)判断直线DF与⊙O的位置关系,并说明理由; (2)若AB=6,AE=,CE=,求BD的长. 5、如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F. (1)求证:DF是⊙O的切线; (2)若OB=BF,EF=4,求AD的长. 6、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠BAC,AD交BC于点D,ED⊥AD交AB于点E,△ADE的外接圆⊙O交AC于点F,连接EF. (1)求证:BC是⊙O的切线; (2)求⊙O的半径r及∠3的正切值.

7、如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E. (1)判断直线CD与⊙O的位置关系,并说明理由; (2)若BE=2,DE=4,求圆的半径及AC的长. 8、如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E. (1)求证:EC=ED; (2)如果OA=4,EF=3,求弦AC的长. 9、如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD. (1)求证:△APO~△DCA; (2)如图2,当AD=AO时 ①求∠P的度数;

初三圆的典型例题

圆典型例题精选 【例题1】如图所示,AB 是圆O 的一条弦,OD AB ⊥,垂足为C ,交圆O 于点D ,点E 在圆O 上.(1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长. 【例题2】如图,线段AB 经过圆心O ,交圆O 于点A,C ,点D 在圆O 上,连接AD ,BD , ∠A=∠B=30度.BD 是圆O 的切线吗?请说明理由. 【例题3】已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)请说明:∠ACO=∠BCD . (2)若EB=8cm ,CD=24cm ,求⊙O 的直径. 【例题4】如图,梯形ABCD 内接于⊙O , BC ∥AD ,AC 与BD 相交于点E ,在不添加 任何辅助线的情况下: (1) 图中共有几对全等三角形,请把它们一一写出来,并选择其中 一对全等三角形进行证明. (2) 若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形 (全等三角形除外). 【例题5】如图,在Rt △ABC 中,∠C=90°,AC=5,BC=12,⊙O 的半径为3. (1)若圆心O 与C 重合时,⊙O 与AB 有怎样的位置关系? (2)若点O 沿线段CA 移动,当OC 等于多少时,⊙O 与AB 相切? E B D C A O 第 1 题图 图9 E D B A O C

【例题6】推理运算:如图,AB 为圆○直径,CD 为弦,且CD AB ⊥,垂足为H .OCD ∠的平分线CE 交圆○于E ,连结OE . (1)请说明:E 为弧ADB 的中点; (2)如果圆○的半径为1,3CD =,①求O 到弦AC 的距离;②填空:此时圆周上存在 个点到直线AC 的距离为 12 . 【例题7】已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,与AC ?交于点E ,请说明:△DEC 为等腰三角形. 【例题8】如图,已知⊙O 是△ABC 的外接圆,AB 为直径,若PA ⊥AB ,PO 过AC 的中点M .试说明:PC 是⊙O 的切线. 【例题9】已知:如图,AB 是⊙O 的切线,切点为A ,OB 交⊙O 于C 且C 为OB 中点,过C 点的弦CD 使∠ACD =45°,弧AD 的长为2 2 π, 求弦AD 、AC 的长. 【例题10】如图所示,ABC △是直角三角形,90ABC ∠=,以AB 为直径的圆○交AC 于点 E ,点D 是BC 边的中点,连结DE . (1)请说明:DE 与圆○相切; (2)若圆O 的半径为3,3DE =,求AE . A B O C P M 图4 A B C D ·O 45° A B D E O C H B D C E A O

相关文档
最新文档