六年级上册奥数试题-第8讲 圆与扇形 全国通用(含答案)

合集下载

(完整版)六年级奥数第8次课:圆与扇形(教师版)

(完整版)六年级奥数第8次课:圆与扇形(教师版)

【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。

学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。

谢谢使用!!!】圆与扇形一、考点、热点回顾五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。

圆的周长、面积计算公式:c d π=或2c r π= 2s r π=半圆的周长、面积计算公式:c rd π=+ 212s r π=扇形的周长、面积:2360a c d r π=+ 2360a s r π=如无特殊说明,圆周率都取π=3.14。

二、典型例题:例1、如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。

已知每条跑道宽1.22米,那么外道的起点在内道起点前面多少米?(精确到0.01米)分析与解:半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。

虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。

设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为πR-πr=π(R-r)=3.14×1.22≈3.83(米)。

即外道的起点在内道起点前面3.83米。

例2、有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米?分析与解:由右上图知,绳长等于6个线段AB与6个BC弧长之和。

将图中与BC弧类似的6个弧所对的圆心角平移拼补,得到6个角的和是360°,所以BC弧所对的圆心角是60°,6个BC弧等于直径5厘米的圆的周长。

而线段AB等于塑料管的直径,由此知绳长=5×6+5×3.14=45.7(厘米)。

例3 、左下图中四个圆的半径都是5厘米,求阴影部分的面积。

分析与解:直接套用公式,正方形中间的阴影部分的面积不太好计算。

六年级奥数题-圆及组合图形(含分析答案解析)

六年级奥数题-圆及组合图形(含分析答案解析)

圆和组合图形(后面有答案分析)一、填空题1.算出圆内正方形的面积为 .2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数)5.三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28长 厘米.为2平方厘米,等腰直角三角形的面积7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是度.8.图中扇形的半径OA=OB=6厘米.45=∠AOB, AC垂直OB于C,那么图中阴π影部分的面积是平方厘米.).314(=459.右图中正方形周长是20厘米.图形的总面积是平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.二、解答题11. ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知: AB =BC =10,那么阴影部分的面积是多少?(圆周率14.3=π)12.如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O ,半径r =9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米?)14.3(≈π是1厘米,那么阴影部分的总面积是多少平方厘米?———————————————答 案——————————————————————1. 18平方厘米.由图示可知,正方形两条对角线的长都是6厘米,正方形由两个面积相等的三角形构成.三角形底为6厘米,高为3厘米,故正方形面积为1822136=⨯⨯⨯(平方厘米).2. 1.14平方厘米.由图示可知,图中阴影部分面积为两个圆心角为45的扇形面积减去直角三角形的面积.即14.12122236045214.32=⨯⨯-⨯⨯⨯(平方厘米).3. 125.6平方厘米.由已知条件可知圆的半径的平方为120平方厘米.故扇形面积为6.12536012012014.3=⨯⨯(平方厘米).4. 3.09厘米.边结BE 、CE ,则BE=CE=BC=1(厘米),故三角形BCE 为等边三角形.于是⌒⌒60=∠=∠BCE EBC .BE=CE=045.136060214.3=⨯⨯(厘米).于是阴影部分周长为09.312045.1=+⨯(厘米).5. 32.8厘米.从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC 的面积.又已知①的面积比②的面积小28平方厘米,故半圆面积比三角形ABC 的面积小28平方厘米. 半圆面积为6282124014.32=⨯⎪⎭⎫ ⎝⎛⨯(平方厘米),三角形ABC 的面积为628+28=656(平方厘米).BC 的长为8.32402656=÷⨯(厘米).6. 13937平方厘米. 将等腰直角三角形补成一个正方形,设正方形边长为x 厘米,则圆的半径为2x 厘米.图中阴影部分面积是正方形与圆的面积之差的81,于是有282114.322⨯=⎪⎭⎫ ⎝⎛⨯-x x ,解得1332002=x .故等腰直角三角形的面积为1393721133200=⨯(平方厘米). 7. 72.扇形面积是圆面积的511574.31=÷,故扇形圆心角为360的51即72.8. 5.13.三角形ACO 是一个等腰直角三角形,将AO 看作底边,AO 边上的高为3262=÷=÷AO (厘米),故三角形ACO 的面积为93621=⨯⨯(平方厘米).而扇形面积为13.1436045614.32=⨯⨯(平方厘米),从而阴影部分面积为14.13-9=5.13(平方厘米).9. 142.75.由正方形周长是20厘米,可得正方形边长也就是圆的半径为5420=÷(厘米).图形总面积为两个43圆面积加上正方形的面积,即 75.1425243514.322=+⨯⨯⨯(平方厘米).10. 90平方厘米.图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即()902114.3)220(2115122114.3)216(2114.3212222=⨯⨯÷-⨯⨯+⨯⨯÷+⨯⨯÷ (平方厘米).11. 如图作出辅助线,则阴影部分的面积为三角形AED 减去正方形BEDO 的面积再加上圆面积的41. 三角形AED 的面积是21)210()21010(⨯÷⨯÷+;正方形面积是2)210(÷,圆面积的41是2)210(14.341÷⨯⨯,故阴影部分面积为: 22)210(14.341)210(21)210()21010(÷⨯⨯+÷-⨯÷⨯÷+ 125.32625.19255.37=+-=(平方厘米).12. 由已知半圆S 1的面积是14.13平方厘米得半径的平方为914.3213.14=÷⨯(平方厘米),故半径为3厘米,直径为6厘米.又因圆S 2的面积为19.625平方厘米,所以S 2半径的平方为25.614.3625.19=÷(平方厘米),于是它的半径为2.5厘米,直径为5厘米. 阴影部分面积为55)56(=⨯-(平方厘米).13. 因OA=OB ,故三角形OAB 为等腰三角形,即 150215180,151=⨯-=∠=∠=∠AOB OBA ,同理150=∠AOC ,于是602150360=⨯-=∠BOC .扇形面积为:39.42914.3360602=⨯⨯(平方厘米).14. 正方形可以分割成两个底为2,高为1的三角形,其面积为 221221=⨯⨯⨯(平方厘米). 正方形内空白部分面积为4个41圆即一个圆的面积与正方形面积之差,即 2212-=-⨯ππ(平方厘米),所有空白部分面积为)2(2-π平方厘米. 故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为 8)2(22412=-⨯-⨯⨯ππ(平方厘米).。

六年级数学圆扇形圆环试题答案及解析

六年级数学圆扇形圆环试题答案及解析

六年级数学圆扇形圆环试题答案及解析1.(1分)一个圆的周长是12.56分米,它的面积是平方厘米.【答案】1256;【解析】要求这个圆的面积,首先要找它的半径是多少,条件中知道这个圆的周长是12.56分米,据此能根据圆的周长公式的变形式“r=C÷2π”算出它的半径,再利用圆的面积公式就能算出最后的答案.注意:本题中单位不统一,要改写单位.解:因为C=2πr所以r=C÷2π=12.56÷(2×3.14)=2(分米);S=πr2=3.14×22=12.56(平方分米)12.56平方分米=1256(平方厘米);答;它的面积是1256平方厘米.故答案为:1256.点评:解答本题的关键是分清圆的周长、半径与面积之间的关系.2.如图,在时钟的表盘上任意作个的扇形,使得每一个扇形都恰好覆盖个数,且每两个扇形覆盖的数不全相同,求证:一定可以找到个扇形,恰好覆盖整个表盘上的数.并举一个反例说明,作个扇形将不能保证上述结论成立.【答案】见解析【解析】要在表盘上共可作出12个不同的扇形,且1~12中的每个数恰好被4个扇形覆盖.将这12个扇形分为4组,使得每一组的3个扇形恰好盖住整个表盘.那么,根据抽屉原理,从中选择9个扇形,必有个扇形属于同一组,那么这一组的3个扇形可以覆盖整个表盘.另一方面,作8个扇形相当于从全部的12个扇形中去掉4个,则可以去掉盖住同一个数的4个扇形,这样这个数就没有被剩下的8个扇形盖住,那么这8个扇形不能盖住整个表盘.3.如图所示,在半径为的图中有两条互相垂直的线段,阴影部分面积与其它部分面积之差(大减小)是多少.【答案】8【解析】如图,将圆对称分割后,与中的部分区域能对应,仅比少了一块矩形,所以两部分的面积差为:.4.如图,大圆半径为小圆的直径,已知图中阴影部分面积为,空白部分面积为,那么这两个部分的面积之比是多少?(圆周率取)【答案】57:100【解析】如图添加辅助线,小圆内部的阴影部分可以填到外侧来,这样,空白部分就是一个圆的内接正方形.设大圆半径为,则,,所以.移动图形是解这种题目的最好方法,一定要找出图形之间的关系.5.如图,两个半径为1的半圆垂直相交,横放的半圆直径通过竖放半圆的圆心,求图中两块阴影部分的面积之差.(取3)【答案】0.5【解析】本题要求两块阴影部分的面积之差,可以先分别求出两块阴影部分的面积,再计算它们的差,但是这样较为繁琐.由于是要求面积之差,可以考虑先从面积较大的阴影中割去与面积较小的阴影相同的图形,再求剩余图形的面积.如右图所示,可知弓形或均与弓形相同,所以不妨割去弓形.剩下的图形中,容易看出来与是平行的,所以与的面积相等,所以剩余图形的面积与扇形的面积相等,而扇形的面积为,所以图中两块阴影部分的面积之差为.6.一个长方形的长为9,宽为6,一个半径为l的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是多少.(取3)【答案】1【解析】方法一:圆在长方形内部无法运动到的地方就是长方形的四个角,而圆在角处运动时的情况如左下图,圆无法运动到的部分是图中阴影部分,那么我们可以先求出阴影部分面积,四个角的情况都相似,我们就可以求出总的面积是阴影部分面积的四倍.阴影部分面积是小正方形面积减去扇形面积,所以我们可以得到:每个角阴影部分面积为;那么圆无法运动到的部分面积为方法二:如果把四个角拼起来,则阴影如右上图所示,则阴影面积为7.如图,AB与CD是两条垂直的直径,圆O的半径为15,是以C为圆心,AC为半径的圆弧.求阴影部分面积.【答案】225【解析】阴影部分是个月牙形,不能直接通过面积公式求,那么我们可以把阴影部分看成半圆加上三角形ABC再减去扇形ACB的结果.半圆面积为,三角形ABC面积为,又因为三角形面积也等于,所以,那么扇形ACB的面积为.阴影部分面积225 (平方厘米)8.某仿古钱币直径为厘米,钱币内孔边缘恰好是圆心在钱币外缘均匀分布的等弧(如图).求钱币在桌面上能覆盖的面积为多少?【答案】10.84【解析】将古钱币分成个部分,外部的个弓形的面积和等于大圆减去内接正方形,中间的四个扇形的面积恰好等于内接正方形内的内切圆面积,所以总面积等于:.9.下图中,,阴影部分的面积是【答案】4.5【解析】如图可知3,设大半圆半径为,小圆半径为,如右图,,根据勾股定理得,故大半圆面积等于小圆面积,由图可知10.草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见如图).问:这只羊能够活动的范围有多大?(圆周率取)【答案】2512【解析】如图所示,羊活动的范围可以分为,,三部分,其中是半径米的个圆,,分别是半径为米和米的个圆.所以羊活动的范围是.11.如图所示,直角三角形的斜边长为10厘米,,此时长5厘米.以点为中心,将顺时针旋转,点、分别到达点、的位置.求边扫过的图形即图中阴影部分的面积.(取3)【答案】0.6775【解析】如图,顺时针旋转后,A点沿弧转到点,B点沿弧转到点,D点沿弧转到点.因为CD是C点到AB的最短线段,所以AB扫过的面积就是图中的弧与之间的阴影图形.(平方米),(平方米),所以,(平方米),我们推知(平方米).12.如图,大圆半径为小圆的直径,已知图中阴影部分面积为,空白部分面积为,那么这两个部分的面积之比是多少?(圆周率取)【答案】57:100【解析】如图添加辅助线,小圆内部的阴影部分可以填到外侧来,这样,空白部分就是一个圆的内接正方形.设大圆半径为,则,,所以.移动图形是解这种题目的最好方法,一定要找出图形之间的关系.13.12个相同的硬币可以排成下面的4种正多边形(圆心的连线).用一个同样大小的硬币,分别沿着四个正多边形的外圈无滑动地滚动一周.问:在哪个图中这枚硬币自身转动的圈数最多,最多转动了多少圈?【答案】6【解析】对于同样是12个硬币,所转动的圆心轨迹其实分为两部分,一是在”角”上的转动,一是在”边”上的滚动.抓住关键方法:圆心轨迹长度自身转动圈数.结论:一样多;都是6圈.14.在8:12中,如果后项减去6,要使比值不变,前项应减去( )。

六年级奥数题-圆及组合图形含分析答案解析

六年级奥数题-圆及组合图形含分析答案解析

ED C B A 六年级奥(Ao)数题-圆及组合图形含分析答案解析一(Yi)、填空题1.算出圆内正方(Fang)形的面积为 .2.右图(Tu)是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是 平方厘(Li)米.3.一个扇形圆心(Xin)角,以扇形的半径为边长画一个正方形,这个正方形的面积是120平(Ping)方厘米.这个扇形面积是 .4.如(Ru)图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数)5.三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. AB 长40厘米, BC 长 厘米.6厘米2C ② ① A B6.如右图,阴影部分的面积为(Wei)2平方厘米,等腰直角三角形的面积为 .7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个(Ge)扇形的圆心角是 度(Du).8.图中(Zhong)扇形的半径OA =OB =6厘(Li)米., AC 垂(Chui)直OB 于(Yu)C ,那么图(Tu)中阴影部分的面积是 平方厘米.9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.二、解答题6CB AO 4512 15 2011. ABC 是等腰直角(Jiao)三角形. D 是半圆周(Zhou)的中点, BC 是半圆的直径,已(Yi)知:AB =BC =10,那么阴影部分的面积(Ji)是多少?(圆周率)12.如(Ru)图,半圆S 1的面积是14.13平方厘米(Mi),圆S 2的(De)面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心(Xin)是O ,半径r =9厘米,,那么阴影部分的面积是多少平方厘米?14.右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?S 2S 1 CB A0 1 2 A10 DC B———————————————答(Da) 案——————————————————————1. 18平方(Fang)厘米.由图示可知,正方形两条对角线(Xian)的长都是6厘米,正方形由两个面积相等的三角形构成.三角形底为6厘米,高为3厘米,故正方形面积为(平(Ping)方厘米).2. 1.14平(Ping)方厘米.由图示可知,图中阴影部分(Fen)面积为两个圆心角为的扇形(Xing)面积减去直角三角形的面积.即(平方(Fang)厘米).3. 125.6平方厘米.由已知条件可知圆的半径的平方为120平方厘米.故扇形面积为(平方厘米).4. 3.09厘米.边结BE 、CE ,则BE=CE=BC=1(厘米),故三角形BCE 为等边三角形.于是.BE=CE=(厘米).于是阴影部分周长为(厘米).5. 32.8厘米.从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC 的面积.又已知①的面积比②的面积小28平方厘米,故半圆面积比三角形ABC 的面积小28平方厘米.⌒⌒A 10DCB O E 半圆面积(Ji)为(平方厘米),三(San)角形ABC 的(De)面积为628+28=656(平方厘米).BC 的(De)长为(厘(Li)米).6.平方厘(Li)米.将等腰直角三角形(Xing)补成一个正方形,设正方形边长为x 厘(Li)米,则圆的半径为厘米.图中阴影部分面积是正方形与圆的面积之差的,于是有,解得.故等腰直角三角形的面积为(平方厘米).7..扇形面积是圆面积的,故扇形圆心角为的即72.8. 5.13.三角形ACO 是一个等腰直角三角形,将AO 看作底边,AO 边上的高为(厘米),故三角形ACO 的面积为(平方厘米).而扇形面积为(平方厘米),从而阴影部分面积为14.13-9=5.13(平方厘米).9. 142.75.由正方形周长是20厘米,可得正方形边长也就是圆的半径为(厘米).图形总面积为两个圆面积加上正方形的面积,即(平方厘米).10. 90平方厘米.图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即(平方厘米). 11. 如图作出辅助线,则阴影部分的面(Mian)积为三角形AED 的面(Mian)积减去正方形BEDO 的面(Mian)积再加上圆面积的.三角(Jiao)形AED 的面积(Ji)是;正方形面积(Ji)是,圆(Yuan)面积的41是(Shi),故阴影部分面积为:(平方厘米).12. 由已知半圆S 1的面积是14.13平方厘米得半径的平方为(平方厘米),故半径为3厘米,直径为6厘米.又因圆S 2的面积为19.625平方厘米,所以S 2半径的平方为(平方厘米),于是它的半径为2.5厘米,直径为5厘米. 阴影部分面积为(平方厘米).13. 因OA=OB ,故三角形OAB 为等腰三角形,即 , 同理,于是.扇形面积为:(平方厘米).14. 正方形可以分割成两个底为2,高为1的三角形,其面积为(平方厘米).正方形内空白部分面积为4个41圆即一个圆的面积与正方形面积之差,即 (平方厘米),所有空白部分面积为平方厘米. 故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为 (平方厘米).。

小学六年级奥数题目 圆和扇形02

小学六年级奥数题目 圆和扇形02

圆和扇形021.圆的半径为5cm,圆上的扇形对应的圆心角为120°,求这个扇形的弧长 cm。

(取π=3)2. 2.如下图,直角三角形ABC的两条直角边分别长6和7,分别以B,C为圆心,2为半径画圆,已知图中阴影部分的面积是17,那么角A是度(π=3)视频描述1. 1.如图,ABCD是边长为a的正方形,以AB、BC、CD、DA分别为直径画半圆,这四个半圆弧所围成的阴影部分的面积.(π取3,答案请用分数表示,如3/2a2)2. 2.已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积= .(π=3.14)3. 3.如下图所示,两个相同的正方形,左图中阴影部分是9个圆,右图中阴影部分是16个圆.哪个图中阴影部分的面积大?为什么?(回答“左大”、“右大”或者“相等”)视频描述1.图中阴影部分的面积是25cm2,求圆环的面积= .2. 2.奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π=3.14)3. 3.已知正方形ABCD的边长为10厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连接起来得右图.那么,图中阴影部分的总面积等于平方厘米.(π=3.14)视频描述1. 1.三角形ABC是直角三角形,阴影1的面积比阴影2的面积小25cm2,AB=8cm,求BC的长度 cm.(π取3.14)2. 2.如图,三角形ABC是直角三角形,阴影部分①比阴影部分②的面积小28平方,AB长40厘米.求BC的长度为厘米。

(π取3.14)3. 3.在图中,两个四分之一圆弧的半径分别是2和4,两个阴影部分的面积差是.(圆周率取3.14)视频描述1. 1.用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?2. 2.如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取3.14)3. 3.一个长方形的长为9,宽为6,一个半径为l的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是_____.(π取3)视频描述1.2. 1.求图中阴影部分的面积.(π取3.14)3. 2.如右图,正方形的边长为5厘米,则图中阴影部分的面积是平方厘米,(π=3.14)4. 3.如图所示,阴影部分的面积为多少?(圆周率取3,回答以分数形式表示,如a/b)视频描述1.2. 1.如下图,两个半径相等的圆相交,两圆的圆心相距正好等于半径,AB弦约等于17厘米,半径为10厘米,求阴影部分的面积。

六年级上册奥数试题-第8讲 圆与扇形 全国通用(含答案)

六年级上册奥数试题-第8讲  圆与扇形   全国通用(含答案)

第8讲圆与扇形知识网络圆是所有几何图形中最完美的。

当一条线段绕着它的一个端点O在平面上旋转时一周时,它的另一端点所画成的封闭曲线叫圆(也叫圆周),O点称为这个圆的圆心。

连接一个圆的圆心和圆周上任一点的线段叫做圆的半径,圆的半径通常用字母r表示。

连接圆上任意两点的线段叫做圆的弦。

过圆心的弦叫做圆的直径,圆的直径通常用字母d表示,显然d=2r。

圆的周长(用字母C表示)与直径的比,叫做圆周率。

圆周率用字母表示,它是一个无限不循环的小数,一般取近似值3.14。

圆的周长。

利用等分圆周拼成近似长方形的方法可知圆的面积。

顶点在圆心的角叫做圆心角。

圆周上任意两点间的部分叫做弧。

扇形是圆的一部分,它是由圆心角的两条半径和圆心角所对的弧组成的图形。

如果扇形的半径为r,弧所对圆心角的度数为n,那么弧的长度。

从而扇形的周长,扇形的面积。

重点·难点本讲的难点在于求圆或扇形与其他平面图形组成的组合图形的面积。

一般这类组合图形是不规则的,很难直接用公式计算它们的面积。

这时候,可以利用分、合、移、补等方法将其转化为若干个基本几何图形的组合,然后再分别计算这若干个基本图形的面积,分析整体与各部分的和、差关系,问题就会迎刃而解。

学法指导在解圆或扇形的周长与面积等有关问题时,一般要先求出半径r,因为半径r是连接周长与面积的纽带。

经典例题[例1]一只饥饿的猛虎紧紧地追赶着一只小狗。

就在猛虎要抓住小狗的时候,小狗逃到了一个圆形的池塘边。

小狗连忙纵身往水里一跳,猛虎抓了个空。

猛虎舍不得这顿即将到口的美餐,于是盯住小狗,在池边跟着小狗跑动,打算在小狗爬上岸的时候再抓住它。

已知猛虎奔跑的速度是小狗游水速度的2.5倍。

请问:小狗如何才能逃出虎口?思路剖析如果小狗在圆形池塘中沿着圆周游动,那末无论它游到哪里,都会被猛虎牢牢盯死。

而如果小狗跳下池塘后就沿着直径笔直往前游,那么猛虎就要跑半个圆周。

由于半圆周长是直径的,而猛虎的速度是小狗的2.5倍,因此猛虎还是能够抓住小狗的。

六年级数学圆扇形圆环试题答案及解析

六年级数学圆扇形圆环试题答案及解析1.(3分)半径是2米的圆的周长与圆的面积相等..(判断对错)【答案】错误【解析】首先理解圆的周长和面积的意义,圆的周长是圆一周的长度.圆的面积是指圆围成的平面的大小.它们不是同类量无法进行比较.由此解答.解:圆周长是:2×3.14×2=12.56(米);圆面积是:3.14×22=3.14×4=12.56(平方米);这个圆的周长与面积在数值上是相等的,但是单位不同,所以圆的周长和面积它们不是同类量无法进行比较.故答案为:错误.点评:此题考查的目的是理解圆的周长和面积的意义,明确:圆的周长和面积不是同类量无法进行比较,只有同类量才能比较大小.2.(2分)一个圆的周长是L的半圆,它的半径是()A.L÷2πB.L÷πC.L÷(π+2 )D.L÷(π+1)【答案】C【解析】半圆的周长=πd÷2+d=πr+2r=(π+2)r,由此即可解答.解:根据题干分析可得:它的半径r=,故选:C.点评:此题考查了半圆的周长公式的灵活应用.3.如图,在时钟的表盘上任意作个的扇形,使得每一个扇形都恰好覆盖个数,且每两个扇形覆盖的数不全相同,求证:一定可以找到个扇形,恰好覆盖整个表盘上的数.并举一个反例说明,作个扇形将不能保证上述结论成立.【答案】见解析【解析】要在表盘上共可作出12个不同的扇形,且1~12中的每个数恰好被4个扇形覆盖.将这12个扇形分为4组,使得每一组的3个扇形恰好盖住整个表盘.那么,根据抽屉原理,从中选择9个扇形,必有个扇形属于同一组,那么这一组的3个扇形可以覆盖整个表盘.另一方面,作8个扇形相当于从全部的12个扇形中去掉4个,则可以去掉盖住同一个数的4个扇形,这样这个数就没有被剩下的8个扇形盖住,那么这8个扇形不能盖住整个表盘.4.如图,长方形的长是,则阴影部分的面积是多少.()【答案】3.44【解析】阴影部分的面积实际上是右上图阴影部分面积的一半,所以求出右上图中阴影部分面积再除以2即可.长方形的长等于两个圆直径,宽等于1个圆直径,所以右图的阴影部分的面积等于:所以左图阴影部分的面积等于平方厘米.5.用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?【答案】8【解析】大圆直径是小圆的3倍,半径也是3倍,小圆面积∶大圆面积,小圆面积,个小圆总面积,边角料面积(平方厘米).6.如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.【答案】2.5【解析】由于直接求阴影部分面积太麻烦,所以考虑采用增加面积的方法来构造新图形.由右图可见,阴影部分面积等于大圆面积减去一个小圆面积,再加上的小扇形面积(即小圆面积),所以相当于大圆面积减去小圆面积.而大圆的半径为小圆的3倍,所以其面积为小圆的倍,那么阴影部分面积为.7.如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取)【答案】412【解析】所要求的阴影面积是用正六边形的面积减去六个小扇形面积、正六边形的面积已知,现在关键是小扇形面积如何求,有扇形面积公式.可求得,需要知道半径和扇形弧的度数,由已知正六边形每边所对圆心角为60°,那么,又知四边形是平行四边形,所以,这样就可求出扇形的面积和为(平方厘米),阴影部分的面积(平方厘米).8.在桌面上放置个两两重叠、形状相同的圆形纸片.它们的面积都是平方厘米,盖住桌面的总面积是平方厘米,张纸片共同重叠的面积是平方厘米.那么图中个阴影部分的面积的和多少是平方厘米?【答案】72【解析】根据容斥原理得,所以(平方厘米)9.一个长方形的长为9,宽为6,一个半径为l的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是多少.(取3)【答案】1【解析】方法一:圆在长方形内部无法运动到的地方就是长方形的四个角,而圆在角处运动时的情况如左下图,圆无法运动到的部分是图中阴影部分,那么我们可以先求出阴影部分面积,四个角的情况都相似,我们就可以求出总的面积是阴影部分面积的四倍.阴影部分面积是小正方形面积减去扇形面积,所以我们可以得到:每个角阴影部分面积为;那么圆无法运动到的部分面积为方法二:如果把四个角拼起来,则阴影如右上图所示,则阴影面积为10.如图中,正方形的边长是,两个顶点正好在圆心上,求图形的总面积是多少?(圆周率取)【答案】142.75【解析】.11.如图所示,直角三角形的斜边长为10厘米,,此时长5厘米.以点为中心,将顺时针旋转,点、分别到达点、的位置.求边扫过的图形即图中阴影部分的面积.(取3)【答案】0.6775【解析】如图,顺时针旋转后,A点沿弧转到点,B点沿弧转到点,D点沿弧转到点.因为CD是C点到AB的最短线段,所以AB扫过的面积就是图中的弧与之间的阴影图形.(平方米),(平方米),所以,(平方米),我们推知(平方米).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?【答案】1【解析】对于这类问题,可以在初始时在小环上取一点,观察半径,如图⑴,当小环沿大环内壁滚动到与初始相对的位置,即滚动半个大圆周时,如图⑵,半径也运动到了与初始时相对的位置.这时沿大环内壁才滚动了半圈.继续进行下半圈,直到与初始位置重合,这时自身转了1圈,因此小铁环自身也转了1圈.(1)(2)对于转动的圆来说,当圆心转动的距离为一个圆周长时,这个圆也恰好转了一圈.所以本题也可以考虑小铁环的圆心轨迹,发现是一个半径与小铁环相等的圆,所以小铁环的圆心转过的距离等于自己的圆周长,那么小铁环转动了1圈.13.如图,枚相同的硬币排成一个长方形,一个同样大小的硬币沿着外圈滚动一周,回到起始位置.问:这枚硬币自身转动了多少圈?【答案】6【解析】当硬币在长方形的一条边之内滚动一次时,由于三个硬币的圆心构成一个等边三角形,所以这枚硬币的圆心相当于沿着半径为硬币2倍的圆旋转了.而硬币上的每一点都是半径等于硬币的圆旋转,所以硬币自身旋转了120°.当硬币从长方形的一条边滚动到另一条边时,这枚硬币的圆心相当于沿着半径为硬币2倍的圆旋转了.而硬币上的每一点都是半径等于硬币的圆旋转,所以硬币自身旋转了300º.长方形的外圈有12个硬币,其中有4个在角上,其余8个在边上,所以这枚硬币滚动一圈有8次是在长方形的一条边之内滚动,4次是从长方形的一条边滚动到另一条边.,所以这枚硬币转动了2160º,即自身转动了6圈.另解:通过计算圆心轨迹的长度,每走一个即滚动了一周.14.图中阴影部分的面积是,求圆环的面积.【答案】157【解析】设大圆半径为,小圆半径为,依题有,即.则圆环面积为:.15.如果半径为25厘米的小铁环沿着半径为50厘米的大铁环的外侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?【答案】3【解析】如图,同样考虑小圆的一条半径,当小圆在大圆的外侧滚动一周,即滚动了大圆的半周时,半径滚动了,滚动了一圈半,所以当小圆沿大圆外侧滚动一周时,小圆自身转了3圈.也可以考虑小圆圆心转过的距离.小圆圆心转过的是一个圆周,半径是小圆的3倍,所以这个圆的周长也是小圆的3倍,由于小圆的圆心每转动一个自身的周长时,小圆也恰好转了一圈,所以本题中小圆自身转了3圈.16.一共圆形花坛,直径是10米,在它的周围有一条宽2米的环形小路。

六年级奥数题-圆及组合图形(含分析答案解析)

六年级奥数题-圆及组合图形(含分析答案解析)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March圆和组合图形(后面有答案分析)一、填空题1.算出圆内正方形的面积为 .2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B、C为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是厘米.(保留两位小数)5.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28长厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度.8.图中扇形的半径OA =OB =6厘米.45=∠AOB , AC 垂直OB 于C ,那么图中阴影部分的面积是 平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.45二、解答题11. ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知: AB =BC =10,那么阴影部分的面积是多少(圆周率14.3=π)12.如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O ,半径r =9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米?.3(≈π14.右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?———————————————答 案——————————————————————1. 18平方厘米.由图示可知,正方形两条对角线的长都是6厘米,正方形由两个面积相等的三角形构成.三角形底为6厘米,高为3厘米,故正方形面积为1822136=⨯⨯⨯(平方厘米).2. 1.14平方厘米.由图示可知,图中阴影部分面积为两个圆心角为45的扇形面积减去直角三角形的面积.即14.12122236045214.32=⨯⨯-⨯⨯⨯(平方厘米).3. 125.6平方厘米.由已知条件可知圆的半径的平方为120平方厘米.故扇形面积为6.12536012012014.3=⨯⨯(平方厘米).4. 3.09厘米.边结BE 、CE ,则BE=CE=BC=1(厘米),故三角形BCE 为等边三角形.于是60=∠=∠BCE EBC .BE=CE=045.136060214.3=⨯⨯(厘米).于是阴影部分周长为09.312045.1=+⨯(厘米).5. 32.8厘米.从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC 的面积.又已知①的面积比②的面积小28平方厘米,故半圆面积比三角形ABC 的面积小28平方厘米. 半圆面积为6282124014.32=⨯⎪⎭⎫ ⎝⎛⨯(平方厘米),三角形ABC 的面积为628+28=656(平方厘米).BC 的长为8.32402656=÷⨯(厘米).6. 13937平方厘米. 将等腰直角三角形补成一个正方形,设正方形边长为x 厘米,则圆的半径为2x 厘米.图中阴影部分面积是正方形与圆的面积之差的81,于是有282114.322⨯=⎪⎭⎫ ⎝⎛⨯-x x ,解得1332002=x .故等腰直角三角形的面积为1393721133200=⨯(平方厘米). 7. 72.扇形面积是圆面积的511574.31=÷,故扇形圆心角为360的51即72.8. 5.13.三角形ACO 是一个等腰直角三角形,将AO 看作底边,AO 边上的高为3262=÷=÷AO (厘米),故三角形ACO 的面积为93621=⨯⨯(平方厘米).而扇形面积为13.1436045614.32=⨯⨯(平方厘米),从而阴影部分面积为14.13-9=5.13(平方厘米).9. 142.75.⌒ ⌒由正方形周长是20厘米,可得正方形边长也就是圆的半径为5420=÷(厘米).图形总面积为两个43圆面积加上正方形的面积,即 75.1425243514.322=+⨯⨯⨯(平方厘米).10. 90平方厘米.图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即()902114.3)220(2115122114.3)216(2114.3212222=⨯⨯÷-⨯⨯+⨯⨯÷+⨯⨯÷ (平方厘米). 11. 如图作出辅助线,则阴影部分的面积为三角形AED 的面积减去正方形BEDO 的面积再加上圆面积的41 三角形AED 的面积是21)210()21010(⨯÷⨯÷+;积是2)210(÷,圆面积的41是2)210(14.341÷⨯⨯,故阴影部分面积为: 22)210(14.341)210(21)210()21010(÷⨯⨯+÷-⨯÷⨯÷+ 125.32625.19255.37=+-=(平方厘米).12. 由已知半圆S 1的面积是14.13平方厘米得半径的平方为914.3213.14=÷⨯(平方厘米),故半径为3厘米,直径为6厘米.又因圆S 2的面积为19.625平方厘米,所以S 2半径的平方为25.614.3625.19=÷(平方厘米),于是它的半径为 2.5厘米,直径为5厘米. 阴影部分面积为55)56(=⨯-(平方厘米).13. 因OA=OB ,故三角形OAB 为等腰三角形,即 150215180,151=⨯-=∠=∠=∠AOB OBA ,同理150=∠AOC ,于是602150360=⨯-=∠BOC .扇形面积为:39.42914.3360602=⨯⨯(平方厘米).14. 正方形可以分割成两个底为2,高为1的三角形,其面积为221221=⨯⨯⨯(平方厘米).正方形内空白部分面积为4个41圆即一个圆的面积与正方形面积之差,即 2212-=-⨯ππ(平方厘米),所有空白部分面积为)2(2-π平方厘米. 故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为 8)2(22412=-⨯-⨯⨯ππ(平方厘米).。

六年级奥数题-圆及组合图形(含分析答案解析)

圆和组合图形(后面有答案分析)一、填空题1.算出圆内正方形的面积为 .2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B、C为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是厘米.(保留两位小数)5.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28长厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度.8.图中扇形的半径OA =OB =6厘米.45=∠AOB , AC 垂直OB 于C ,那么图中阴影部分的面积是 平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.45二、解答题11. ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知:AB =BC =10,那么阴影部分的面积是多少?(圆周率14.3=π)12.如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O ,半径r =9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米?)14.3(≈π14.右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?———————————————答 案——————————————————————1. 18平方厘米.由图示可知,正方形两条对角线的长都是6厘米,正方形由两个面积相等的三角形构成.三角形底为6厘米,高为3厘米,故正方形面积为1822136=⨯⨯⨯(平方厘米).2. 1.14平方厘米.由图示可知,图中阴影部分面积为两个圆心角为45的扇形面积减去直角三角形的面积.即14.12122236045214.32=⨯⨯-⨯⨯⨯(平方厘米).3. 125.6平方厘米.由已知条件可知圆的半径的平方为120平方厘米.故扇形面积为6.12536012012014.3=⨯⨯(平方厘米).4. 3.09厘米.边结BE 、CE ,则BE=CE=BC=1(厘米),故三角形BCE 为等边三角形.于是60=∠=∠BCE EBC .BE=CE=045.136060214.3=⨯⨯(厘米).于是阴影部分周长为09.312045.1=+⨯(厘米).5. 32.8厘米.从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC 的面积.又已知①的面积比②的面积小28平方⌒ ⌒厘米,故半圆面积比三角形ABC 的面积小28平方厘米.半圆面积为6282124014.32=⨯⎪⎭⎫ ⎝⎛⨯(平方厘米),三角形ABC 的面积为628+28=656(平方厘米).BC 的长为8.32402656=÷⨯(厘米).6. 13937平方厘米. 将等腰直角三角形补成一个正方形,设正方形边长为x 厘米,则圆的半径为2x 厘米.图中阴影部分面积是正方形与圆的面积之差的81,于是有282114.322⨯=⎪⎭⎫ ⎝⎛⨯-x x ,解得1332002=x .故等腰直角三角形的面积为1393721133200=⨯(平方厘米).7. 72.扇形面积是圆面积的511574.31=÷,故扇形圆心角为360的51即72.8. 5.13.三角形ACO 是一个等腰直角三角形,将AO 看作底边,AO 边上的高为3262=÷=÷AO (厘米),故三角形ACO 的面积为93621=⨯⨯(平方厘米).而扇形面积为13.1436045614.32=⨯⨯(平方厘米),从而阴影部分面积为14.13-9=5.13(平方厘米).9. 142.75.由正方形周长是20厘米,可得正方形边长也就是圆的半径为5420=÷(厘米).图形总面积为两个43圆面积加上正方形的面积,即 75.1425243514.322=+⨯⨯⨯(平方厘米).10. 90平方厘米.图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即()902114.3)220(2115122114.3)216(2114.3212222=⨯⨯÷-⨯⨯+⨯⨯÷+⨯⨯÷ (平方厘米).11. 如图作出辅助线,则阴影部分的面积为三角形AED 的面积减去正方形BEDO 的面积再加上圆面积的41. 三角形AED 的面积是21)210()21010(⨯÷⨯÷+;正方形面积是2)210(÷,圆面积的41是2)210(14.341÷⨯⨯,故阴影部分面积为: 22)210(14.341)210(21)210()21010(÷⨯⨯+÷-⨯÷⨯÷+ 125.32625.19255.37=+-=(平方厘米).12. 由已知半圆S 1的面积是14.13平方厘米得半径的平方为914.3213.14=÷⨯(平方厘米),故半径为3厘米,直径为6厘米.又因圆S 2的面积为19.625平方厘米,所以S 2半径的平方为25.614.3625.19=÷(平方厘米),于是它的半径为2.5厘米,直径为5厘米.阴影部分面积为55)56(=⨯-(平方厘米).13. 因OA=OB ,故三角形OAB 为等腰三角形,即 150215180,151=⨯-=∠=∠=∠AOB OBA ,同理150=∠AOC ,于是602150360=⨯-=∠BOC .扇形面积为:39.42914.3360602=⨯⨯(平方厘米).14. 正方形可以分割成两个底为2,高为1的三角形,其面积为 221221=⨯⨯⨯(平方厘米). 正方形内空白部分面积为4个41圆即一个圆的面积与正方形面积之差,即 2212-=-⨯ππ(平方厘米),所有空白部分面积为)2(2-π平方厘米.故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为8)2(22412=-⨯-⨯⨯ππ(平方厘米).---精心整理,希望对您有所帮助。

小学奥数教程:圆与扇形_全国通用(含答案)

研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯;圆的周长2πr =;扇形的弧长2π360nr =⨯.一、跟曲线有关的图形元素:①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n.比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长360n⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长) ②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图: 弯角的面积=正方形-扇形④”谷子”:如图: “谷子”的面积=弓形面积2⨯二、常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块二 曲线型面积计算【例 1】 如图,已知扇形BAC 的面积是半圆ADB 面积的34倍,则角CAB 的度数是________. 例题精讲圆与扇形DCBA【考点】圆与扇形 【难度】3星 【题型】填空【解析】 设半圆ADB 的半径为1,则半圆面积为21ππ122⨯=,扇形BAC 的面积为π42π233⨯=.因为扇形BAC的面积为2π360n r ⨯,所以,22ππ23603n ⨯⨯=,得到60n =,即角CAB 的度数是60度. 【答案】60度【例 2】 如下图,直角三角形ABC 的两条直角边分别长6和7,分别以,B C 为圆心,2为半径画圆,已知图中阴影部分的面积是17,那么角A 是多少度(π3=)【考点】圆与扇形 【难度】4星 【题型】解答【解析】 167212ABC S =⨯⨯=△,三角形ABC 内两扇形面积和为21174-=,根据扇形面积公式两扇形面积和为2π24360B C∠+∠⨯⨯=°,所以120B C ∠+∠=°,60A ∠=°.【答案】60度【例 3】 如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的415,是小圆面积的35.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?【考点】圆与扇形 【难度】3星 【题型】解答【解析】 小圆的面积为2π525π⨯=,则大小圆相交部分面积为325π15π5⨯=,那么大圆的面积为422515ππ154÷=,而2251515422=⨯,所以大圆半径为7.5厘米.【答案】7.5【例 4】 有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如图),此时橡皮筋的长度是多少厘米?(π取3)CBA【考点】圆与扇形【难度】3星【题型】解答【解析】由右图知,绳长等于6个线段AB与6个BC弧长之和.将图中与BC弧相似的6个弧所对的圆心角平移拼补,可得到6个角的和是360︒,所以BC弧所对的圆心角是60︒,6个BC弧合起来等于直径5厘米的圆的周长.而线段AB等于塑料管的直径,由此知绳长为:565π45⨯+=(厘米).【答案】45【例5】如图,边长为12厘米的正五边形,分别以正五边形的5个顶点为圆心,12厘米为半径作圆弧,请问:中间阴影部分的周长是多少?(π 3.14=)【考点】圆与扇形【难度】4星【题型】解答【解析】如图,点C是在以B为中心的扇形上,所以AB CB=,同理CB AC=,则ABC∆是正三角形,同理,有CDE∆是正三角形.有60ACB ECD∠=∠=,正五边形的一个内角是1803605108-÷=,因此60210812ECA∠=⨯-=,也就是说圆弧AE的长度是半径为12厘米的圆周的一部分,这样相同的圆弧有5个,所以中间阴影部分的周长是()122 3.1412512.56cm360⨯⨯⨯⨯=.【答案】12.56【例6】如图是一个对称图形.比较黑色部分面积与灰色部分面积的大小,得:黑色部分面积________灰色部分面积.【考点】圆与扇形【难度】3星【题型】填空【解析】图中四个小圆的半径为大圆半径的一半,所以每个小圆的面积等于大圆面积的14,则4个小圆的面积之和等于大圆的面积.而4个小圆重叠的部分为灰色部分,未覆盖的部分为黑色部分,所以这两部分面积相等,即灰色部分与黑色部分面积相等.【答案】相等【例7】如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S,空白部分面积为2S,那么这两个部分的面积之比是多少?(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 如图添加辅助线,小圆内部的阴影部分可以填到外侧来,这样,空白部分就是一个圆的内接正方形.设大圆半径为r ,则222S r =,2212S r r π=-,所以()12: 3.142:257:100S S =-=. 移动图形是解这种题目的最好方法,一定要找出图形之间的关系.【答案】57:100【例 8】 用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 大圆直径是小圆的3倍,半径也是3倍,小圆面积∶大圆面积22π:π1:9r R ==,小圆面积13649=⨯=,7个小圆总面积4728=⨯=,边角料面积36288=-=(平方厘米).【答案】8【例 9】 如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 由于直接求阴影部分面积太麻烦,所以考虑采用增加面积的方法来构造新图形.由右图可见,阴影部分面积等于16大圆面积减去一个小圆面积,再加上120︒的小扇形面积(即13小圆面积),所以相当于16大圆面积减去23小圆面积.而大圆的半径为小圆的3倍,所以其面积为小圆的239=倍,那么阴影部分面积为21259π1π 2.5636⎛⎫⨯-⨯⨯== ⎪⎝⎭.【答案】2.5【例 10】 如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取3.14)CA【考点】圆与扇形【难度】3星【题型】解答【解析】所要求的阴影面积是用正六边形的面积减去六个小扇形面积、正六边形的面积已知,现在关键是小扇形面积如何求,有扇形面积公式2π360n RS=扇.可求得,需要知道半径和扇形弧的度数,由已知正六边形每边所对圆心角为60°,那么120AOC∠=︒,又知四边形ABCO是平行四边形,所以120ABC∠=︒,这样就可求出扇形的面积和为21206π10628360⨯⨯⨯=(平方厘米),阴影部分的面积1040628412=-=(平方厘米).【答案】412【例11】(09年第十四届华杯赛初赛)如下图所示,AB是半圆的直径,O是圆心,AC CD DB==,M是CD 的中点,H是弦CD的中点.若N是OB上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是平方厘米.【考点】圆与扇形【难度】3星【题型】填空【解析】如下图所示,连接OC、OD、OH.本题中由于C、D是半圆的两个三等分点,M是CD的中点,H是弦CD的中点,可见这个图形是对称的,由对称性可知CD与AB平行.由此可得CHN∆的面积与CHO∆的面积相等,所以阴影部分面积等于扇形COD面积的一半,而扇形COD的面积又等于半圆面积的13,所以阴影部分面积等于半圆面积的16,为11226⨯=平方厘米.【答案】2【巩固】如图,C、D是以AB为直径的半圆的三等分点,O是圆心,且半径为6.求图中阴影部分的面积.【考点】圆与扇形【难度】3星【题型】解答【解析】如图,连接OC、OD、CD.由于C、D是半圆的三等分点,所以AOC∆和COD∆都是正三角形,那么CD与AO是平行的.所以ACD∆的面积与OCD∆的面积相等,那么阴影部分的面积等于扇形OCD的面积,为21π618.846⨯⨯=.【答案】18.84【例12】如图,两个半径为1的半圆垂直相交,横放的半圆直径通过竖放半圆的圆心,求图中两块阴影部分的面积之差.(π取3)O【考点】圆与扇形【难度】4星【题型】解答【解析】本题要求两块阴影部分的面积之差,可以先分别求出两块阴影部分的面积,再计算它们的差,但是这样较为繁琐.由于是要求面积之差,可以考虑先从面积较大的阴影中割去与面积较小的阴影相同的图形,再求剩余图形的面积.如右图所示,可知弓形BC或CD均与弓形AB相同,所以不妨割去弓形BC.剩下的图形中,容易看出来AB与CD是平行的,所以BCD∆与ACD∆的面积相等,所以剩余图形的面积与扇形ACD的面积相等,而扇形ACD的面积为260π10.5360⨯⨯=,所以图中两块阴影部分的面积之差为0.5.【答案】0.5【例13】如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分面积是多少?(圆周率取3.14)AFEAFE【考点】圆与扇形【难度】3星【题型】解答【解析】方法一:设小正方形的边长为a,则三角形ABF与梯形ABCD的面积均为()122a a+⨯÷.阴影部分为:大正方形+梯形-三角形ABF-右上角不规则部分=大正方形-右上角不规则部分=14圆.因此阴影部分面积为:3.1412124113.04⨯⨯÷=.方法二:连接AC、DF,设AF与CD的交点为M,由于四边形ACDF是梯形,根据梯形蝴蝶定理有ADM CMFS S=△△,所以DCFS S=阴影扇形3.1412124113.04=⨯⨯÷=【答案】113.04【巩固】如右图,两个正方形边长分别是10和6,求阴影部分的面积.(π取3)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 (法1)观察可知阴影部分面积等于三角形ACD 的面积减去月牙BCD 的面积,那么求出月牙BCD 的面积就成了解题的关键.月牙BCD 的面积为正方形BCDE 的面积减去四分之一圆:166π6694⨯-⨯⨯⨯=;则阴影部分的面积为三角形ACD 的面积减去月牙BCD 的面积,为:()110669392S =⨯+⨯-=阴影.(法2)观察可知AF 和BD 是平行的,于是连接AF 、BD 、DF . 则ABD ∆与BDF ∆面积相等,那么阴影部分面积等于BDF ∆与小弓形的面积之和,也就等于DEF ∆与扇形BED 的面积之和,为:211(106)6π63924-⨯⨯+⨯⨯=.【答案】39【例 14】 如图,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径.已知10AB BC ==,那么阴影部分的面积是多少?(圆周率取3.14)DD【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 连接PD 、AP 、BD ,如图,PD 平行于AB ,则在梯形ABDP 中,对角线交于M 点,那么ABD ∆与ABP ∆面积相等,则阴影部分的面积转化为ABP ∆与圆内的小弓形的面积和. ABP ∆的面积为:()10102225⨯÷÷=; 弓形面积: 3.145545527.125⨯⨯÷-⨯÷=; 阴影部分面积为:257.12532.125+=.【答案】32.125【例 15】 图中给出了两个对齐摆放的正方形,并以小正方形中右上顶点为圆心,边长为半径作一个扇形,按图中所给长度阴影部分面积为 ;(π 3.14=)A【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 连接小正方形AC ,有图可见ACD ABC S S S S =+-△△阴影扇形∵211144222AC ⨯=⨯⨯∴232AC =同理272CE =,∴48AC CE ⨯=∴148242ACD S =⨯=△290π412.56360S =⨯=扇形,14482ABC S =⨯⨯=△∴2412.56828.56S =+-=阴影【答案】28.56【例 16】 如图,图形中的曲线是用半径长度的比为2:1.5:0.5的6条半圆曲线连成的.问:涂有阴影的部分的面积与未涂有阴影的部分的面积的比是多少?【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 假设最小圆的半径为r ,则三种半圆曲线的半径分别为4r ,3r 和r .阴影部分的面积为:()()22222111π4π3ππ5π222r r r r r -++=,空白部分的面积为:()222π45π11πr r r -=,则阴影部分面积与空白部分面积的比为5:11. 【答案】5:11【例 17】 (西城实验考题)奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π 3.14=)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 ⑴每个圆环的面积为:22π4π37π21.98⨯-⨯==(平方厘米);⑵五个圆环的面积和为:21.985109.9⨯=(平方厘米); ⑶八个阴影的面积为:109.977.132.8-=(平方厘米); ⑷每个阴影的面积为:32.88 4.1÷=(平方厘米).【答案】4.1【例 18】 已知正方形ABCD 的边长为10厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连擎起来得右图.那么,图中阴影部分的总面积等于______方厘米.(π 3.14=)【考点】圆与扇形 【难度】4星 【题型】填空 【解析】 39.25 【答案】39.25【例 19】 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)DCBAaDCBAa【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 这道题目是很常见的面积计算问题.阴影部分是一个花瓣状的不规则图形,不能直接通过面积公式求解,观察发现阴影部分是一个对称图形,我们只需要在阴影部分的对称轴上作两条辅助线就明了了.如图,这样阴影部分就划分成了4个半圆减去三角形,我们可以求得,()4S S S =⨯-阴影半圆三角形21142222a a a π⎡⎤⎛⎫=⨯⨯⨯-⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦212a =【答案】12a【巩固】如图,正方形ABCD 的边长为4厘米,分别以B 、D 为圆心以4厘米为半径在正方形内画圆.求阴影部分面积.(π取3)D BA DB【考点】圆与扇形 【难度】3星 【题型】解答【解析】 由题可知,图中阴影部分是两个扇形重叠的部分,我们可以利用容斥原理从图形整体上考虑来求阴影部分面积;同样,我们也可以通过作辅助线直接求阴影部分的面积.解法一:把两个扇形放在一起得到1个正方形的同时还重叠了一块阴影部分.则阴影部分的面积为=21π44482⋅⋅-⨯=;解法二:连接AC ,我们发现阴影部分面积的一半就是扇形减去三角形的面积,所以阴影部分面积=212π444284⨯⋅⋅-⨯÷=().【答案】8【例 20】 (四中考题)已知三角形ABC 是直角三角形,4cm AC =,2cm BC =,求阴影部分的面积.【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 从图中可以看出,阴影部分的面积等于两个半圆的面积和与直角三角形ABC 的面积之差,所以阴影部分的面积为:2214121ππ42 2.5π4 3.8522222⎛⎫⎛⎫⨯+⨯-⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(2cm ).【答案】3.85【例 21】 (奥林匹克决赛试题)在桌面上放置3个两两重叠、形状相同的圆形纸片.它们的面积都是100平方厘米,盖住桌面的总面积是144平方厘米,3张纸片共同重叠的面积是42平方厘米.那么图中3个阴影部分的面积的和 是平方厘米.【考点】圆与扇形 【难度】4星 【题型】填空 【解析】 根据容斥原理得1003242144S ⨯--⨯=阴影,所以100314424272S =⨯--⨯=阴影(平方厘米) 【答案】72【例 22】 如图所示,ABCD 是一边长为4cm 的正方形,E 是AD 的中点,而F 是BC 的中点.以C 为圆心、半径为4cm 的四分之一圆的圆弧交EF 于G ,以F 为圆心、半径为2cm 的四分之一圆的圆弧交EF 于H 点,若图中1S 和2S 两块面积之差为2π(cm )m n -(其中m 、n 为正整数),请问m n +之值为何?S 2S 1G HFEDCB AS图1S 2S 1G HF E DCB A【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】国际小学数学竞赛【解析】 (法1)2248cm FCDE S =⨯=,21π44π4BCD S =⨯⨯=扇形2(cm ),21π2π4BFH S =⨯⨯=扇形2(cm ),而124ππ8FCDE BCD BFH S S S S S -=--=--扇形扇形3π8=-2(cm ),所以3m =,8n =,3811m n +=+=.(法2)如右上图,1S S +=BFEA BFH S S -=扇形2422π48π⨯-⨯⨯÷=-2(cm ), 24444π4164πABCD BCD S S S S +=-=⨯-⨯⨯÷=-扇形2(cm ),所以,12(8π)(164π)3π8S S -=---=-2(cm ),故3811m n +=+=.【答案】11【巩固】在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 我们只要看清楚阴影部分如何构成则不难求解.左边的阴影是大扇形减去小扇形,再扣除一个长方形中的不规则白色部分,而右边的阴影是长方形扣除这块不规则白色部分,那么它们的差应为大扇形减去小扇形,再减去长方形.则为:ππ4422423 3.148 1.4244⨯⨯-⨯⨯-⨯=⨯-=.【答案】1.42【例 23】 如图,矩形ABCD 中,AB =6厘米,BC =4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB =4厘米,求阴影部分的面积.(π取3)CB A【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 方法一:观察发现,阴影部分属于一个大的扇形,而这个扇形除了阴影部分之外,还有一个不规则的空白部分ABFD 在左上,求出这个不规则部分的面积就成了解决这个问题的关键. 我们先确定ABFD 的面积,因为不规则部分ABFD 与扇形BCF 共同构成长方形ABCD ,所以不规则部分ABFD 的面积为2164π4124⨯-⨯⨯=(平方厘米),再从扇形ABE 中考虑,让扇形ABE 减去ABFD 的面积,则有阴影部分面积为21π612154⨯⨯-=(平方厘米).方法二:利用容斥原理2211π6π4461544EAB BCF ABCD S S S S =+-=⨯+⨯-⨯=阴影扇形扇形长方形(平方厘米)【答案】15【巩固】求图中阴影部分的面积.【考点】圆与扇形 【难度】3星 【题型】解答【解析】 阴影部分面积=半圆面积+扇形面积-三角形面积22211211π()π121241.042282=⨯+⨯-⨯=.【答案】41.04【巩固】如右图,正方形的边长为5厘米,则图中阴影部分的面积是 平方厘米,(π 3.14=)【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 观察可知阴影部分是被以AD 为半径的扇形、以AB 为直径的半圆形和对角线BD 分割出来的,分头求各小块阴影部分面积明显不是很方便,我们发现如果能求出左下边空白部分的面积,就很容易求出阴影部分的面积了,我们再观察可以发现左下边空白部分的面积就等于三角形ABD 的面积减去扇形ADE 的面积,那么我们的思路就很清楚了. 因为45ADB ∠=︒,所以扇形ADE 的面积为:224545π 3.1459.8125360360AD ⨯⨯=⨯⨯=(平方厘米),那么左下边空白的面积为:1559.8125 2.68752⨯⨯-=(平方厘米),又因为半圆面积为:215π9.812522⎛⎫⨯⨯= ⎪⎝⎭(平方厘米),所以阴影部分面积为:9.8125 2.68757.125-=(平方厘米).【答案】7.125【例 24】 如图所示,阴影部分的面积为多少?(圆周率取3)33B A33A1.51.51.545︒45︒B33【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 图中A 、B 两部分的面积分别等于右边两幅图中的A 、B 的面积.所以()()229271.5π 1.5343π3328498416A B S S +=-⨯÷+-⨯⨯÷=÷+÷=.【答案】2716【巩固】图中阴影部分的面积是 .(π取3.14)33【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 如右上图,虚线将阴影部分分成两部分,分别计算这两部分的面积,再相加即可得到阴影部分的面积.所分成的弓形的面积为:22131199π3π2242168⎡⎤⎛⎫⨯-⨯⨯=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;另一部分的面积为:221199π33π8484⨯-⨯=-;所以阴影部分面积为:99992727πππ 1.92375 1.9216884168-+-==-=≈.【答案】1.92【例 25】 已知右图中正方形的边长为20厘米,中间的三段圆弧分别以1O 、2O 、3O 为圆心,求阴影部分的面积.(π3=)O3【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 图中两块阴影部分的面积相等,可以先求出其中一块的面积.而这一块的面积,等于大正方形的面积减去一个90︒扇形的面积,再减去角上的小空白部分的面积,为:()()()2142020π202020100π4754S S S S ⎡⎤---÷=⨯-⨯-⨯-÷=⎡⎤⎣⎦⎣⎦圆正方形正方形扇形(平方厘米),所以阴影部分的面积为752150⨯=(平方厘米).【答案】150【例 26】 一个长方形的长为9,宽为6,一个半径为l 的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是_____.(π取3)【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 方法一:圆在长方形内部无法运动到的地方就是长方形的四个角,而圆在角处运动时的情况如左下图,圆无法运动到的部分是图中阴影部分,那么我们可以先求出阴影部分面积,四个角的情况都相似,我们就可以求出总的面积是阴影部分面积的四倍.阴影部分面积是小正方形面积减去扇形面积,所以我们可以得到:每个角阴影部分面积为290111π13604⨯-⨯⨯=;那么圆无法运动到的部分面积为 1414⨯=方法二:如果把四个角拼起来,则阴影如右上图所示,则阴影面积为222311⨯-⨯=【答案】1【例 27】 已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积.(π 3.14=)B【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 由于阴影部分是一个不规则图形,所以要设法把它转化成规则图形来计算.从图中可以看出,阴影部分的面积是一个45°的扇形与一个等腰直角三角形的面积差. 由于半圆的面积为62.8平方厘米,所以262.8 3.1420OA =÷=. 因此:22210AOB S OA OB OA =⨯÷=÷=△(平方厘米).由于AOB ∆是等腰直角三角形,所以220240AB =⨯=.因此:扇形ABC 的面积24545ππ4015.7360360AB =⨯⨯=⨯⨯=(平方厘米).所以,阴影部分的面积等于:15.710 5.7-=(平方厘米).【答案】5.7【例 28】 如图,等腰直角三角形ABC 的腰为10;以A 为圆心,EF 为圆弧,组成扇形AEF ;两个阴影部分的面积相等.求扇形所在的圆面积.【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 题目已经明确告诉我们ABC 是等腰直角三角形,AEF 是扇形,所以看似没有关系的两个阴影部分通过空白部分联系起来.等腰直角三角形的角A 为45度,则扇形所在圆的面积为扇形面积的8倍.而扇形面积与等腰直角三角形面积相等,即11010502S =⨯⨯=扇形,则圆的面积为508400⨯=【答案】400【例 29】 如图,直角三角形ABC 中,AB 是圆的直径,且20AB =,阴影甲的面积比阴影乙的面积大7,求BC 长.(π 3.14=)【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 因为两块阴影部分都是不规则图形,单独对待它们无法运用面积公式进行处理,而解题的关键就是如何把它们联系起来,我们发现把两块阴影加上中间的一块,则变成1个半圆和1个直角三角形,这个时候我们就可以利用面积公式来求解了.因为阴影甲比阴影乙面积大7,也就是半圆面积比直角三角形面积大7.半圆面积为:21π101572⨯⨯=,则直角三角形的面积为157-7=150,可得BC =2⨯150÷20=15.【答案】15【巩固】三角形ABC 是直角三角形,阴影I 的面积比阴影II 的面积小225cm ,8cm AB =,求BC 的长度.I IAB C I【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 由于阴影I 的面积比阴影II 的面积小225cm ,根据差不变原理,直角三角形ABC 面积减去半圆面积为225cm ,则直角三角形ABC 面积为218π258π2522⎛⎫⨯+=+ ⎪⎝⎭(2cm ),BC 的长度为()8π25282π 6.2512.53+⨯÷=+=(cm ).【答案】12.53【巩固】 如图,三角形ABC 是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB 长40厘米.求BC 的长度?(π取3.14)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 图中半圆的直径为AB ,所以其面积为2120π200 3.146282⨯⨯≈⨯=.有空白部分③与①的面积和为628,又②-①28=,所以②、③部分的面积和62828656+=.有直角三角形ABC 的面积为12AB BC ⨯⨯=1406562BC ⨯⨯=.所以32.8BC =厘米.【答案】32.8【例 30】 图中的长方形的长与宽的比为8:3,求阴影部分的面积.【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】十三分,入学测试题 【解析】 如下图,设半圆的圆心为O ,连接OC .从图中可以看出,20OC =,20416OB =-=,根据勾股定理可得12BC =. 阴影部分面积等于半圆的面积减去长方形的面积,为:21π20(162)12200π3842442⨯⨯-⨯⨯=-=.【答案】244【例 31】 如图,求阴影部分的面积.(π取3)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 如图,图中阴影部分为月牙儿状,月牙儿形状与扇形和弓形都不相同,目前我们还不能直接求出 它们的面积,那么我们应该怎么来解决呢?首先,我们分析下月牙儿状是怎么产生的,观察发现月牙儿形是两条圆弧所夹部分,再分析可以知道,两条圆弧分别是不同圆的圆周的一部分,那么我们就找到了解决问题的方法了.阴影部分面积=12小圆面积+12中圆面积+三角形面积-12大圆面积=2221111π3π434π52222⋅⋅+⋅⋅+⨯⨯-⋅⋅=6【答案】6【例 32】 如图,直角三角形的三条边长度为6,8,10,它的内部放了一个半圆,图中阴影部分的面积为多少?68【考点】圆与扇形 【难度】4星 【题型】解答【解析】S S S =-阴影直角三角形半圆, 设半圆半径为r ,直角三角形面积用r 表示为:610822r rr ⨯⨯+= 又因为三角形直角边都已知,所以它的面积为168242⨯⨯=,所以824r =,3r =所以1249π=24 4.5π2S =-⨯-阴影【答案】24 4.5π-【例 33】 大圆半径为R ,小圆半径为r ,两个同心圆构成一个环形.以圆心O 为顶点,半径R 为边长作一个正方形:再以O 为顶点,以r 为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】华校第一学期,期中测试,第6题 【解析】 环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是2250R r -=平方厘米,那么环形的面积为: 2222πππ()π50=157R r R r -=-=⨯(平方厘米).【答案】157【巩固】图中阴影部分的面积是225cm ,求圆环的面积.【考点】圆与扇形 【难度】3星 【题型】解答【解析】 设大圆半径为R ,小圆半径为r ,依题有222522R r -=,即2250R r -=.则圆环面积为:22222πππ()50π157(cm )R r R r -=-==.【答案】157【例 34】 已知图中正方形的面积是20平方厘米,则图中里外两个圆的面积之和是 .(π取3.14)【考点】圆与扇形 【难度】3星 【题型】填空 【关键词】101中学,考题【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222a r =.所以,大圆的面积与正方形的面积之比为:22π:π:2r a =,所以大圆面积为:202π10π÷⨯=;小圆的面积与正方形的面积之比为:22π():π:42aa =,所以小圆的面积为:204π5π÷⨯=;两个圆的面积之和为:10π5π15π15 3.1447.1+==⨯=(平方厘米).【答案】47.1【巩固】图中小圆的面积是30平方厘米,则大圆的面积是 平方厘米.(π取3.14)【考点】圆与扇形 【难度】3星 【题型】填空【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222a r =.所以,大圆的面积与小圆的面积之比为:222222π:π()::2:12424a a a a r r ===, 即大圆的面积是小圆面积的2倍,大圆的面积为30260⨯=(平方厘米).【答案】60【巩固】(2008年四中考题)图中大正方形边长为a ,小正方形的面积是 .【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 设图中小正方形的边长为b ,由于圆的直径等于大正方形的边长,所以圆的直径为a ,而从图中可以看出,圆的直径等于小正方形的对角线长,所以22222a b b b =+=,故2212b a =,即小正方形的面积为212a .【答案】212a【巩固】一些正方形内接于一些同心圆,如图所示.已知最小圆的半径为1cm ,请问阴影部分的面积为多少平方厘米?(取22π7=)【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】台湾小学数学竞赛选拔,复赛 【解析】 我们将阴影部分的面积分为内圈、中圈、外圈三部分来计算.内圈等于内圆面积减去内部正方形的面积,也就是2π1222π2⨯-⨯÷=-.内圆的直径为中部正方形的边长,即为2,中部正方形的对角线等于中圆的直径,于是中圈阴影部分面积是22π(22)4222π4⨯+÷-⨯=-.中圆的直径的平方即为外部正方形的面积,即为22228+=,外部正方形的对角线的平方即为外圆的直径的平方,即为8216⨯=,所以外圈阴影部分的面积是π16484π8⨯÷-=-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8讲圆与扇形知识网络圆是所有几何图形中最完美的。

当一条线段绕着它的一个端点O在平面上旋转时一周时,它的另一端点所画成的封闭曲线叫圆(也叫圆周),O点称为这个圆的圆心。

连接一个圆的圆心和圆周上任一点的线段叫做圆的半径,圆的半径通常用字母r表示。

连接圆上任意两点的线段叫做圆的弦。

过圆心的弦叫做圆的直径,圆的直径通常用字母d表示,显然d=2r。

圆的周长(用字母C表示)与直径的比,叫做圆周率。

圆周率用字母表示,它是一个无限不循环的小数,一般取近似值3.14。

圆的周长。

利用等分圆周拼成近似长方形的方法可知圆的面积。

顶点在圆心的角叫做圆心角。

圆周上任意两点间的部分叫做弧。

扇形是圆的一部分,它是由圆心角的两条半径和圆心角所对的弧组成的图形。

如果扇形的半径为r,弧所对圆心角的度数为n,那么弧的长度。

从而扇形的周长,扇形的面积。

重点·难点本讲的难点在于求圆或扇形与其他平面图形组成的组合图形的面积。

一般这类组合图形是不规则的,很难直接用公式计算它们的面积。

这时候,可以利用分、合、移、补等方法将其转化为若干个基本几何图形的组合,然后再分别计算这若干个基本图形的面积,分析整体与各部分的和、差关系,问题就会迎刃而解。

学法指导在解圆或扇形的周长与面积等有关问题时,一般要先求出半径r,因为半径r是连接周长与面积的纽带。

经典例题[例1]一只饥饿的猛虎紧紧地追赶着一只小狗。

就在猛虎要抓住小狗的时候,小狗逃到了一个圆形的池塘边。

小狗连忙纵身往水里一跳,猛虎抓了个空。

猛虎舍不得这顿即将到口的美餐,于是盯住小狗,在池边跟着小狗跑动,打算在小狗爬上岸的时候再抓住它。

已知猛虎奔跑的速度是小狗游水速度的2.5倍。

请问:小狗如何才能逃出虎口?思路剖析如果小狗在圆形池塘中沿着圆周游动,那末无论它游到哪里,都会被猛虎牢牢盯死。

而如果小狗跳下池塘后就沿着直径笔直往前游,那么猛虎就要跑半个圆周。

由于半圆周长是直径的,而猛虎的速度是小狗的2.5倍,因此猛虎还是能够抓住小狗的。

所以,小狗要想逃出虎口,就必须利用猛虎沿着圆周跑这个特点。

解答小狗只要在跳下池塘后就游向圆形池塘的圆心位置,到达圆心后,看准猛虎所在的位置,立即沿着和猛虎连线的相反方向游去。

这时,小狗只要游池塘的半径长,而猛虎要跑半个圆周长,也就是半径的长,而猛虎的速度仅为小狗游水速度的2.5倍。

在此当猛虎跑到时,小狗已经上了岸,并逃之夭夭了。

[例2]如图1所示,在一个大圆内有许多个小圆,其直径的和等于大圆的直径。

请问:大圆周长与所有小圆周长之和,哪个长?为什么?思路剖析本题并没有告诉我们大圆内有多少个小圆,又没有告诉我们大圆和小圆直径的长度,只告诉我们大圆的直径等于所有小圆直径的和。

这样是不可能求出大圆以及所有小圆的周长的实际长度的,因此我们必须利用周长的计算公式来推出结果。

解答设大圆的直径为d,小圆的直径分别为;因此,根据圆周长而因此,大圆的周长等于所有小圆周长之和。

[例3]某学校举行运动会,有3人参加了200米赛跑,其跑道如图2所示,左右两边是直道,上边是弯道,已知弯道是半圆形的,每道宽为1米。

为了保证比赛的公正性,1、2、3跑道的起点应各相距多少米?思路剖析首先应该清楚:跑道的长度的差异体现在弯道处,而在直道处的长度是相等的。

同时,起点相距的多少与弯道处半圆的半径是无关的。

所以不妨设最内道的半圆半径为r,来求出长度的差异。

解答假设第一圈跑道所对应的半圆半径为r米,则第二圈跑道所对应的跑道的半圆半径为r+1米,第三圈跑道所对应的跑道的半圆半径为r+2米。

则第一半周长为米,第二圈半周长为米,第三圈半周长米,从而第一圈与第二圈跑道相差(米),第二圈与第三圈跑道相差(米)。

所以要保证比赛的公正性,就应把第二道的起点定在第一道的起点前3.14米,而第三道的起点定在第二道的起点前3.14米。

[例4]如图3所示,三角形ABC为等腰直角三角形,∠ACB为直角,D是AB的中点,AB=10厘米,圆弧DE、DF是分别为A、B为圆心所作,求圆中阴影部分的面积。

思路剖析看图形可以知道要求出阴影部分的面积,必须用四分之一的圆的面积减去它所包含的小三角形的面积,然而小三角形我们仅知其斜边长是5厘米,无法求出它的面积。

因此我们考虑用旋转变换,将图3变成图4(即沿CD裁开,以D为轴旋转,使AD边与BD边重合)。

此时阴影的面积就等于半圆的面积减去所含三角形AEF的面积。

解答在图3中,因为三角形ABC是等腰直角三角形,所以∠CAD=∠CBD=45°,从而在图4中,,所以三角形是直角三角形,并且厘米,即,则。

[例5]有一个边长为10厘米的等边三角形ABC,如图5所示。

现将此三角形在水平面内沿水平线翻滚两次,那么A点从开始到结束所经过的总长度是多少?思路剖析三角形ABC是等边三角形,于是它的三个内角均为60°。

在翻滚的过程中,A划过了两段圆弧,一段是以B为圆心的弧,另一段是以为圆心的弧,并且圆心角的大小均为60°+60°=120°。

这样可以用弧长公式来求出A点所经过的总长度。

解答在翻滚的过程中,A点所经过的总长度是由弧和弧组成,由于ABC是等边三角形,所以这两段弧长完全相等,并且它们所对的圆心角均为120°。

由弧长公式可得A点所经过的总长度为答:A点从开始到结束所经过的总长度为41.87厘米。

[例6]如图6所示,三个圆的半径都是10厘米,三个圆两两相交于圆心。

求三块阴影部分的面积之和。

思路剖析阴影部分是由三块面积相等的图形组成的,但是每一块都是不规则图形,若用常规思路分析比较难以计算。

但是根据图形的对称性,利用分割和移补的方法,将之转化为图7,这样可以看出阴影部分被分割移补成一个规则的图形——半圆形。

解答经过分割移补,上图了阴影部分被拼成图7的半圆形,所以阴影部分的面积是答:阴影部分的面积是157平方厘米。

[例7]如图8所示,试求图中阴影部分的面积。

思路剖析本题有常规解法和割法拼凑两种解法,我们用这两种方法来解,并比较哪种解法更简单。

解答☆解法一:我们用常规解法来解。

因此,此图中阴影部分的面积是57+57=114(平方厘米)。

☆解法二:由圆的对称性,把下半圆到上半圆,如图9所示,则所求[例8]在图10中,两个大小相等的正方形内分别排列着九个等圆和十六个等圆,试比较这两个正方形内空隙的大小。

思路剖析要比较两个正方形内空隙的大小,由于两个正方形大小相等,所以只要比较两个正方形中的圆的总面积就可以了。

由于正方形的边长未知,因此必须假设正方形的边长。

同时,我们也可以将图分成九个相同的小正方形,每个小正方形包含一个圆,将图分成十六个相同的小正方形,分别求出每个小正方形中的空隙部分,再求总和。

解答☆解法一:设正方形的边长为a,则图中圆的半径,其面积为。

图中圆的半径为,其面积为,所以图、b中两图中圆的面积是相等的,从而这两个正方形内空隙的大小是相等的。

☆解法二:将图分成九个小正方形,每个小正方形内包含一个圆,设大正方形边长为a,则小正方形边长为,从而小正方形内的空隙为,从而图中大正方形内的空隙为。

同理,将图分成十六个小正方形,每个小正方形内包含一个圆,则小正方形的边长为,从而小正方形内的空隙为,因此图中大正方形内的空隙为。

比较这两个结果可知,图、b中大正方形内的空隙是相等的。

点津如何进行合适的割补,使不规则的图形转化成规则的图形,是本讲必须掌握的技巧,这要靠仔细的观察和对图形的熟悉。

例如,对于例7,虽然两种方法均能导出最后的正确结果,但我们推崇第二种解法,不仅它使计算量大大缩小,而且也显示了解题的技巧。

相比之下,例4提出更高的要求,因为不通过旋转,本题几乎是无法解答的。

因此在解题过程中,我们要仔细观察图形,尽量用最简单的方法来解答问题。

发散思维训练1.图11中每个小圆的半径均为1厘米,那么阴影部分的周长是______。

2.已知图12中长方形的长为21厘米,那么阴影部分的面积是______。

3.图13中长方形的长是10厘米,宽是4厘米,那么图中阴影部分的面积是______。

4.如图14所示,将半径分别为5厘米和4厘米的两个半圆如图放置,那么阴影部分的周长是______。

5.已知正方形ABCD的边长是20厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连接起来(如图15所示),那么,图中阴影部分的总面积为______。

6.有一个建筑物占地的形状是边长为8米的等边三角形。

有一只狗用10米长的蝇子拴在建筑物的一个墙上(即等边三角形的一个顶点),当绳子拉紧时,狗运动所围成土地的总面积是多少?7.如图16所示,图的半径是15厘米,∠AOB=90°,∠COD=120°,CD=26厘米,求阴影部分的面积。

8.试问能否用大小不同的两种半圆,把一个圆分成面积相等的三个部分?若能,请给出分法;若不能,请说明理由。

9.图17中正方形ABCD的边长是1厘米,现在依次以A、B、C、D为圆心,以AD、BE、CF、DG为半径画出扇形,得到图中阴影部分,求阴影部分的面积。

发散思维训练1.解:阴影部分的周长恰好是大圆的周长和七个小圆的周长之和,从而有2.解:由对称性,可以将阴影部分凑成右图的圆,如答图1所示,因此3.解:如答图2所示,将图形划分为A、B、C三个区域。

从而阴影部分的面积是区域A和B 的面积,它等于大扇形的面积减去区域C的面积,而区域C的面积为长方形的面积减去小扇形的面积。

4.解:阴影部分周长为两段圆弧的长度与两段线段的长度的和,所以阴影部分的周长为。

5.解:将阴影部分进行移动,可以将之拼凑成半个圆环,从而阴影部分的面积为。

6.解:根据题意,我们作出狗运动所围成的图形如答图3所示。

这个图形由三个部分组成:一部分是半径为10米的扇形,它的圆心角为:360°-60°=300°,另外两部分都是半径为10-8=2(米)的同样大的扇形,它的圆心角为:180°-60°=120°。

要求狗运动所围成的总面积,就是求这三个扇形的面积之和。

7.解:如答图4所示,阴影部分的面积是用弓形CHD的面积减去弓形AHB的面积。

其中H是的中点,因此∠COH=∠DOH=60°,所以∠CKO=∠DOH=60°从而。

从而阴影部分的面积=弓形CHD的面积-弓形AHB的面积=138-64.125=73.875(平方厘米)8.解:如答图5所示,把圆的直径三等分,分别以其中一份和两份为直径各画两个半圆,就将大圆和面积三等分。

因为:假设大圆的半径为r,两个小圆的半径分别为,于是,由对称性,,从而。

即按此分割将圆的面积分成大小相等的三部分。

9.解:图中阴影部分由四个圆心角为90°的扇形组成,不难看出,这四个扇形的半径分别为1厘米,2厘米,3厘米,4厘米。

相关文档
最新文档