1.2.4 从解析式看函数的性质

合集下载

第一章 1.2 1.2.2 第一课时 函数的表示法

第一章   1.2   1.2.2   第一课时   函数的表示法

答案:A
返回
2.已知函数 f(x),g(x)分别由下表给出.
x f(x)
1 2
2 1
3 1
x g(x)
1 3
2 2
3 1
(1)f[g(1)]=________;
(2)若g[f(x)]=2,则x=________.
返回
解析:(1)由表知 g(1)=3, ∴f[g(1)]=f(3)=1; (2)由表知 g(2)=2,又 g[f(x)]=2,得 f(x)=2, 再由表知 x=1.
解析:由于兔子中间睡了一觉,所以有一段路程不变,而 乌龟的路程始终在增加且比兔子早到终点,故选B. 答案:B
返回
2.函数 y=f(x)的图象如图, f(x)的定义域 则 是 A.R B.(-∞,1)∪(1,+∞) C.(-∞,0)∪(0,+∞) D.(-1,0) ( )
解析:由图象知x≠0,即x∈(-∞,0)∪(0,+∞).
返回
例:求下列函数的解析式: 1+x 1+x2 1 ①已知 f( x )= 2 +x,求 f(x); x ②已知 f( x+1)=x+2 x,求 f(x). 1+x 1 1 解:①法一:(换元法) 令 t= x =x+1,得 x= , t-1
1+x 1+x2 1 1 则 t≠1.把 x= 代入 f( )= 2 + ,得 x x x t-1 1 2 1+ t-1 1 f(t)= + =(t-1)2+1+(t-1)=t2-t+1. 1 2 1 t-1 t-1 ∴所求函数的解析式为 f(x)=x2-x+1,x∈(-∞,1)∪(1,+∞).
返回
法二:(配凑法) 1+x 1+x2+2x-2x 1 ∵f( x )= +x x2 1+x 2 1+x-x =( x ) - x 1+x 2 1+x =( x ) - x +1, ∴f(x)=x2-x+1. 1+x 1 又∵ x =x+1≠1, ∴所求函数的解析式为 f(x)=x2-x+1(x≠1).

1.2正弦型函数(3)(1)

1.2正弦型函数(3)(1)

1.2 正弦型函数(2)【教学目标】知识目标:理解正弦型函数的性质,理解正弦型函数的系数A 、ω、ϕ的意义,会求正弦型函数的最值及相应的角的取值,了解正弦型函数的应用.能力目标:通过正弦型函数的性质的理解与应用,培养学生分析问题和解决问题的能力.【教学重点】正弦型函数的性质的理解与应用.【教学难点】由已知的正弦型曲线写出对应的正弦型函数解析式.【教学设计】在物理中常用正弦型函数sin()y A x ωϕ=+(其中0,0A ω>>,[0,)x ∈+∞)表示振动量,A 表示这个量振动时离开平衡位置的做大距离,所以通常把A 叫做振动的振幅,函数的最大值max y A =,最小值min y A =-;往复振动一次所需要的时间2πT ω=叫做这个振动的周期.单位时间内往复振动的次数12πf T ω==叫做振动的频率.x ωϕ+叫做相位,0x =时的相位ϕ叫做初相.要正确认识正弦型函数的系数A 、ω、ϕ对函数图像(包括形状和位置)的影响.例题4是将三角式化成正弦型函数,然后求其周期与最值问题.例4中各项的系数是特殊数,提出数2后它们恰好分别为πcos 3与πsin 3,可以方便地利用两角和的正弦公式将其化成正弦型函数.一般地,将函数sin cos y a x b x =+化为sin()A x α±的形式时,利用a 和b 的值可以构造一个角,使其可以使用两角和与差的正弦公式.为了简单起见,设0,0a b >>,则点(,)P a b 是第一象限的点.设cos θ=则sin θ=于是sin cos a x b x +)x θ+.如果不满足0,0a b >>,那么角θ的值可以由tan b aθ=确定(角θ所在的象限与点P 所在的象限相同). 例5是已知一个周期内的正弦型曲线,写出正弦型函数的解析式.其实质是求出系数A 、ω、ϕ,关键是理解周期的意义及函数图像起点坐标的特征.数形结合地讲清楚,一个周期内的正弦型曲线,其终点的横坐标与起点的横坐标之差就是函数的周期.常用的解题顺序一般为:求A →求ω→求ϕ.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】1、导入新课、展示目标同学们知道数学是学习个理科的基础,那么正弦型函数在学习物理学中有什么指导性的作用吗?知识目标:理解正弦型函数的性质,理解正弦型函数的系数A 、ω、ϕ的意义,会求正弦型函数的最值及相应的角的取值,了解正弦型函数的应用.能力目标:通过正弦型函数的性质的理解与应用,培养学生分析问题和解决问题的能力.2、 设疑激探、自主学习在物理中常用正弦型函数sin()[0)y A x x ωϕ=+∈+∞ ,(其中0,0A ω>>)表示震动量,A 表示这个量振动时离开平衡位置的最大距离,所以通常把A 叫做振动的振幅,函数的最大值max y A =,最小值min y A =-;往复振动一次所需要的时间2πT ω=叫做这个振动的周期.单位时间内往复振动的次数12πf T ω==叫做振动的频率.x ωϕ+叫做相位,0x =时的相位ϕ叫做初相.通过此环节让学生自然的走向知识点。

必修1课件1.2.1-2 函数的概念 (二)

必修1课件1.2.1-2 函数的概念 (二)

3.分段函数:有些函数在它的定义域中,对于自变 量x的不同取值范围,对应法则不同,这样的函数通 常称为分段函数.分段函数是一个函数,而不是几个 函数. 4.复合函数:设 f(x)=2x3,g(x)=x2+2,
则称 f[g(x)] =2(x2+2)3=2x2+1
g[f(x)] =(2x3)2+2=4x212x+11为复合函数.
2
a2
实数a 的取值范围(0,2].
复合函数
例如、y f (u ) u 2 , u R u g ( x) 2 x 1, x R 则y f [ g ( x)] (2 x 1) , x R.
2
例4.已知
f ( x) 的定义域为[-1,3],
的定义域。 解:∵f(x)的定义域为[-1,3],∴ 1 ∴
例2、求函数 y x 4x 6, x [1,5] 的值域
解:配方,得 ( x 2) 2 y xR y 2
2
函数的值域为 y | y 2} {
7 7 ∴函数的定义域为: , ) ( , ) ( 3 3
例3. 若函数
1 y ax ax 的定义域是R, a
2
求实数a 的取值范围
解:∵定义域是R,
1 ∴ ax ax 0恒成立, a a0 0 1 等价于 2 a 4a 0 a
例6.已知y=f(x+1)的定义域为[1,2],求f(x),f(x-3) 的定义域。 解:∵y=f(x+1)的定义域为[1,2], 即f(x)的定义域为[2,3] 又∵f(x)的定义域为[2,3], ∴ ∴
∴ 2 x 1 3
2 x3 3

高中数学必修一第四章指数函数与对数函数知识点总结全面整理(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结全面整理(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结全面整理单选题1、若函数f(x)=ln(ax+√x2+1)是奇函数,则a的值为()A.1B.-1C.±1D.0答案:C分析:根据函数奇函数的概念可得ln(−ax+√x2+1)+ln(ax+√x2+1)=0,进而结合对数的运算即可求出结果.因为f(x)=ln(ax+√x2+1)是奇函数,所以f(-x)+f(x)=0.即ln(−ax+√x2+1)+ln(ax+√x2+1)=0恒成立,所以ln[(1−a2)x2+1]=0,即(1−a2)x2=0恒成立,所以1−a2=0,即a=±1.当a=1时,f(x)=ln(x+√x2+1),定义域为R,且f(−x)+f(x)=0,故符合题意;当a=−1时,f(x)=ln(−x+√x2+1),定义域为R,且f(−x)+f(x)=0,故符合题意;故选:C.2、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I 1I 2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍. 故选:B.3、设a =log 2π,b =log 6π,则( ) A .a −b <0<ab B .ab <0<a −b C .0<ab <a −b D .0<a −b <ab 答案:D分析:根据对数函数的性质可得a −b >0,ab >0, 1b−1a <1,由此可判断得选项.解:因为a =log 2π>log 22=1,0=log 61<b =log 6π<log 66=1,所以a >1,0<b <1,所以a −b >0,ab >0,故排除A 、B 选项; 又1b −1a =a−b ab=log π6−log π2=log π3<log ππ<1,且ab >0,所以0<a −b <ab ,故选:D.4、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x−2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0.5、已知a=log20.6,b=log20.8,c=log21.2,则()A.c>b>a B.c>a>bC.b>c>a D.a>b>c答案:A分析:由对数函数得单调性即可得出结果.∵y=log2x在定义域上单调递增,∴log20.6<log20.8<log21.2,即c>b>a.故选:A.6、若n<m<0,则√m2+2mn+n2−√m2−2mn+n2等于()A.2m B.2n C.−2m D.−2n答案:C分析:根据根式的计算公式,结合参数范围,即可求得结果.原式=|m+n|−|m−n|,∵n<m<0,∴m+n<0,m−n>0,∴原式=−(m+n)−(m−n)=−2m.故选:C小提示:本题考查根式的化简求值,属简单题,注意参数范围即可.7、已知a=ln1,b=30.3,c=1og54,则a,b,c的大小关系是()3A.a<b<c B.b<a<c C.a<c<b D.c<a<b答案:C解析:分别将a,b,c与0,1比较大小,从而得到a,b,c的大小关系.<ln1=0,b=30.3>30=1,0=log51<c=1og54<log55=1,所以可知b>c>a 因为a=ln13故选:C8、方程log2x=log4(2x+3)的解为()C.3D.−1或3答案:C分析:根据对数运算性质化为同底的对数方程,结合对数真数大于零可求得结果.∵log2x=log4(2x+3)=12log2(2x+3)=log2√2x+3,∴{x>02x+3>0x=√2x+3,解得:x=3.故选:C.多选题9、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,A点横坐标为12,B点坐标为(20,0),C点横坐标为128.则下面说法中正确的是()A.甲每分钟加工的零件数量是5个B.在60分钟时,甲比乙多加工了120个零件C.D点的横坐标是200D.y的最大值是216答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B错误;设D的坐标为(t,0),由题得△AOB∽△CBD,则有1220=128−20t−20,解可得t=200,所以选项C正确;当x=128时,y=216,所以y的最大值是216.所以选项D正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟,一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A 正确,设D 的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB 和CD 的斜率相等, 则有∠ABO =∠CDB ,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB =∠CBD , 则△AOB ∽△CBD , 则有1220=128−20t−20,解可得t =200;即点D 的坐标是(200,0),所以选项C 正确; 由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误; 当x =128时,y =(128−20)×2=216,所以y 的最大值是216.所以选项D 正确. 故选:ACD10、(多选题)下列各式既符合分数指数幂的定义,值又相等的是( ) A .(-1)13和(−1)26B .343和13-43C .212和414D .4−32和(12)−3答案:BC分析:根据分数指数幂的定义以及运算法则逐个验证与化简,即可判断选择.A 不符合题意,(-1)13和(−1)26不符合分数指数幂的定义,但(-1)13=√-13=-1,(-1)26=√(-1)26=1; B 符合题意,13-43=343.C 符合题意,414=√224=212;D 不符合题意,4−32和(12)−3均符合分数指数幂的定义,但4-32=1432=18,(12)−3 =23=8.故选:BC小提示:本题考查分数指数幂的定义以及运算法则,考查基本分析判断与化简能力,属基础题.11、已知a+a−1=3,则下列选项中正确的有()A.a2+a−2=7B.a3+a−3=16C.a12+a−12=±√5D.a32+a−32=2√5答案:AD分析:由a+1a =3(a>0),可得:a2+a−2=(a+1a)2−2;a3+a−3=(a+a−1)(a2+a−2−1);(a12+a−12)2=a+a−1+2;a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12),即可判断出正误.解:∵a+1a=3,∴a2+a−2=(a+1a)2−2=32−2=7,因此A正确;a3+a−3=(a+a−1)(a2+a−2−1)=3×(7−1)=18,因此B不正确;∵(a12+a−12)2=a+a−1+2=3+2=5,a>0,解得a12+a−12=√5,因此C不正确;∵a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12)=3√5−√5=2√5,因此D正确.故选:AD.填空题12、已知函数f(x)=ln(√1+x2−x)−1,若f(2x−1)+f(4−x2)+2>0,则实数x的取值范围为______. 答案:x<−1或x>3分析:令g(x)=f(x)+1=ln(√x2+1−x),分析出函数g(x)为R上的减函数且为奇函数,将所求不等式变形为g(x2−4)<g(2x−1),可得出关于x的不等式,解之即可.令g(x)=f(x)+1=ln(√x2+1−x),对任意的x∈R,√x2+1−x>|x|−x≥0,故函数g(x)的定义域为R,因为g(x)+g(−x)=ln(√x2+1−x)+ln(√x2+1+x)=ln(x2+1−x2)=0,则g(−x)=−g(x),所以,函数g(x)为奇函数,当x≤0时,令u=√1+x2−x,由于函数u1=√1+x2和u2=−x在(−∞,0]上均为减函数,故函数u=√1+x2−x在(−∞,0]上也为减函数,因为函数y=lnu在(0,+∞)上为增函数,故函数g(x)在(−∞,0]上为减函数,所以,函数g(x)在[0,+∞)上也为减函数,因为函数g(x)在R上连续,则g(x)在R上为减函数,由f(2x−1)+f(4−x2)+2>0可得g(2x−1)+g(4−x2)>0,即g(x2−4)<g(2x−1),所以,x2−4>2x−1,即x2−2x−3>0,解得x<−1或x>3.所以答案是:x<−1或x>3.13、若函数f(x)={2x+2,x≤1,log2(x−1),x>1在(−∞,a]上的最大值为4,则a的取值范围为________.答案:[1,17]分析:根据函数解析式画出函数图象,再根据指数函数、对数函数的性质判断函数的单调性,再求出f(x)= 4时x的值,即可得解.解:因为f(x)={2x+2,x≤1,log2(x−1),x>1,当x∈(−∞,1]时,易知f(x)=2x+2在(−∞,1]上单调递增,当x∈(1,+∞)时,f(x)=log2(x−1)在(1,+∞)上单调递增.作出f(x)的大致图象,如图所示.由图可知,f(1)=4,f(17)=log2(17−1)=4,因为f(x)在(−∞,a]上的最大值为4,所以a的取值范围为[1,17].所以答案是:[1,17]14、函数f(x)=4+log a(x−1)(a>0且a≠1)的图象恒过定点_________ 答案:(2,4)分析:令对数的真数为1,即可求出定点的横坐标,再代入求值即可;解:因为函数f(x)=4+log a(x−1)(a>0且a≠1),令x−1=1,解得x=2,所以f(2)=4+log a1=4,即函数f(x)恒过点(2,4);所以答案是:(2,4)解答题15、已知函数f(x)=ln(x+a)(a∈R)的图象过点(1,0),g(x)=x2−2e f(x).(1)求函数f(x)的解析式;(2)若函数y=f(x)+ln(2x−k)在区间(1,2)上有零点,求整数k的值;(3)设m>0,若对于任意x∈[1m,m],都有g(x)<−ln(m−1),求m的取值范围.答案:(1)f(x)=lnx;(2)k的取值为2或3;(3)(1,2).解析:(1)根据题意,得到ln(1+a)=0,求得a的值,即可求解;(2)由(1)可得y=ln(2x2−kx),得到2x2−kx−1=0,设ℎ(x)=2x2−kx−1,根据题意转化为函数y=ℎ(x)在(1,2)上有零点,列出不等式组,即可求解;(3)求得g(x)的最大值g(m),得出g(x)max<−ln(m−1),得到m2−2m<−ln(m−1),设ℎ(m)=m2−2m+ln(m−1)(m>1),结合ℎ(m)单调性和最值,即可求解.(1)函数f(x)=ln(x+a)(a∈R)的图像过点(1,0),所以ln(1+a)=0,解得a=0,所以函数f(x)的解析式为f(x)=lnx.(2)由(1)可知y=lnx+ln(2x−k)=ln(2x2−kx),x∈(1,2),令ln(2x2−kx)=0,得2x2−kx−1=0,设ℎ(x)=2x2−kx−1,则函数y=f(x)+ln(2x−k)在区间(1,2)上有零点,等价于函数y=ℎ(x)在(1,2)上有零点,所以{ℎ(1)=1−k<0ℎ(2)=7−2k>0,解得1<k<72,因为k∈Z,所以k的取值为2或3.(3)因为m>0且m>1m ,所以m>1且0<1m<1,因为g(x)=x2−2e f(x)=x2−2x=(x−1)2−1,所以g(x)的最大值可能是g(m)或g(1m),因为g(m)−g(1m )=m2−2m−(1m2−2m)=m2−1m2−(2m−2m)=(m−1m )(m+1m−2)=(m−1m)⋅(m−1)2m>0所以g(x)max=g(m)=m2−2m,只需g(x)max<−ln(m−1),即m2−2m<−ln(m−1),设ℎ(m)=m2−2m+ln(m−1)(m>1),ℎ(m)在(1,+∞)上单调递增,又ℎ(2)=0,∴m2−2m+ln(m−1)<0,即ℎ(m)<ℎ(2),所以1<m<2,所以m的取值范围是(1,2).小提示:已知函数的零点个数求解参数的取值范围问题的常用方法:1 、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2 、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.。

1.2.2-函数的表示法(要用)

1.2.2-函数的表示法(要用)

0 x ≤5 5 x ≤10 10 x ≤15 15 x ≤20
票价 y(元)
2
3
4
5
此分段函数的定义域为 (0,20]
此分段函数的值域为 {2,3,4,5}
①自变量的范围是怎样得到的? ②自变量的范围为什么分成了四个区间?区间端点
是怎样确定的? ③每段上的函数解析式是怎样求出的?
作函数图象:
王伟 张城 赵磊 班级平均分
第一次 98 90 68 88.2
第二次 87 76 65
78.3
第三次 91 88 73 85.4
第三次 92 75 72 80.3
第五次 88 86 75 75.7
第六次 95 80 82 82.6
请你表对格这能三否直位观同地学分在析高出一三学位年同度学成的绩数高学低学? 如习何情才况能做更一好的个比分较析三。个人的成绩高低?
分段函数
2. 化简函数 y | x 5 | x2 2x 1
解:由题意知 y = | x + 5 | + | x -1 |
y
当 x ≤-5 时,
y = -( x + 5 ) -( x -1 )=-2x-4
当 -5 < x ≤ 1 时,
6
y = ( x + 5 ) -( x -1 ) = 6
一函次数函解数析:式y=一kx定+b是(方k≠程0);
可看成关于x、y的方程。
二方次程函不数一:定y=是ax函2+数bx+解c 析(式a≠。0) 例如:x2+y2=1
复习回顾
(1)炮弹发射
(解析法)
h=130t-5t2 (0≤t≤26)
(2)南极臭氧层空洞 (图象法)

第4讲函数的性质

第4讲函数的性质

基础知识
函数奇偶性的概念
函数 f ( x ) ,如果对于定义域内任意一个 x 都有
f ( x ) f ( x ) ,那么 f ( x ) 就叫做奇函数,如果对于
定义域内任意一个 x 都有,f ( x ) f ( x ) , 那么 f ( x ) 就 叫做偶函数.若函数 y f ( x ) 是奇函数且 0 是定义域内 的值,则 f (0) 0 .
进行结论判断.
此路不通!
思路分析
例3 已知 y f ( x ) 是奇函数,它在 (0, ) 上 1 单调增, 且 f ( x) 0, 试问 F ( x ) 在( , 0) 上 f ( x) 是单调增函数还是减函数?证明你的结论.
思路 2:根据函数的单调性定义,可以任取 x1 x2 0 ,进 1 1 f ( x2 ) f ( x1 ) 而 需 要 判 定 F ( x1 ) F ( x2 ) f ( x1 ) f ( x2 ) f ( x1 ) f ( x2 ) 的正负,为此,应分别判定 f ( x1 ) f ( x2 )与f ( x2 ) f ( x1 ) 的正 负,而这一点可以从奇函数中推出.
回顾反思
(1)基本方法 ①求出函数的定义域并判断是否关于原点对称.
②利用定义进行判断.
(2)思维误区
没有考虑函数定义域, 在没有化简 f ( x )的情况 下,直接求 f ( x ) ,并判断 f ( x ) 和 f ( x ) 的 关系.
经典例题3
例3 已知 y f ( x ) 是奇函数,它在 (0, ) 上 1 单调增, 且 f ( x) 0, 试问 F ( x ) 在( , 0) 上 f ( x) 是单调增函数还是减函数?证明你的结论.

必修1课件:1.2.2函数的表示法

2010年12月26日星期日5 48分16秒 2010年12月26日星期日5时48分16秒 日星期日
云在漫步
§1.2.2 函数的表示方法
学习目标
第一课时
1、掌握函数的三种表示法:列表法、图象法、解析法, 、掌握函数的三种表示法:列表法、图象法、解析法, 体会三种表示方法的特点。 体会三种表示方法的特点。 2、能根据实际问题情境选择恰当的方法表示一个函数。 、能根据实际问题情境选择恰当的方法表示一个函数。 3、体会数形结合思想在理解函数概念中的重要作用, 、体会数形结合思想在理解函数概念中的重要作用, 在图形的变化中感受数学的直观美。 在图形的变化中感受数学的直观美。
2010年12月26日星期日5 48分16秒 2010年12月26日星期日5时48分16秒 日星期日 云在漫步
图象法
列表法
二、由实际问题引入分段函数的概念 某市空调公交车的票价按下列规则制定: 例6 某市空调公交车的票价按下列规则制定: 公里以内(含 公里),票价 公里),票价2元 (1)5公里以内 含5公里),票价 元; ) 公里以内 公里以上, 公里, (2)5公里以上,每增加 公里,票价增加 元(不足 ) 公里以上 每增加5公里 票价增加1元 5公里的按 公里计算)。 公里的按5公里计算 公里的按 公里计算)。 如果某条线路的总里程为20公里 请根据题意, 公里, 如果某条线路的总里程为 公里,请根据题意,写出 票价与里程之间的函数解析式,并画出函数的图象。 票价与里程之间的函数解析式,并画出函数的图象。
1、正比例函数、反比例函数的一般式是怎样的? 正比例函数、反比例函数的一般式是怎样的?
y = kx( k ≠ 0)
k y = (k ≠ 0) x
S = 100t
C = 2πr

函数的表示法及分段函数

1.2.3 函数的表示法及分段函数【学习目标】1.能举例说明解析法、图象法、列表法的含义及各自的优缺点;2.会选择恰当的方式正确表达函数;3.能举例说明分段函数的意义,会求一些实际问题的分段函数的解析式,会依据分段函数解析式画出图象、求出函数值【学习重点】会选择恰当的方式正确表达函数,理解分段函数的意义【难点提示】恰当选择方法表示不同的函数、写出较为复杂的分段函数的表达式【学法提示】1.请同学们课前将学案与教材1516P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题及解答、阅读与思考、小结等都要仔细阅读)、小组讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“九字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】 一、学习准备在初中我们已经接触过函数的三种表示法是: 、 、 ,为了进一步研究函数的表示方法,请先思考下面的问题:1.什么叫函数解析式 、函数的图象 ;什么叫函数的列举法 ;举一个用列表法的函数 (链接1)2.(1)函数11111x y x x x >⎧⎪=-≤≤⎨⎪-<-⎩1,当,当,当的表达式有什么特点?你能做出它的图像吗?(2)11111x y x x >⎧⎪=-≤≤⎨⎪-<-⎩1,当0,当,当的表达式有什么特点?你能做出它的图像吗?(3)函数1,0,R x Q y x Q∈⎧=⎨∈⎩ð的表达式有什么特点?你能做出它的图像吗? 二、学习探究1.阅读思考:请同学们阅读教材1922P -的内容,请思考:(1)你感觉从教材的例3、4、5、6学到什么?3、4、6是什么题型,求解它应分几步完成?关键点在哪里?(2)函数的三种表示法各自的特点是什么? (3)所有的函数均能用这三方法表示吗?(4)三种表示法表示函数需要注意一些什么问题?(5)函数的图象一定是连续的光滑的曲线或直线吗?2.观察思考:根据学习准备 “2”中三个函数及教材的例5、6的函数有哪些共同的特点,请给它取个名字并给出一般的定义 .解答有关分段函数问题的策略是什么?易错点在哪里?(链接2)三、典例赏析例1. 矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?能确定相应的定义域吗?思路启迪:根据矩形的相关性质来分析五个量之间存在的等量关系,由此得到函数关系. 解:解后反思 解答该题的关键在哪?解答该题应注意一些什么问题?变式练习 将长度为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数关系式,并求出定义域、值域、作出图象.解:例2.某市出租车资费规定如下:(1)3公里以内(含3公里)9元;(2)3公里以上,每增加1公里,资费增加24元(不足1公里按1公里计算).某线路总里程为6公里,请根据题意写出资费与里程之间函数的解析表达式,并画出函数的图象.解:解后反思 解答该题的关键在哪?解答该题应注意一些什么问题?变式练习 某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系、图③是每件样品的销售利润与上市时间的关系.① 分别写出国外市场的日销售量)(t f 与上市时间t 的关系及国内市场的日销售量)(t g 与上市时间t 的关系;② 写出每件样品的销售利润)(t h 与上市时间t 的关系为.解:例3.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f ,则(3)f = ;若()3f x =,则x = .●解后反思 分段函数求值应注意什么问题?●变式练习已知符号函数 求不等式(1)sgn 2x x +>的解集.思路启迪:从分段的符号函数入手,分类讨论求解.解:四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法,实现了我们的学习目标吗?如:、函数有哪三种表示法?三种表示法各自的优缺点是什么?分段函数的含义是什么?求分段函数解析式步骤是怎样的?由分段函数解析式画图象、求函数值应注意什么问题?2.对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与方法的美在哪里?(链接3)五、学习评价1.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )2.某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合学生走法的是( )A B C D 3.一个圆柱形容器的底部直径是d cm ,高是h cm ,现在以3vcm /s 的速度向容器内注入液体,求容器液体的高度x cm 关于注入液体的时间t s 的函数解析式,并写出函数的定义域. A . B . C .D . 1,0,sgn 0,0,1,0,x x x x >⎧⎪==⎨⎪-<⎩4.课本P23练习2、P24 A 组第9题、P25B 组P25习题2、4题.5.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为12万元/辆,年销售量为1 000辆本年度为适应市场需求,计划提高产品档次,适度增加投入成本若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.75x , 同时预计年销售量增加的比例为0.6x 已知年利润=(出厂价-投入成本)×年销售量.写出本年度预计的年利润y 与投入成本增加的比例x 的关系式.解:6.已知 求使()1f x ≥-成立的x 的取值范围.解:◆承前启后 我们函数的本质就是两个数集之间的对应关系,生活中还有其它对应吗?六、学习链接链接1.函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式; 函数的图像:对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.函数的列表式:就是用表格来表示函数两个变量之间的对应关系.链接2. 教材中的例3、4、6均是应用问题,解答应用问题的步骤是:审题、建模、化 简、计算、下结论;其中审题、建模是关键;解析法的特点:简明、全面地概括了变量的搞演习关系,可以解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于求函数的值域;图像法的特点:直观、形象地表示自变量的变化关系,易看出相应的函数值变化的趋势,也有利于通过图象研究函数的性质,图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.列表法的特点:不需要计算就可以直接看出与自变量的值对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用,如成绩表、银行的利率表等.分段函数;对于自变量x 的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.它是一个函数,而不是几个函数:分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集.解答分段函数问题的策略是:分段进行、逐一完成;易错点在于:分界点上的相关问题. 链接3. 函数的表示法体现完美性,分段函数体现了和谐、对称美.211,0,()2(1),0,x x f x x x ⎧+≤⎪=⎨⎪-->⎩。

函数的性质知识点总结

函数的性质知识点总结1. 学校全部函数学问点总结谁有反比例函数的概念一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的反比例函数.反比例函数属于一次函数,但一次函数却不肯定是反比例函数.反比例函数是一次函数的特别形式,即一次函数 y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为反比例函数.反比例函数的关系式表示为:y=kx(k为比例系数)当K>0时(一三象限),K越大,图像与y轴的距离越近.函数值y随着自变量x的增大而增大.当K0时,图象位于第一、三象限,y随x的增大而增大(单调递增);当k0),此时的y与x,同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度肯定,所行的路程和所用的时间能否成反比例?以上各种商都是肯定的,那么被除数和除数. 所表示的两种相关联的量,成反比例关系. 留意:在推断两种相关联的量能否成反比例时应留意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不肯定,它们就不能成反比例. 例如:一个人的年龄和它的体重,就不能成反比例关系,正方形的边长和它的面积也不成反比例关系.[编辑本段]反比例函数的定义一般地,假如两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数.由于y=k/x是一个分式,所以自变量X的取值范围是X≠0.而y=k/x有时也被写成xy=k或y=kx-¹.[编辑本段]反比例函数表达式y=k/x 其中X是自变量,Y是X的函数y=k/x=k·1/xxy=ky=k·x^-1y=k\x(k为常数(k≠0),x不等于0)[编辑本段]反比例函数的自变量的取值范围① k ≠ 0;②一般状况下,自变量 x 的取值范围是 x ≠ 0 的一切实数;③函数 y 的取值范围也是一切非零实数 .[编辑本段]反比例函数图象反比例函数的图象属于双曲线,曲线越来越接近X和Y轴但不会相交(K≠0).[编辑本段]反比例函数性质1.当k>0时,图象分别位于第一、三象限;当k0时.在同一个象限内,y随x的增大而减小;当k0时,函数在x0上同为减函数;k0,b>0,这时此函数的图象经过第一、二、三象限.当 k>0,bx2.故选A.三、推断函数图象的位置例3.一次函数y=kx+b 满意kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限 B.其次象限C.第三象限 D.第四象限由kb>0,知k、b同号.由于y随x的增大而减小,所以kY2当X0 且X≥(X1+X2)/2时,Y 随X的增大而增大,当a>0且X≤(X1+X2)/2时Y随X的增大而减小此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用).[编辑本段]二次函数与一元二次方程特殊地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根.函数与x轴交点的横坐标即为方程的根.1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象外形相同,只是位置不同,它们的顶点坐标及对称轴如下表:解析式 y=ax^2;y=ax^2+Ky=a(x-h)^2; y=a(x-h)^2+k y=ax^2+bx+c顶点坐标(0,0) (0,K)(h,0) (h,k) (-b/2a,4ac-b^2/4a) 对称轴x=0 x=0x=h x=h x=-b/2a 当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到,当h0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;当h>0,k。

《函数的基本性质》知识点总结

《函数的基本性质》知识点总结《函数的基本性质》知识点总结「篇一」《函数的基本性质》知识点总结基础知识:1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。

如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。

注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f(-x)与f(x)的关系;③作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数。

(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y轴成轴对称;②设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)。

(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆戴氏教育培训学校 沙坪坝总校 主讲:王老师
1
1.2.4 从函数的解析式看函数的性质
一、选择题
1.已知)(xf、)(xg定义在同一区间上,)(xf是增函数,)(xg是减函数,且0)(xg,

则 ( )
A.)()(xgxf为减函数 B.)()(xgxf为增函数

C.)()(xgxf为减函数 D.)()(xgxf为增函数

2.函数111xy ( )
A.在),1(内单调递增 B.在),1(内单调递减
C.在),1(内单调递减 D.在),1(内单调递减增
3.某公司在甲乙两地同时销售某一种品牌车,利润(单位:万元)分别为xxL2121和
xL22
,其中销售量单位:辆。若该公司在两地共销售15辆,则能获得最大利润为 ( )
A.90万元 B.60万元 C.120万元 D.120.25万元
4.若不等式01ax对一切]21,0(x成立,则a的最小值为 ( )

A.0 B.-2 C.25 D.21

二、填空题
5.函数)0()(xxxxf有_________(填“最大、最小”值),是____________。

6.已知函数)(xf )0(1)0(122xxxx的单调递增区间是________________。
重庆戴氏教育培训学校 沙坪坝总校 主讲:王老师

2
三、解答题
7.求函数112)(xxxf,]5,3[x的最大值和最小值。

8.函数)(xf对任意实数yx,都有1)()()(yfxfyxf,且当0x时,1)(xf
(1)求)0(f;
(2)求证:)(xf在R上为增函数;
(3)若7)4(f,解不等式4)12(xf。

相关文档
最新文档