高中数学 2.1 数列的概念与简单表示法练习
高中数学2.1 数列的概念与简单表示法 问题拓展单

2.1《数列的概念与简单表示法》问题拓展—评价单[拓展训练]1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是( )A.(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π 2.下列六个结论中:(1) 数列若用图象表示,从图象看都是一群孤立的点;(2) 数列的项数是有限的;(3) 数列的通项公式是唯一的;(4) 数列不一定有通项公式; (5)数列1,2,3,……不一定递增;(6)数列看作函数,其定义域是*N 或它的有限子集{}n ,,3,2,1⋅⋅⋅,其中正确的是 3. 已知正整数列{}n a 对任意,p q N ∈g ,都有p q p q a a a +=+,若24a =,则9a =( )A. 6B. 9C. 18D. 204. 若S n 为数列{a n }的前n 项和,且S n =n n +1,则1a 5=( ) A.56 B.65 C.130 D .305.数列{x n }中,若x 1=1,x n +1=1x n +1-1,则x 2014=( ) A .-1 B .-12 C.12D .1 6. 已知数列{}n a 的通项公式()()2log 1+=+n a n n ,则它的前30项之积为_________7.下面的数列()⋅⋅⋅,2222,222,22,215,6,7,8,9,10)2(()⋅⋅⋅,0,1,0,1,0,13()⋅⋅⋅,,,,,4a a a a a ,递增数列是 ;递减数列是 ;常数列 ;摆动数列是 .(直接填写序号)8.根据下面数列的前几项的值,写出数列的一个通项公式:(1) 3, 5, 9, 17, 33,……;(2) 32, 154, 356, 638, 9910, ……;(3) 0, 1, 0, 1, 0, 1,……;(4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ……;(5) 2, -6, 12, -20, 30, -42,…….9.根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式(1) 1a =0, 1+n a =n a +(2n -1) (n ∈N);(2) 1a =1, 1+n a =22+n n a a (n ∈N); (3) 1a =3, 1+n a =3n a -2 (n ∈N).10.已知下列各数列{}n a 的前n 项和n S 的公式,求{}n a 的通项公式(1) n S =2n 2-3n;(2) n S =n 3-2.(3)已知n S =an 2+bn+c ,12.根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式(1) 1a =0, 1+n a =n a +(2n -1) (n ∈N);(2) 1a =1, 1+n a =22+n n a a (n ∈N); (3) 1a =3, 1+n a =3n a -2 (n ∈N).【我的问题】【多元评价】1、完成单子情况2、主动帮助同伴3、 主动展讲4、主动补充与质疑5、纪律情况。
2014年高中数学 2.1数列的概念与简单表示法特色训练 新人教A版必修5

2.1 数列的概念与简单表示法特色训练一 、典型例题【例1】 求出下列各数列的一个通项公式(1)14(2)23,,,,,...,,,, (385167329)64418635863解 (1) 通项公式为:.a =2n 12n n+1-(2)所给数列的通项公式为:a nn n n =-+22121()().【例2】已知数列a n 满足:a 1=1,a n =a n -1+n (n ≥2)(1)写出这个数列a n 的前七项为 。
(2)试猜想这个数列a n 的通项公式 。
11(2)n n n n a a n a a n n --=+∴-=≥解22121234567(2)(1)2112211(2)1,12211(1)221,3,6,10,15,21,28n n n n n n a n n n n a a n n n a a a a a a a 又时满足上式+-+-\=+=+=+?=\=+ \=======Q【例3】 a = a 1n(n 1)n n 1 已知 +- - (n ≥ 2),11a =,(1) 写出数列的前5项; (2) 求a n .解(1) a = a (n 2) a = 1 a a n n 11 2 3 由已知 + ≥ 得 = · =· - - +- = + = + = 11 1 12 2 1 32 3 2 1 3 29 1 6 5 3 n n ( )( )a a 45=·=·53143531122112747415474120362095+=+==+=+==(2)由第(1)小题中前5项不难求出.a n n a n n n =-=-2121()或二、练习1 求出下列各数列的一个通项公式.(1)2,0,2,0,2,… (2) (3) 1 2 - - 1 3 1 8 1 15 124 2 9 2 8 25 2 , , , ,…, , , , …2 已知数列n a 满足:a 1=5, a n=an -1+3(n≥2)(1)写出这个数列n a 的前五项为__________________________。
数列的概念与简单表示方法

1 1 1 1 1 1 1 1 , ,, ; ◆ , , , . ◆ 1 2 3 4 1 2 2 3 3 4 4 5
写通项公式的一般方法: ①由各项的特点,找出各项共同的构成规律。 ②通过观察、归纳研究数列中的项与序号之间 的关系,写出一个满足条件的最简捷的公式。
◆与不是所有函数关系都能用解析式表示一样,并不是所有数列都 有通项公式
◆ 数列是一种特殊的函数。
数列也可以看作定义域为正整数集 N (或它的有限子集)的函数,
数列的通项公式:
• 如果数列{ an }中的第n项an与n之间的 关系可以用一个式子来表示,那么这 个式子就叫做数列的通项公式。
an=n+3
n=1,2,3,4,5,6,7…
◆ n实质就是序号,n必须从1开始取,且连续的取。 ◆通项公式可以看成是数列的函数解析式。
2.1数列的概念与简 单表示法
中国运动员近几届奥运会获得的金牌数
32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
32
28
15
16
16
金牌数
5
23届
24届
2பைடு நூலகம்届
26届
27届
28届
根据下列图形,按一定的次序写出一 组钢管数:
• 某种放射性物质不断变为其他物质,每经过 一年,剩留的这种物质是原来的84%,设这 种物质的某年开始时质量为1,则这种物质从 这年起各年开始时剩留量排成一列数:
4
1 , 1 , 1 , 1
无穷数列 摆动数列
5
请你描述一下项和序号之间的关系 项 项(an) 4 5 6 7 8 9 10 …
an=n+3
高考数学---数列的概念与简单表示法课后作业练习(含答案解析)

高考数学---数列的概念与简单表示法课后作业练习(含答案解析)建议用时:45分钟一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n等于()A.(-1)n+12B.cosnπ2C.cos n+12πD.cosn+22πD[令n=1,2,3,…,逐一验证四个选项,易得D正确.]2.若S n为数列{a n}的前n项和,且S n=nn+1,则1a5等于()A.56 B.65C.130D.30D[当n≥2时,a n=S n-S n-1=nn+1-n-1n=1n(n+1),所以1a5=5×6=30.]3.记S n为数列{a n}的前n项和.“任意正整数n,均有a n>0”是“{S n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[∵“a n>0”⇒“数列{S n}是递增数列”,∴“a n>0”是“数列{S n}是递增数列”的充分条件.如数列{a n}为-1,1,3,5,7,9,…,显然数列{S n}是递增数列,但是a n 不一定大于零,还有可能小于零,∴“数列{S n}是递增数列”不能推出“a n>0”,∴“a n>0”是“数列{S n}是递增数列”的不必要条件.∴“a n>0”是“数列{S n}是递增数列”的充分不必要条件.] 4.(2019·武汉5月模拟)数列{a n}中,a n+1=2a n+1,a1=1,则a6=() A.32 B.62C.63 D.64C[数列{a n}中,a n+1=2a n+1,故a n+1+1=2(a n+1),因为a1=1,故a1+1=2≠0,故a n+1≠0,所以a n+1+1a n+1=2,所以{a n+1}为等比数列,首项为2,公比为2.所以a n+1=2n即a n=2n-1,故a6=63,故选C.]5.若数列{a n}的前n项和S n=n2-10n(n∈N*),则数列{na n}中数值最小的项是()A.第2项B.第3项C.第4项D.第5项B[∵S n=n2-10n,∴当n≥2时,a n=S n-S n-1=2n-11;当n=1时,a1=S1=-9也适合上式.∴a n=2n-11(n∈N+).记f(n)=na n=n(2n-11)=2n2-11n,此函数图像的对称轴为直线n=114,但n∈N+,∴当n=3时,f(n)取最小值.∴数列{na n}中数值最小的项是第3项.]二、填空题6.已知数列5,11,17,23,29,…,则55是它的第________项.21[数列5,11,17,23,29,…中的各项可变形为5,5+6,5+2×6,5+3×6,5+4×6,…,所以通项公式为a n=5+6(n-1)=6n-1,令6n-1=55,得n=21.]7.若数列{a n}满足a1=1,a2=3,a n+1=(2n-λ)a n(n=1,2,…),则a3等于________.15[令n=1,则3=2-λ,即λ=-1,由a n+1=(2n+1)a n,得a3=5a2=5×3=15.]8.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.28[∵a1a2a3=8,且a1=1,a2=2.∴a3=4,同理可求a4=1,a5=2.a6=4,∴{a n}是以3为周期的数列,∴a1+a2+a3+…+a12=(1+2+4)×4=28.]三、解答题9.(2019·洛阳模拟)已知数列{a n}满足a1=50,a n+1=a n+2n(n∈N*),(1)求{a n}的通项公式;(2)已知数列{b n}的前n项和为a n,若b m=50,求正整数m的值.[解](1)当n≥2时,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a3-a2)+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×2+2×1+50=2×(n-1)n2+50=n 2-n +50.又a 1=50=12-1+50,∴{a n }的通项公式为a n =n 2-n +50,n ∈N *. (2)b 1=a 1=50, 当n ≥2时,b n =a n -a n -1=n 2-n +50-[(n -1)2-(n -1)+50]=2n -2, 即b n =⎩⎪⎨⎪⎧50,n =12n -2,n ≥2.当m ≥2时,令b m =50,得2m -2=50,解得m =26. 又b 1=50,∴正整数m 的值为1或26.10.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *,设b n =S n -3n ,(1)求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. [解] (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 即b n +1=2b n , 又b 1=S 1-3=a -3,所以数列{b n }的通项公式为b n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n-1+(a -3)2n -2,a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫32n -2+a -3,当n ≥2时,a n +1≥a n ⇒12×⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇒a ≥-9,又a 2=a 1+3>a 1(a ≠3).综上,a 的取值范围是[-9,3)∪(3,+∞).1.已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是递增数列,则实数λ的取值范围是( )A .(2,+∞)B .(3,+∞)C .(-∞,2)D .(-∞,3)C [由a n +1=a n a n +2,知1a n +1=2a n +1,即1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,所以数列⎩⎨⎧⎭⎬⎫1a n +1是首项为1a 1+1=2,公比为2的等比数列,所以1a n +1=2n ,所以b n +1=(n -λ)·2n ,因为数列{b n }是递增数列,所以b n +1-b n =(n -λ)2n -(n -1-λ)2n -1=(n +1-λ)2n-1>0对一切正整数n 恒成立,所以λ<n +1,因为n ∈N *,所以λ<2,故选C.]2.(2019·临沂三模)意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”: 1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N *),此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( )A .672B .673C .1 346D .2 019C [由数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,可得{a n }为1,1,0,1,1,0,1,1,0,1,1,0,…,所以{a n }是周期为3的周期数列,一个周期中三项和为1+1+0=2, 因为2 019=673×3,所以数列{a n }的前2 019项的和为673×2=1 346,故选C.]3.(2019·晋城三模)记数列{a n }的前n 项和为S n ,若S n =3a n +2n -3,则数列{a n }的通项公式为a n =________.a n =2-⎝ ⎛⎭⎪⎫32n[当n =1时,S 1=a 1=3a 1-1,解得a 1=12;当n ≥2时,S n =3a n +2n -3,S n -1=3a n -1+2n -5,两式相减可得,a n =3a n -3a n -1+2,故a n =32a n -1-1,设a n +λ=32(a n -1+λ),故λ=-2,即a n -2=32(a n -1-2),故a n -2a n -1-2=32.故数列{a n -2}是以-32为首项,32为公比的等比数列,故a n -2=-32·⎝ ⎛⎭⎪⎫32n -1,故a n =2-⎝ ⎛⎭⎪⎫32n .] 4.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足2S n =(n +1)a n (n ∈N *). (1)求数列{a n }的通项公式;(2)记b n =3n -λa 2n ,若数列{b n }为递增数列,求λ的取值范围. [解] (1)∵2S n =(n +1)a n , ∴2S n +1=(n +2)a n +1,∴2a n +1=(n +2)a n +1-(n +1)a n , 即na n +1=(n +1)a n ,∴a n +1n +1=a nn ,∴a n n =a n -1n -1=…=a 11=1,∴a n =n (n ∈N +). (2)由(1)知b n =3n -λn 2.b n +1-b n =3n +1-λ(n +1)2-(3n -λn 2) =2·3n -λ(2n +1). ∵数列{b n }为递增数列, ∴2·3n -λ(2n +1)>0, 即λ<2·3n2n +1.令c n =2·3n2n +1,即c n +1c n =2·3n +12n +3·2n +12·3n =6n +32n +3>1. ∴{c n }为递增数列, ∴λ<c 1=2,即λ的取值范围为(-∞,2).1.(2019·烟台、菏泽高考适应性练习一)已知数列:1k ,2k -1,…,k 1(k ∈N *),按照k 从小到大的顺序排列在一起,构成一个新的数列{a n }:1,12,21,13,22,31,…,则89首次出现时为数列{a n }的( )A .第44项B .第76项C .第128项D .第144项C [观察分子分母的和出现的规律:2,3,4,5,…,把数列重新分组:⎝ ⎛⎭⎪⎫11,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,…,⎝ ⎛⎭⎪⎫1k ,2k -1,…,k 1,可看出89第一次出现在第16组,因为1+2+3+…+15=120,所以前15组一共有120项;第16组的项为⎝ ⎛⎭⎪⎫116,215,…,710,89…,所以89是这一组中的第8项,故89第一次出现在数列的第128项,故选C.]2.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R )有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.[解] (1)依题意,Δ=a 2-4a =0, 所以a =0或a =4. 又由a >0得a =4, 所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5. 所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0.又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37, 即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0,所以数列{c n}的变号数为3.。
2.1数列的概念与简单表示法(一)

3. 正方形数
复习引入
1. 2. 三角形数 1,3,6,10,··· , , , , 3. 正方形数 1,4,9,16,··· , , , ,
复习引入
1. 2. 三角形数 1,3,6,10,··· , , , , 3. 正方形数 1,4,9,16,··· , , , , 这些数有什么规律? 这些数有什么规律?与它所表示的 序号有什么关系 图形的序号有什么关系? 图形的序号有什么关系?
数列及其有关概念
5. 数列的通项公式 数列的通项公式: 如果数列{a 的 如果数列 n}的第n项与序号 之间 项 序号n之间 的关系可以用一个公式来表示, 的关系可以用一个公式来表示,那么这 个公式就叫做这个数列的通项公式 通项公式. 个公式就叫做这个数列的通项公式
数列及其有关概念
数列 (特殊的函数 特殊的函数) 特殊的函数
函数 定义域 解析式 图象
数列及其有关概念
数列 (特殊的函数 特殊的函数) 特殊的函数 N*或它的子集 an=f(n) 一些离散的点 的集合
函数 定义域 解析式 图象 R或R的子集 或 的子集 y= y=f(x) 点的集合
讲解范例:根据数列的前几项写出数列的通项公式 讲解范例 根据数列的前几项写出数列的通项公式
写出下面数列的一个通项公式, 例1.写出下面数列的一个通项公式,使 写出下面数列的一个通项公式 它的前4项分别是下列各数 项分别是下列各数: 它的前 项分别是下列各数:
( 1 ) 1 , 2 , 3 , 4 ...
an = n
( 2 ) 2 , 4 , 6 , 8 ... an = 2n ( 3 ) 1 , 3 , 5 , 7 ... an = 2n − 1
高中数学 第2章 数列 2.1 数列的概念与简单表示法 第2课时 数列的性质和递推公式练习 新人教A

第2课时 数列的性质和递推公式1.已知a n +1-a n -3=0,则数列{a n }是 A.递增数列 B.递减数列 C.常数列D.不能确定解析a n +1-a n =3>0,故数列{a n }为递增数列. 答案A2.数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,则a 6= A.3B.5C.8D.13解析 由条件知a 3=2,a 4=3,a 5=5,a 6=8. 答案C3.已知数列{a n }中,a 1=1,a n +1a n =12,则数列{a n }的通项公式是 A.a n =2n B.a n =12nC.a n =12n -1D.a n =1n2解析a 1=1,a 2=12,a 3=14,a 4=18,观察得a n =12n -1.答案C4.若数列{a n }满足a n +1=2a n -1,且a 8=16,则a 6=________. 解析 由a n +1=2a n -1,得a n =12(a n +1+1),∴a 7=12(a 8+1)=172,a 6=12(a 7+1)=194.答案1945.已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),则a 2 018=________.解析a 1=2,由a n +1=1+a n1-a n,得a 2=-3,a 3=-12,a 4=13,a 5=2,∴数列{a n }的周期为4, ∴a 2 018=a 4×504+2=a 2=-3. 答案 -3[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是A.1B.12C.34D.58解析 由a 1=1,∴a 2=12a 1+12=1,依此类推a 4=12.答案B2.在递减数列{a n }中,a n =kn (k 为常数),则实数k 的取值X 围是 A.RB.(0,+∞)C.(-∞,0)D.(-∞,0]解析 ∵{a n }是递减数列, ∴a n +1-a n =k (n +1)-kn =k <0. 答案C3.数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }各项中最小项是 A.第4项B.第5项C.第6项D.第7项解析a n =3n 2-28n =3⎝⎛⎭⎪⎫n -1432-1963,故当n =5时,a n 的最小值为a 5=-65. 答案B4.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于 A.259B.2516C.6116D.3115解析 由a 1·a 2·a 3·…·a n =n 2,(n ≥2)得a 1·a 2·a 3·…·a n -1=(n -1)2,(n ≥3),∴a n =n 2(n -1)2,(n ≥3),∴a 3=94,a 5=2516,∴a 3+a 5=6116.答案C5.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于 A.-165B.-33C.-30D.-21解析 由已知得a 2=a 1+a 1=2a 1=-6,∴a 1=-3.∴a 10=2a 5=2(a 2+a 3)=2a 2+2(a 1+a 2)=4a 2+2a 1=4×(-6)+2×(-3)=-30. 答案C6.(能力提升)在数列{a n }中,a 1=2,a n +1=a n +lg ⎝⎛⎭⎪⎫1+1n ,则a n =A.2+lg nB.2+(n -1)lg nC.2+n lg nD.1+n +lg n解析 由a n +1=a n +lg ⎝⎛⎭⎪⎫1+1n ⇒a n +1-a n =lg ⎝ ⎛⎭⎪⎫1+1n ,那么a n =a 1+(a 2-a 1)+…+(a n -a n -1)=2+lg 2+lg 32+lg 43+…+lg n n -1=2+lg ⎝ ⎛⎭⎪⎫2×32×43×…×n n -1=2+lg n .答案A二、填空题(每小题5分,共15分)7.若a 1=1,a n +1=a n3a n +1,则给出的数列{a n }的第7项的值为________.解析由数列{a n }的首项和递推公式可以求出a 2=14,a 3=17,…,观察得到通项公式a n =13n -2,所以a 7=119.答案1198.已知函数f (x )的部分对应值如表所示.数列{a n }满足a 1=1,且对任意n ∈N *,点(a n ,a n +1)都在函数f (x )的图象上,则a 2 017的值为________.解析 由题知,a n +1=f (a n ),a 1=1.∴a 2=f (1)=3,a 3=f (a 2)=f (3)=2,a 4=f (a 3)=f (2)=1,…,依次类推,可得{a n }是周期为3的周期数列,∴a 2 017=a 672×3+1=a 1=1.答案 19.(能力提升)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0,则a n =________.解析 (n +1)a 2n +1-na 2n +a n +1·a n =[(n +1)a n +1-na n ](a n +1+a n )=0, ∵a n >0,∴(n +1)a n +1-na n =0,即a n +1a n =n n +1. 所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ·n -2n -1·n -3n -2·…·12·1=1n. 答案1n三、解答题(本大题共3小题,共35分)10.(11分)已知数列{a n }中,a 1=1,a 2=2,以后各项由a n =a n -1+a n -2(n ≥3)给出. (1)写出此数列的前5项; (2)通过公式b n =a na n +1构造一个新的数列{b n },写出数列{b n }的前4项. 解析 (1)因为a n =a n -1+a n -2(n ≥3), 且a 1=1,a 2=2,所以a 3=a 2+a 1=3,a 4=a 3+a 2=3+2=5,a 5=a 4+a 3=5+3=8. 故数列{a n }的前5项依次为a 1=1,a 2=2,a 3=3,a 4=5,a 5=8.(2)因为b n =a na n +1, 且a 1=1,a 2=2,a 3=3,a 4=5,a 5=8,所以b 1=a 1a 2=12,b 2=a 2a 3=23,b 3=a 3a 4=35,b 4=a 4a 5=58.11.(12分)已知数列{a n }中,a 1=1,a n +1=nn +1a n . (1)写出数列{a n }的前5项; (2)猜想数列{a n }的通项公式; (3)画出数列{a n }的图象.解析 (1)a 1=1,a 2=11+1×1=12,a 3=21+2×12=13,a 4=31+3×13=14,a 5=41+4×14=15.(2)猜想:a n =1n.(3)图象如图所示:12.(12分)已知函数f (x )=1-2x x +1(x ≥1),构造数列a n =f (n )(n ∈N *). (1)求证:a n >-2;(2)数列{a n }是递增数列还是递减数列?为什么?解析 (1)证明 因为f (x )=1-2x x +1=3-2(x +1)x +1=-2+3x +1,所以a n =-2+3n +1.因为n ∈N *,所以a n >-2. (2)数列{a n }为递减数列.因为a n =-2+3n +1, 所以a n +1-a n =⎝⎛⎭⎪⎫-2+3n +2-⎝ ⎛⎭⎪⎫-2+3n +1=3n +2-3n +1=-3(n +2)(n +1)<0, 即a n +1<a n ,所以数列{a n }为递减数列.。
人教A版数学必修五2.1 数列的概念与简单表示法-数列的通项公式(二)——利用Sn与an关系求通项公
1.已知数列{an}的前 n 项和 Sn 2n2 n 1,求 an 2.已知数列{an}的前 n 项和 Sn 1 3n ,求 an
答案 第1题
4 n 1 an 4n 1 n 2
第2题
an 2 3n1, n N
隐藏 Sn ,求 an
【例 2】已知数列{an}中, a1 2a2 2n1an n2 n ,求 an
(2)由(1)
1 Sn
2n ,
Sn
1 2n
,nN
(又回到了类型一)
①当
n
1 时,
a1
S1
1 2
②当 n 2 时, an Sn Sn1
人教A版数学必修五2.1 数列的概念与简单表示法-数列的 通项公 式(二 )—— 利用Sn 与an关 系求通 项公式 课件【精品】
1 1 2n 2n 2
1 2n2 2n
n2 n (n 1)2 (n 1) 2n 对于 bn 2n ,当 n 1 时, b1 2
所以: bn 2n, n N
又 bn 2n1 an , 则2n1 an 2n
所以: an
n 2n2
,n N
处理方法
换元转换为类型一
3. 已知数列{an}中, a1 3a2 (2n 1)an n(n 1)(n 2) ,求 an
(1)求 an :与类型一的处理方法一样,消去 Sn ,
得到 an 与 an1 的递推关系,再求 an
(2)求 Sn :消去 an ,得到 Sn 与 Sn1 的递推关系,
进而求出 Sn
人教A版数学必修五2.1 数列的概念与简单表示法-数列的 通项公 式(二 )—— 利用Sn 与an关 系求通 项公式 课件【精品】
1 1 2 0即 1 1 2
高一数列的概念及简单表示方法知识点+例题+练习 含答案
1.数列的定义按照一定次序排列的一列数称为数列,数列中的每个数都叫做这个数列的项. 2.数列的分类 分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限按项与项间的大小关系分类 递增数列 a n +1__>__a n 其中n ∈N *递减数列 a n +1__<__a n 常数列 a n +1=a n按其他标准分类有界数列 存在正数M ,使|a n |≤M 摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式.5.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1 , n =1,S n -S n -1, n ≥2.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达.( × )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ )(3)1,1,1,1,…,不能构成一个数列.( × )(4)任何一个数列不是递增数列,就是递减数列.( × )(5)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( √ ) (6)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( √ )1.已知数列{a n }中,a 1=1,1a n +1=1a n +3 (n ∈N *),则a 10=________. 答案128解析 由题意得1a n +1-1a n=3.∴1a 2-1a 1=3,1a 3-1a 2=3,1a 4-1a 3=3,1a 5-1a 4=3,…,1a 10-1a 9=3,对递推式叠加得1a 10-1a 1=27,故a 10=128.2.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图).则第7个三角形数是________. 答案 28解析 根据三角形数的增长规律可知第七个三角形数是1+2+3+4+5+6+7=28. 3.数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1 (n ≥1,n ∈N *),则数列{a n }的通项公式是__________. 答案 a n =3n -1解析 由a n +1=2S n +1可得a n =2S n -1+1 (n ≥2),两式相减得a n +1-a n =2a n ,即a n +1=3a n (n ≥2).又a 2=2S 1+1=3,a 3=3·a 2=32·a 1=32, a 4=3a 3=33… a n =3a n -1=3n -1.4.(教材改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.答案 5n -45.已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=2,当n ≥2时, a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.题型一 由数列的前几项求数列的通项公式例1 (1)数列0,23,45,67,…的一个通项公式为________.①a n =n -1n +1(n ∈N *) ②a n =n -12n +1(n ∈N *)③a n =2(n -1)2n -1(n ∈N *) ④a n =2n 2n +1(n ∈N *)(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.答案 (1)③ (2)2n +1n 2+1解析 (1)注意到分母0,2,4,6都是偶数,对照所给项排除即可.(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.思维升华 根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…. 解 (1)数列中各项的符号可通过(-1)n 表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6,故通项公式为a n =(-1)n (6n -5). (2)数列变为89⎝⎛⎭⎫1-110,89⎝⎛⎭⎫1-1102,89⎝⎛⎭⎫1-1103,…, 故a n =89⎝⎛⎭⎫1-110n . (3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母小3. 因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,故a n =(-1)n 2n -32n .题型二 由数列的前n 项和求数列的通项公式例2 设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式. 解 (1)令n =1时,T 1=2S 1-1,因为T 1=S 1=a 1,所以a 1=2a 1-1,所以a 1=1. (2)n ≥2时,T n -1=2S n -1-(n -1)2, 则S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2] =2(S n -S n -1)-2n +1=2a n -2n +1. 因为当n =1时,a 1=S 1=1也满足上式, 所以S n =2a n -2n +1(n ≥1),当n ≥2时,S n -1=2a n -1-2(n -1)+1, 两式相减得a n =2a n -2a n -1-2,所以a n =2a n -1+2(n ≥2),所以a n +2=2(a n -1+2), 因为a 1+2=3≠0,所以数列{a n +2}是以3为首项,公比为2的等比数列. 所以a n +2=3×2n -1,所以a n =3×2n -1-2, 当n =1时也成立, 所以a n =3×2n -1-2.思维升华 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.(1)已知数列{a n }的前n 项和S n =n +1n +2,则a 4=________.(2)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________.答案 (1)130 (2)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2解析 (1)a 4=S 4-S 3 =56-45=130. (2)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.题型三 由数列的递推关系求通项公式例3 (1)设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =________. (2)数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =________. 答案 (1)n (n +1)2+1 (2)2×3n -1-1解析 (1)由题意得,当n ≥2时, a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,符合上式,因此a n =n (n +1)2+1.(2)方法一 (累乘法)a n +1=3a n +2,即a n +1+1=3(a n +1), 即a n +1+1a n +1=3, 所以a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…,a n +1+1a n +1=3.将这些等式两边分别相乘得a n +1+1a 1+1=3n .因为a 1=1,所以a n +1+11+1=3n ,即a n +1=2×3n -1(n ≥1), 所以a n =2×3n -1-1(n ≥2), 又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1. 方法二 (迭代法) a n +1=3a n +2,即a n +1+1=3(a n +1)=32(a n -1+1)=33(a n -2+1) =…=3n (a 1+1)=2×3n (n ≥1), 所以a n =2×3n -1-1(n ≥2), 又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1.思维升华 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解. 当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解.(1)已知数列{a n }满足a 1=1,a n =n -1n·a n -1(n ≥2),则a n =________.(2)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5=________. 答案 (1)1n(2)16解析 (1)∵a n =n -1n a n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n .(2)当n =1时,S 1=2a 1-1,∴a 1=1. 当n ≥2时,S n -1=2a n -1-1, ∴a n =2a n -2a n -1,∴a n =2a n -1. ∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16.题型四 数列的性质命题点1 数列的单调性例4 已知数列{a n }的前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∵b n =2a n +1,∴b n =⎩⎨⎧23,n =1,1n , n ≥2,n ∈N *.(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴c n +1<c n .∴数列{c n }为递减数列. 命题点2 数列的周期性例5 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=_____________________________________.答案 12解析 ∵a n +1=11-a n,∴a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值例6 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项的值是________.答案119解析 令f (x )=x +90x (x >0),运用基本不等式得,f (x )≥290当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或10时,a n =119最大.思维升华 1.解决数列的单调性问题可用以下三种方法(1)用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列或是常数列. (2)用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.(3)结合相应函数的图象直观判断. 2.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 3.数列的最值可以利用数列的单调性或求函数最值的思想求解.(1)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1,a 1=35,则数列的第2 015项为________.(2)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是________. 答案 (1)25(2)0解析 (1)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 015=a 3=25.(2)∵a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大值为0.5.数列中的新定义问题典例 (1)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 014项与5的差,即a 2 014-5=__________.(用式子表示)(2)对于数列{x n },若对任意n ∈N *,都有x n +x n +22<x n +1成立,则称数列{x n }为“减差数列”.设b n =2t -tn -12n -1,若数列b 3,b 4,b 5,…是“减差数列”,则实数t 的取值范围是____________.思维点拨 (1)观察图形,易得a n -a n -1=n +2(n ≥2)可利用累加法求解.(2)由“减差数列”的定义,可得关于b n 的不等式,把b n 的通项公式代入,化归为不等式恒成立问题求解.解析 (1)因为a n -a n -1=n +2(n ≥2),a 1=5,所以a 2 014=(a 2 014-a 2 013)+(a 2 013-a 2 012)+…+(a 2-a 1)+a 1=2 016+2 015+…+4+5 =(2 016+4)×2 0132+5=1 010×2 013+5,所以a 2 014-5=1 010×2 013.(2)由数列b 3,b 4,b 5,…是“减差数列”, 得b n +b n +22<b n +1(n ≥3), 即t -tn -12n +t -t (n +2)-12n +2<2t -t (n +1)-12n ,即tn -12n +t (n +2)-12n +2>t (n +1)-12n ,化简得t (n -2)>1. 当n ≥3时,若t (n -2)>1恒成立,则t >1n -2恒成立,又当n ≥3时,1n -2的最大值为1,则t 的取值范围是(1,+∞).答案 (1)1 010×2 013 (2)(1,+∞)温馨提醒 解决数列的新定义问题要做到:(1)准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要求的形式,切忌同已有概念或定义相混淆.(2)方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法.[方法与技巧]1.求数列通项或指定项.通常用观察法(对于交错数列一般用(-1)n 或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2.强调a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2. 3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路:(1)算出前几项,再归纳、猜想;(2)利用累加法或累乘法可求数列的通项公式.4.数列的性质可利用函数思想进行研究.[失误与防范]1.数列a n =f (n )和函数y =f (x )定义域不同,其单调性也有区别:y =f (x )是增函数是a n =f (n )是递增数列的充分不必要条件.2.数列的通项公式可能不存在,也可能有多个.3.由a n =S n -S n -1求得的a n 是从n =2开始的,要对n =1时的情况进行验证.A 组 专项基础训练(时间:40分钟)1.数列23,-45,67,-89,…的第10项是________. 答案 -2021解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021. 2.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =__________.答案 n 2(n -1)2解析 设数列{a n }的前n 项积为T n ,则T n =n 2,当n ≥2时,a n =T n T n -1=n 2(n -1)2. 3.若S n 为数列{a n }的前n 项和,且S n =n n +1,则1a 5=________. 答案 30解析 当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),所以1a 5=5×6=30. 4.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为________.答案 7解析 ∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n .∵a 7=22-21=1>0,a 8=22-24=-2<0,∴n =7时,数列{a n }的前n 项和最大.5.已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的______________条件.答案 充分不必要解析 若数列{a n }为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是有3>2λ,λ<32.由λ<1可推得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件.6.(2015·大连双基测试)已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2 解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2. 7.数列{a n }中,已知a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 7=________. 答案 1解析 由已知a n +1=a n +a n +2,a 1=1,a 2=2,能够计算出a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1.8.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________. 答案 2n -1解析 当n =1时,S 1=a 1=2a 1-1,得a 1=1,当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.9.数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍去).所以从第7项起各项都是正数.10.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n. (1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1, 整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1, a 3=42a 2, ……a n -1=n n -2a n -2, a n =n +1n -1a n -1. 将以上n 个等式两端分别相乘,整理得a n =n (n +1)2. 显然,当n =1时也满足上式.综上可知,{a n }的通项公式a n =n (n +1)2. B 组 专项能力提升(时间:20分钟)11.已知数列{a n }满足a 1=33,a n +1-a n n =2,则a n n的最小值为________. 答案 10.5解析 由题意可知a n +1=a n +2n ,由迭代法可得a n =a 1+2[1+2+3+4+…+(n -1)]=n 2-n+33,从而a n n =n +33n -1.当n =6时,a n n取得最小值10.5. 12.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21=________. 答案 72解析 ∵a n +a n +1=12,a 2=2, ∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 13.定义:称n P 1+P 2+…+P n为n 个正数P 1,P 2,…,P n 的“均倒数”.若数列{a n }的前n 项的“均倒数”为12n -1,则数列{a n }的通项公式为____________. 答案 a n =4n -3解析 ∵n a 1+a 2+…+a n =12n -1, ∴a 1+a 2+…+a n n =2n -1, ∴a 1+a 2+…+a n =(2n -1)n ,a 1+a 2+…+a n -1=(2n -3)(n -1)(n ≥2),当n ≥2时,a n =(2n -1)n -(2n -3)(n -1)=4n -3;a 1=1也适合此等式,∴a n =4n -3.14.若数列{n (n +4)(23)n }中的最大项是第k 项,则k =________. 答案 4解析 由题意得⎩⎨⎧ k (k +4)(23)k ≥(k +1)(k +5)(23)k +1,k (k +4)(23)k ≥(k -1)(k +3)(23)k -1,所以⎩⎪⎨⎪⎧k 2≥10,k 2-2k -9≤0,由k ∈N *可得k =4. 15.(2015·开封模拟)已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.。
2.1数列的概念与简单表示法
情景导入
1. 一尺之棰,日取其半,万世不竭. (单位:尺)
22 23
↑↑ ↑ ↑ ↑
1,2, 3, 4,…,n,…
n(1 n) 2
1,22,32,42…,n2…
1.
2. 三角形数 1,3,6,10,···
3. 正方形数 1,4,9,16,···
这些数有什么有什么共同特点?
三、数列的对应性
数列可以看成以正整数集N*(或它的 有限子集{1,2,…,n})为定义域的函数 an=f(n)当自变量按照从小到大的顺序依次 取值时所对应的一列函数值。
反过来,对于函数y=f(x),如果f(i) (i=1,2,3,…) 有意义那么我们可以得到一个 数列
f(1),f(2),f(3),…,f(n),…
1.正负号的循环性。 乘以符号因子-1的幂,3个一循环指数为3n+某 数,某数为0,1,2,3,按3的余数0,1,2分 类讨论. 2.分子分母分开看。 3.幂形式,统底看指、统指看底。 4.等差数列比与自然数列1,2,3,…对应。 f(n)=公差乘以n+某数. 5.把项数写在下方找感觉。
例2. 根据下面数列{an}的通项公式,写出 前五项:
1
2ቤተ መጻሕፍቲ ባይዱ
785
3
52
4
23
5
66
6
986
定义域 解析式
图象
函数
数列 (特殊的函数)
定义域 解析式
图象
函数
R或R的子集 y=f(x)
连续的线条
数列 (特殊的函数)
N*或它的子集
an=f(n) 一些离散的点 的集合
辨析数列的概念: (1) “1, 2, 3, 4, 5”与“5, 4, 3, 2, 1”是同一 个数列吗?与“1, 3, 2, 4, 5”呢?
2.1数列的概念与简单表示 测试题
必修5 第二章 数列2.1 数列的概念与简单表示法(满分100分,100分钟完卷)制卷:王小凤 学生姓名一.选择题:本大题共10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一个是符合题目要求的. 1.下列说法正确的是( )A .数列1,3,5,7可表示为{}7,5,3,1B .数列1,0,2,1--与数列1,0,1,2--是相同的数列C .数列⎭⎬⎫⎩⎨⎧+n n 1的第k 项是k 11+ D .数列可以看做是一个定义域为正整数集*N 的函数2.数列1,3,6,10,21,28,x L ,中,由给出的数之间的关系可知x 的值是( ) A .12 B .15 C .17 D .183.下列解析式中不.是数列1,1,1,1,1--L ,,的通项公式的是( ) A .(1)n n a =- B .1(1)n n a +=- C .1(1)n n a -=- D .{11n n a n =-,为奇数,为偶数4L 的一个通项公式是( )A.n a = B.n a = C.n a = D.n a =5.已知031=--+n n a a ,则数列{}n a 是 ( )A .递增数列B .递减数列C .常数列D .摆动数列 6.已知数列{}n a ,1()(2)n a n N n n +=∈+,那么1120是这个数列的第( )项.A .9B .10C .11D .127.已知数列{}n a ,22103n a n n =-+,它的最小项是( )A .第一项B .第二项C .第三项D .第二项或第三项8.已知数列{}n a ,13a =,26a =,且21n n n a a a ++=-,则数列的第五项为( )A. 6B. 3-C. 12-D. 6- 9.已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则14a =( )A .0B .3-C .3D .2310.数列{}n a 中,13a =,26a =,且21+++=n n n a a a ,则2008a =( ). A .3 B .3- C .6- D .6二.填空题:本大题共5小题,每小题4分,共20分. 11.数列{}n a 中,21n a n =+,则2n a =________.12.已知数列{}n a ,85,11n a kn a =-=且,则17a =13.已知数列{}n a 满足12a =-,1221nn na a a +=+-,则4a = . 14.已知22()log (7)f x x =+,()n a f n =,则{}n a 的第五项为________.15.已知数列{}n a 满足 1242,5,23,a a a ===1n n a a αβ+=+,则αβ+= .三.解答题:本大题共4小题,每小题10分,共40分. 解答应写出文字说明、证明过程或演算步骤.16.已知{}n a 满足13a =,121n n a a +=+,试写出该数列的前5项,并用观察法写出这个数列的一个通项公式.17.数列{}n a 中,已知()*2,31N n n n a n ∈-+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【成才之路】 版高中数学 2.1 数列的概念与简单表示法练习
一、选择题
1.下列有关数列的说法正确的是( )
①同一数列的任意两项均不可能相同;
②数列-1,0,1与数列1,0,-1是同一个数列;
③数列中的每一项都与它的序号有关.
A .①②
B .①③
C .②③
D .③
[答案] D
[解析] ①是错误的,例如无穷个3构成的常数列3,3,3,…的各项都是3;②是错误的,数列-1,0,1与数列1,0,-1各项的顺序不同,即表示不同的数列;③是正确的,故选D.
2.下面四个结论:
①数列可以看作是一个定义在正整数集(或它的有限子集{1,2,3…,n})上的函数. ②数列若用图象表示,从图象上看都是一群孤立的点.
③数列的项数是无限的.
④数列通项的表示式是唯一的.
其中正确的是( )
A .①②
B .①②③
C .②③
D .①②③④
[答案] A
[解析] 数列的项数可以是有限的也可以是无限的.数列通项的表示式可以不唯一.例如数列
1,0,-1,0,1,0,-1,0,…的通项可以是an =sin nπ2,也可以是an =cos n +3π2
等等. 3.已知an =n(n +1),以下四个数中,哪个是数列{an}中的一项( )
A .18
B .21
C .25
D .30
[答案] D
[解析] 依次令n(n +1)=18,21,25和30检验.有正整数解的便是,知选D.
4.已知数列{an}的通项公式是an =n -1n +1
,那么这个数列是( ) A .递增数列 B .递减数列
C .常数列
D .摆动数列
[答案] A
[解析] an =n -1n +1=1-2n +1
,随着n 的增大而增大. 5.数列1,-3,5,-7,9,…的一个通项公式为( )
A .an =2n -1
B .an =(-1)n(1-2n)
C .an =(-1)n(2n -1)
D .an =(-1)n(2n +1)
[答案] B
[解析] 当n =1时,a1=1排除C 、D ;当n =2时,a2=-3排除A ,故选B.
6.已知数列2,5,22,11,…,则25可能是这个数列的( )
A .第6项
B .第7项
C .第10项
D .第11项
[答案] B
[解析] 调整为:2,5,8,11,可见每一项都含有根号.且被开方数后一项比前一项多3,又25=20,∴应是11后的第3项,即第7项,选B. 二、填空题
7.23,415,635,863,1099,…的一个通项公式是________.
[答案] an =2n 2n -12n +1
[解析] 23=21×3,415=2×23×5,635=2×35×7,863=2×47×9,1099=2×59×11,…,∴an =2n 2n -12n +1
. 8.已知数列3,7,11,15,19,…,那么311是这个数列的第________项.
[答案] 25
[解析] 观察可见,数列中的后一项被开方数比前一项大4,a1=3,a2=3+4,a3=3+4×2,a4=3+4×3,∴an =3+4n -1=4n -1,
令4n -1=311得n =25,∴a25=311.
三、解答题 9.写出下列数列的一个通项公式.
(1)-11+1,14+1,-19+1,116+1
,…; (2)2,3,5,9,17,33,…;
(3)12,25,310,417,526,…; (4)1,43,2,165,…;
(5)-13,18,-115,124,…;
(6)2,6,12,20,30,….
[解析] (1)符号规律(-1)n ,分子都是1,分母是n2+1,∴an =(-1)n·1n2+1
. (2)a1=2=1+1,a2=3=2+1,a3=5=22+1,
a4=9=23+1,a5=17=24+1,a6=33=25+1,
∴an =2n -1+1.
(3)a1=12=111+1,a2=25=222+1,a3=310=332+1,a4=417=442+1
…, ∴an =n n2+1
. (4)a1=1=22,a2=43,a3=2=84,a4=165…,
∴an =2n n +1
. (5)a1=-13=-11×3,a2=18=12×4,a3=-115=-13×5,a4=124=14×6,
∴an =(-1)n·1n n +2
. (6)a1=2=1×2,a2=6=2×3,a3=12=3×4,a4=20=4×5,a5=30=5×6,∴an =n(n +1).
10.已知数列{an}中,a1=2,an +1=an +n ,求a5.
[解析] ∵a1=2,an +1=an +n ,
∴当n =1时,a2=a1+1=2+1=3;
当n =2时,a3=a2+2=3+2=5;
当n =3时,a4=a3+3=5+3=8;
当n =4时,a5=a4+4=8+4=12,即a5=12.
一、选择题
1.数列{an}满足a1=1,an +1=2an -1(n ∈N*),则a1000=( )
A .1
B .1999
C .1000
D .-1
[答案] A
[解析] a1=1,a2=2×1-1=1,a3=2×1-1=1,a4=2×1-1=1,…,可知an =1(n ∈N*).
2.对任意的a1∈(0,1),由关系式an +1=f(an)得到的数列满足an +1>an(n ∈N*),则函数y =f(x)的图象是( )
[答案] A
[解析] 据题意,由关系式an +1=f(an)得到的数列{an},满足an +1>an ,即该函数y =f(x)的图象上任一点(x ,y)都满足y>x ,结合图象,只有A 满足,故选A.
3.若数列的前4项分别为2,0,2,0,则这个数列的通项公式不能是( )
A .an =1+(-1)n +1
B .an =1-cosnπ
C .an =2sin2nπ2
D .an =1+(-1)n -1+(n -1)(n -2)
[答案] D
[解析] 当n =1时,D 不满足,故选D.
4.函数f(x)满足f(1)=1,f(n +1)=f(n)+3 (n ∈N*),则f(n)是( )
A .递增数列
B .递减数列
C .常数列
D .不能确定
[答案] A
[解析] ∵f(n +1)-f(n)=3(n ∈N*),
∴f(2)>f(1),f(3)>f(2),f(4)>f(3),…,
f(n +1)>f(n),…,
∴f(n)是递增数列.
二、填空题
5.已知数列{an}满足a1=-2,an +1=2+2an 1-an ,则a6=__________. [答案] -143
[解析] an +1=2+2an
1-an =2
1-an ,a1=-2,
∴a2=2
1-a1=23,a3=21-a2=6,a4=-2
5,
a5=107,a6=-14
3.
6.已知数列{an}的通项公式an =⎩⎪⎨⎪⎧ 3n +1n 为奇数2n -2n 为偶数,则a2·a3=__________.
[答案] 20
[解析] (1)可见偶数项为0,∴a12=0.
(2)相当于分段函数求值,a2=2×2-2=2,a3=3×3+1=10,∴a2·a3=20.
三、解答题
7.已知数列{an}中,an =n
n +1,判断数列{an}的增减性.
[解析] an +1=n +1
n +2,
则an +1-an =n +1n +2-n
n +1
=n +12-n n +2n +2n +1=1
n +2n +1.
∵n ∈N*,∴n +2>0,n +1>0,
∴1
n +2n +1>0,
∴an +1>an.∴数列{an}是递增数列.
8.已知数列{an}的通项公式为an =n2-5n +4.
(1)求数列{an}中有多少项是负数?
(2)当n 为何值时,an 有最小值?并求出最小值.
[解析] (1)令an =n2-5n +4<0,解得1<n<4,
∵n ∈N +,∴n =2,3.
即数列{an}中有两项是负数.
(2)an =n2-5n +4=(n -52)2-9
4,
∴当n =2或3时,an 取得最小值,最小值为-2.。