产淀粉酶(α-淀粉酶)细菌菌株筛选

合集下载

简答题 设计一个诱变筛选淀粉酶高产菌株的科研方案,并加以必要

简答题 设计一个诱变筛选淀粉酶高产菌株的科研方案,并加以必要

简答题设计一个诱变筛选淀粉酶高产菌株的科研方案,
并加以必要
请设计一个实验方案自土壤中筛选能产淀粉酶的枯草芽孢杆菌并进行诱变育种选育高产突变株。

1、取样
选择含淀粉丰富的土壤为最佳
2、无菌水溶解
充分震荡
3、高温处理
60度的高温处理样品1小时,目的是杀死微生物营养体,残留芽胞
4、稀释涂平板
培养基用含淀粉的培养基配制
5、培养
培养1-3天后,观察。

6、初筛与纯化
挑取有降解圈的细菌单菌落,并在平板上纯化3次,然后4摄氏度斜面保存。

7、鉴定
参照《伯杰氏细菌手册》鉴定或者利用分子生物学手段鉴定,进一步确认是否为枯草芽孢杆菌。

8、复筛
测定其淀粉酶活,最后确定诱变出发菌株
9、诱变
选择合适诱变源,建议采用物理诱变和化学诱变相结合的复合诱变方式。

10、筛选
采用上述初筛和复筛方案进行诱变鉴定
11、遗传稳定性鉴定
筛选出的菌株,要经过多次传代之后,再进一步鉴定其产生淀粉酶的能力是否发生了变化。

如果产生了回复突变,则需要重复诱变筛选过程,直至到筛选出遗传稳定的高产菌株为止。

α-淀粉酶的生产工艺设计

α-淀粉酶的生产工艺设计

α-淀粉酶的生产工艺设计α-淀粉酶的发酵生产工艺摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。

目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。

1.菌种的选育1. 1 细菌的分离与初步鉴定:将土壤系列稀释,把10-3 、10-4、10-5分别涂布到淀粉培养基上,27℃倒置培养2天,将长出的菌落接入斜面。

将细菌从斜面接种到淀粉培养基培养2天,用碘液染色,记录透明圈大小和菌落直径,计算D/d值。

保菌供下次实验用。

1.2 紫外线诱变育种:取活化后的菌种配成菌悬液、稀释;倒淀粉培养基平板,将菌悬液涂布其表面;用紫外线处理平板0、2min、4min、6min、8min、10min,每个处理2次重复;放到黑暗中倒置培养,37℃培养48h,分别计数诱变组和对照组平板上的菌落数,并计算致死率;加入碘液,分别测量诱变组和对照组菌落的透明圈直径和菌落直径,计算D/d值;将D/d值最大的菌种保存到斜面培养基上。

1.3 诱变方法以及变异菌株的筛选①诱变出发菌株在完全培养基中培养至对数生长期后期。

②以NTG为诱变剂,按一定处理剂量(μg/ml),在一定pH值的缓冲液中30℃恒温振荡处理1~4 h。

③经高速离心分离,移植于液体完全培养基进行后培养。

④经稀释涂布在含有1%淀粉BY固体培养基上,经24 h培养形成小菌落。

⑤把单菌落分别移植于含2%淀粉BY液体培养基中,30℃培养36 h。

⑥用2#定性滤纸制成5 mm disc(小圆纸片),并用2%琼脂BY培养基灭菌后加入较大剂量青霉素(抑菌)。

倒入200 mm×300mm长方形不锈钢玻璃培养皿中,冷却凝固。

然后把5 mm disc 纸顺序放在培养基表面。

⑦用微量注射器分别吸取培养液,移植到相应的disc上。

把disc 培养皿经37℃,24h分别培养。

产淀粉酶菌株的分离与提纯

产淀粉酶菌株的分离与提纯

产淀粉酶菌株的分离与提纯摘要:淀粉酶是一种广泛应用于食品、饲料和生物能源领域的酶类。

本研究旨在从土壤样品中分离出产淀粉酶的菌株,并通过营养物质筛选和鉴定,最终获得高活性的产淀粉酶菌株。

分离出的菌株经过形态学、生化和分子生物学鉴定,最终确定为放线菌属。

通过筛选和优化培养基组成、培养条件、发酵时间等参数,获得了产淀粉酶的高产菌株,其中最高淀粉酶活性达到406.2 U/mL。

随后通过离子交换层析、凝胶过滤层析和手性分离层析等技术,对产淀粉酶菌株进行了纯化,纯化后的淀粉酶总回收率为78.5%。

本研究拓展了淀粉酶菌株的来源渠道,并提供了一种有效的产淀粉酶筛选和提纯技术。

关键词:淀粉酶;菌株分离;筛选;纯化Introduction淀粉酶是一种用来加快淀粉转化为葡萄糖片段的酶类,广泛应用于食品、饲料、纺织、造纸、医药、生物能源等领域。

因此,发现新的产淀粉酶的菌株和提高淀粉酶的产量和纯化度具有很大的应用前景和经济价值。

本研究旨在从土壤样品中分离出产淀粉酶的菌株,并通过筛选和鉴定,最终获得高活性的产淀粉酶菌株。

随后,通过离子交换层析、凝胶过滤层析和手性分离层析等技术,对产淀粉酶菌株进行了纯化。

Materials and methods样品采集从不同区域的土壤样品中采集10 g土样,放入消毒的密闭容器中,避免阳光直射和高温。

待采集完毕后立即运回实验室处理。

淀粉酶活性测定淀粉酶活性采用Miller方法测定,在37℃下反应15 min后,以0.01mol/L NaOH终止反应,读取吸收度A450。

反应体系为:淀粉溶液 1 mL、哌嗪酸盐缓冲液1 mL、酶液1 mL。

菌株分离取0.1 g土样加入0.9mL 生理盐水中,混合搅拌均匀后,依次向1.5%的琼脂糖和分别选用Luria-Bertani、Potato Dextrose Agar和Starch Agar培养基进行分离,待培养基表面形成菌落后进行传代培养。

通过形态学、生化和分子生物学鉴定,确定产淀粉酶菌株。

淀粉酶菌株的筛选和诱变育种

淀粉酶菌株的筛选和诱变育种

淀粉酶菌株的筛选和诱变育种淀粉酶菌株的筛选和诱变育种[摘要]:本文章中我们利用实验菌株对于淀粉的特异性,用革兰氏碘液,利用平板法筛选出所需菌株和利用紫外线诱变育种,分别对要诱变的菌株进行不同时间的诱变,将在红光的照射下将结果稀释不同倍数,涂到平板上进行暗室培养,48小时后观察,用碘液测酶活力。

[关键词]:淀粉酶;筛选;诱变育种前言:一般情况下,我们要获得目的菌株,一是从自然界中分离纯化,活力普遍较低,较省时省力,二是通过育种的方法,获得目的菌株,而通过人工选育的菌株,则更满足于工业化生产的需要,为我们提供了更好地选择。

要获得所需的高产突变菌株,就要对菌株进行突变处理,突变分为自发突变和诱导突变。

因自发突变的频率较低,所以采用诱导突变。

所谓的诱变就是用物理或化学诱变剂处理均匀分散的细胞群,促使突变率大幅度提高。

然后筛选出目的突变菌株,以供生产实践或科学实验用。

诱变可由化学或物理因素引起,紫外线诱变是最简单、最常用的一种,因此我们选择采用这种方法。

紫外线诱变处理的有效波长为200~300×10nm,最适为254nm(此为核酸的吸收高峰)。

DNA和RNA的嘌呤和嘧啶吸收紫外光后,DNA分子形成嘧啶二聚体,即两个相邻的嘧啶共价连接,二聚体出现会减弱双键间氢键的作用,并引起双链结构扭曲变形,阻碍碱基间的正常配对,从而有可能引起突变或死亡.另外二聚体的形成,会妨碍双链的解开,因而影响DNA的复制和转录.总之紫外辐射可以引起碱基转换、颠换、移码突变或缺失,即是所谓的诱变。

通过本篇文章,能够让我们进一步了解从自然界中分离淀粉酶菌株的具体的筛选过程与方法并且理解诱变育种的基本原理以及用诱变育种筛选高产目的菌种的基本方法。

正文一、淀粉酶菌株的筛选方案1.1菌种来源:校园土壤1. 2培养基:淀粉培养基:蛋白胨10g,NaCl 5g,可溶性淀粉2g,蒸馏水1000ml,琼脂16g 左右,121℃高压灭菌锅灭菌20min,待冷却至50℃左右时,于超净工作台倒入摇瓶若干。

淀粉酶产生菌的筛选、培养与选育

淀粉酶产生菌的筛选、培养与选育

功能微生物(淀粉酶产生菌)的筛选、培养与选育22100934 程雅楠摘要:以产淀粉酶细菌的筛选和选育为目标,通过培养基制备及灭菌、菌种的分离筛选与纯化、菌种的鉴定、培养条件的优化以及淀粉酶产生菌的紫外诱变育种等五个过程,并测定了诱变后菌株的16s序列,初步掌握了对某菌种进行筛选、选育及诱变的必需步骤。

关键词:产淀粉酶细菌筛选选育诱变育种淀粉酶是最早用于工业生产并且迄今仍是用途最广、产量最大的酶制剂产品之一,为了提高淀粉酶的生产水平,首先通过淀粉培养基从土壤中筛选出产淀粉酶的活性菌株,对菌株初步鉴定后进行紫外线诱变,筛选出产量高、性状优良的突变菌株。

淀粉酶主要来源于植物和微生物,并通过发酵完成生产,因此筛选出高产、稳定的淀粉酶产生菌是淀粉酶生产的尤为重要。

此次试验试图从土壤中分离出产淀粉酶的细菌,通过紫外线诱变育种等条件优化来得到高产、稳定的淀粉酶产生菌株。

以达到加深对菌种选育的认识、掌握紫外线诱变育种的原理和方法、掌握初步纯化淀粉酶的方法的实验目的。

1材料和方法1.1材料1.1.1 来源:南师大北区教学楼附近的土壤。

1.1..2培养基:淀粉培养基的配制①固体培养基膏 3g/L,蛋白胨 10g/L,NaCl 5g/L,可溶性淀粉2g/L,琼脂 20g/L,pH7.0~7.2。

②液体培养基:牛肉膏 3g/L,蛋白胨 10g/L,NaCl 5g/L,可溶性淀粉2g/L,琼脂 20g/L,pH7.0~7.2。

优化条件培养基配制:①淀粉3g/L,蛋白胨 10g/L,K2HPO4 1.5g,MgSO4·7H2O 1.5g, pH 4.0 。

②淀粉3g/L,蛋白胨 10g/L, K2HPO4 1.5g,MgSO4·7H2O 1.5g, pH 7.2 。

碳源培养基:①淀粉 3g,蛋白胨 10g,K2HPO4 1.5g,MgSO4·7H2O 1.5g,去离子水 1000mL pH 7.2。

淀粉酶产生菌的筛选

淀粉酶产生菌的筛选

实验一淀粉酶产生菌的筛选及酶活力测定指导老师:辛树权生命科学学院08级生物技术(三)班豆豆同组人:xx xxx摘要:自然界是微生物的大本营,实验室微生物几乎都是从自然界中选育出来的。

我们从学校的花坛中采集一些土壤样本,拿到实验室中,进行淀粉产生菌的筛选。

利用土壤制成菌液,将其涂抹在牛肉膏蛋白胨培养基上进行纯化,再用淀粉培养基培养,最后通过淀粉透明圈的大小来判断淀粉产生菌产淀粉的能力。

再使用分光光度计精确测量淀粉酶的酶活力。

关键词:淀粉酶;分离;纯化;透明圈;酶活力;摇瓶;分光光度计一、实验目的:1、学习从土壤中分离微生物的方法;2、学习淀粉酶产生菌的筛选方法3、了解分光光度计法测定酶活力的原理及方法。

二、实验原理:土壤中含有大量的微生物,将土壤稀释液涂在不同类型的培养基上,在适宜的环境中培养几天,细菌或者是其他的微生物便能在平板上生长繁殖,形成菌落。

将初次筛选得到的微生物接到淀粉培养基上培养,因为只有能够产生淀粉酶的细菌才能够利用培养集中的淀粉成分来完成自身的生命活动,才能够生存。

故在淀粉培养基上长出的菌便是淀粉产生菌。

在培养基上滴碘液,淀粉被分解掉的部分不显现蓝色,出现透明圈,可以通过透明圈的大小来初步判断菌种产淀粉的能力。

淀粉酶是指一类能催化分解淀粉分子中糖苷键的酶的总称,主要包括α-淀粉酶和β-淀粉酶等,α-淀粉酶可从淀粉分子内部切断淀粉的α-1,4糖苷键,形成麦芽糖、含有6个葡萄糖单位的寡糖和带有支链的寡糖,是淀粉的粘度下降,因此又称为液化型淀粉酶。

淀粉遇碘呈蓝色。

这种淀粉-碘复合物在660nm处有较大的吸收峰,可用分光光度计测定。

随着酶的不断分作用,淀粉长链被切断,生成小分子的糊精,使其对碘的蓝色反应逐渐消失,因此可以根据一定时间内蓝色消失的程度为指标来测定α-淀粉酶的活力。

三、实验器材及试剂:1.、材料:长春师范学院家属楼前小菜园2培养基:(1)分离培养基:牛肉膏蛋白胨固体培养基(牛肉膏3g、蛋白胨10g、NaCl 5g、溶于1000mL蒸馏水中,再加入15g琼脂粉,pH调至7.2,121℃灭菌15min,待冷却至50℃左右时,于超净工作台倒平板)(2)筛选培养基:淀粉培养基(可溶性淀粉 20g, 硝酸钾 1g, 磷酸氢二钾 0.5g, 氯化钠 0.5g, 硫酸镁 0.5g, 硫酸亚铁 0.01g, 琼脂 20g, 水 1000毫升,调整pH值到7.2~7.4。

一株碱性α-淀粉酶产生菌的筛选及产酶条件优化

食 品与药 品
F o n u o da dDrg
2 1 年 第 l 卷第 0 期 00 2 5
17 6

株碱 性 淀粉 酶产生菌 的筛选及产 酶条件优 化 一
宋 燕,李 津
( 山东博士伦福瑞达制药有 限公司, 山东 济 南 2 0 0 ) 5 1 1
摘 要 : 目的 获 取 工 业 生 产 上 有 潜 在 应 用 价 值 的 碱 性 淀 粉 酶 产 生 菌 。 方 法 土 壤 中 筛 选 出5 产 淀 粉 酶 的 菌 株 ; 经 正 交 株 试 验 确 定 培 养 基 的 最 优 组 成 ; 通 过 摇 瓶 发 酵 初 步 确 定 了 发酵 条 件 。 结 果 产 淀 粉 酶 活 性 最 高 的 为 来 源 于 草 地 土 壤 的 菌 株
Af rc lv td fr8hi h k ra 0 ℃ wi 0r n tea ls— rd cn cii f 1一 e c e 1 t ut ae s a e t e i o n 4 t 1 / , h my aep o u ig a t t o ¥I 6ra h d2 U/ h 8 mi vy 14
S ONG Ya LI i n, n J
(h n o g a sh L m d h r cui l o Ld Jn n 5 1 1 C i ) S a d n uc & , , 2 a A s a t Ob et e oo ti laiea ls—rd c gs a s i a ep t t l au s nteid s y b t c: jci T bana l myaepo u i t i c h v oe i le ut . r v k n n r n wh h n av i h n r
/.,它在发酵8h /6 时产酶 能力最强 ;优化后 的培养 基为玉米粉3%,蛋 白胨08%,磷酸氢二钠06%,硫酸铵0 . . . 2%,氯 化铵01 . 5%,p .。于4 H 90 0℃,10r n 8 mi条件 下培养,菌株 / 6 / / .酶活性 可达 到214U mL 1 / 。结论 筛选 出5 株产淀粉酶 的菌 株 ,其 中菌株 / 6 株耐碱性Ⅱ淀粉酶产 生菌 。 /一是1 一 关键词 :碱性 淀粉 酶;菌株筛选;正交试验 ;优化

生物技术综合实验——淀粉酶产生菌的初步筛选

生物技术综合实验——淀粉酶产生菌的初步筛选一、实验目的学习从自然界中筛选分离淀粉酶产生菌株。

二、实验内容淀粉酶产生菌的筛选和分离。

三、实验原理在筛选培养基平板上,可溶性淀粉被目的菌株产生的淀粉酶水解,形成透明圈。

不同种类的微生物产生的淀粉酶的种类和活力各不相同,对可溶性淀粉的水解能力各不相同,所形成的水解圈与菌落大小比值故而不同,因而根据其比值可初步断定其对可溶性淀粉的水解能力。

许多细菌和霉菌产生淀粉酶,特别是一些芽孢杆菌,因此,本实验将土壤样品加热处理后,将其接种到筛选培养基平板进行培养,根据平板的水解圈做初筛,从中筛选出产淀粉酶活性较好的菌株进行保藏。

四、实验材料和用具1、材料:土壤样品2、试剂:牛肉膏蛋白胨筛选培养基平板(含可溶性淀粉1%)、45mL无菌水瓶3、仪器及用具:恒温培养箱、超净工作台、高压蒸汽灭菌锅、摇床、酒精灯、牙签、移液枪、试管、涂布器、量筒等。

五、操作步骤(一)准备材料1、筛选固体培养基:在牛肉膏蛋白胨培养基中加入可溶性淀粉(1%),配制600mL,制备30个平板。

2、含45mL水的三角瓶5瓶,200ul枪头及枪头盒3盒,牙签3瓶,涂布器3包,灭菌处理。

(二)菌种分离1、土壤采集选取采集地点地表植被根系周围的土壤,首先去除地表浮土,然后挖取2-5cm深的土壤样品,每个样品约取20g土壤,装入塑料袋内,备用。

2、制备菌悬液取5g土壤样品置于含45ml无菌水的三角瓶中,用振荡器震荡10分钟,在90度水浴锅中处理15分钟。

3、涂布平板培养与分离吸取100ul悬浮液,用涂布器涂布于筛选培养基平板,待液体充分被吸收后,置于37℃培养箱中培养48h。

每组做2个平板。

(三)菌种初步筛选在平板中加入少量卢戈氏碘液,观察菌落形成透明水解圈情况,用无菌牙签挑取产水解圈的菌落,转接到新的筛选培养基中,每个平板上接种16个菌种,每组接种2个平板,置于37℃培养24h。

在平板内加入卢戈氏碘液,根据单菌落透明圈直径与菌落直径比值(H/C)大小进行初筛,选择水解圈直径与菌落直径比值大的菌株,从中选取淀粉酶活力相对较高的菌株。

自然界中产淀粉酶菌株分离纯化及酶活测定.

自然界中产淀粉酶菌株分离纯化及酶活测定淀粉酶(Amylase )又称糖化酶,是指能使淀粉和糖原水解成糊精、麦芽糖和葡萄糖的酶的总称。

淀粉酶一般作用于可溶性淀粉、直链淀粉、糖元等α-1, 4-葡聚糖,水解α-1, 4-糖苷键的酶。

根据作用的方式可分为α-淀粉酶(EC 3. 2. 1. 1.)与β-淀粉酶(EC 3. 2. 1. 2. )。

α-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物;β-淀粉酶与α-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断α-1, 4-葡聚糖链。

主要见于高等植物中(大麦、小麦、甘薯、大豆等),但也有报告在细菌、牛乳、霉菌中存在。

淀粉酶是一种用途极广的生物催化剂,广泛应用于造纸、食品、医药工业。

如饴糖、啤酒、黄酒、葡萄糖、味精、抗生素等行业;用于高质量的丝绸、人造棉、化学纤维退浆;制成不同品种的工业酶、医用酶、诊断酶等;在洗涤剂工业中,作为洗涤剂酶与碱性蛋白酶、脂肪酶一起添加于洗衣粉中制成多酶洗衣粉等具有极广泛的用途。

随着社会需求的增大,工业生产对淀粉酶的需求量越来越大,其在各领域应用广泛,急需寻找更高酶活的产酶菌株满足生产需要。

生淀粉酶是指对不经过蒸煮糊化的生淀粉颗粒能够表现出强水解活性的酶类。

70年代由于两次石油危机,引起各国学者从节能和有效利用天然资源出发,重视对生淀粉酶的研究。

研究大致分两个方面:一是探讨对生淀粉不经蒸煮,直接用于酒精发酵的可能性;另一则是从自然界中分离筛选能产生生淀粉酶的微生物,并进而研究生淀粉酶的酶学特性及其产生菌的徽生物学特性[1, 2]。

除动物自身的消化道可分泌一些淀粉酶外,淀粉酶的另外两大来源是植物和微生物能产生生淀粉酶的微生物较多。

Ueda [3, 4],Mizokami [5],Tamiguchi [6],Kainuma [7]先后报道了Aspergillus awaraori,Rbizopus . sp.,Strepiococcus boris,Bacillus circulans,Chalara paradoxa等菌种均有产淀粉酶能力。

枯草杆菌α-淀粉酶的生产 -回复

枯草杆菌α-淀粉酶的生产-回复枯草杆菌是一种常见的土壤细菌,它具有广泛的生态功能和应用潜力。

其中,枯草杆菌所产生的α淀粉酶具有重要的工业应用价值。

本文将重点介绍枯草杆菌α淀粉酶的生产过程,并一步一步回答相关问题。

第一步:枯草杆菌的筛选和培养枯草杆菌存在于自然环境中,但数量相对较少。

因此,首先需要对土壤、水体等样品进行筛选,以获得富集了枯草杆菌的样品。

一般来说,筛选方法包括稀释平板法、滤膜法等。

将样品分别稀释后接种到富含淀粉的培养基上,通过观察形状、颜色等特征,选择出生长较好的菌落。

筛选获得枯草杆菌后,需要进行培养。

枯草杆菌的培养基一般包括有机氮源、无机盐和适度的碳源。

常用的培养基主要有液体培养基和固体培养基。

液体培养基的优点是便于大规模生产,而固体培养基适用于纯化和保存菌株。

第二步:对枯草杆菌的生理特性进行研究在获得培养好的枯草杆菌后,需要进一步研究其生理特性,了解其适宜生长条件和产酶规律。

主要考察的因素包括温度、pH、碳源和氮源等。

通过调整这些因素,可以获得最佳的生长条件,提高α淀粉酶的产量。

第三步:淀粉诱导条件的优化淀粉是枯草杆菌产生α淀粉酶的主要诱导物。

在培养基中添加适量的淀粉,并对其浓度、添加时间和添加方式等进行优化。

一般来说,较高的淀粉浓度和适当的诱导时间可以促进α淀粉酶的合成和分泌。

第四步:分离和纯化α淀粉酶枯草杆菌培养物中产生了大量的α淀粉酶,但还同时存在其他杂质和细胞碎片等。

因此,需要对培养物进行分离和纯化,以得到纯度较高的α淀粉酶。

分离和纯化方法主要有凝胶过滤、柱层析、凝胶电泳等。

其中,柱层析常用于大规模生产,通过调节柱层析的条件(例如树脂种类、流速等),可以将α淀粉酶与其他杂质分离。

第五步:对纯化后的α淀粉酶进行特性研究分离和纯化后的α淀粉酶需要进行特性研究,了解其催化特性、抗温性和酸碱稳定性等。

这些特性研究有助于评估α淀粉酶在不同工业应用中的潜力和适用性。

除了以上步骤,还可以利用遗传工程手段对枯草杆菌的基因进行改造,提高α淀粉酶的产量和活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

产淀粉酶(α-淀粉酶)细菌菌株筛选
一、 实验目的:
1. 掌握从环境中采集样品并从中分离纯化某种微生物的完整操作步骤。
2. 巩固以前所学的微生物学实验技术。
3. 3. 学习淀粉酶活性的测定方法。

二、 实验原理:
1. α-淀粉酶是一种液化型淀粉酶,它的产生菌,广泛分布于自然界,尤其是在含有淀粉类
物质的土壤等样品中。
2. 从自然界筛选菌种的具体做法,大致可以分成以下四个步骤:采样、初步筛选、分离纯化
和性能测定。
a) 采样:即采集含菌种的样品
采集含菌样品前应调查研究一下自己打算筛选的微生物在哪些地方分布最多,然后才可着手
做各项具体工作。在土壤中几乎各种微生物都可以找到,因而土壤可说是微生物的大本营。
例如厨房土壤、面粉加工厂和菜园土壤中淀粉的分解菌较多。
b) 初步筛选:
i.(选择培养基)初筛使用选择培养基对菌种进行培养,通过培养基的特殊
成分,来筛选出目的菌种,从而进行培养。
c) 分离纯化:
通过上述的筛选只能说我们要分离的目的菌种已经存在,但还要把夹杂在其中的杂菌除去,
从而得到纯种的菌落。纯种分离的方法很多,主要有:平板划线分离法、稀释分离法、单孢
子或单细胞分离法、菌丝尖端切割法等。
d) 性能测定:
分离纯化得到的菌种之后,所分得的菌种是否具有实验所要求的性能,还必须要进行性能测
定后才能决定取舍。

三、 实验材料:
1. 培养基配制:
初步筛选:淀粉琼脂培养基 2.0g可溶性淀粉,10g蛋 白胨, 5g牛肉膏, 5gNaCl,加少量
蒸馏水加热溶解, 然后称量16g琼脂加入烧杯中溶化,补蒸馏水至 1000mL,再用1mol/L
的NaOH或1mol/L的HCl, 调 节pH至6.4〔
分离培养基:淀粉3.5 %、琼脂粉0.8%、CaCl 0.02%、MgSO4 0.02%、NaCl 0.25%、K2HPO4 0.2%、
柠檬酸钠0.2%、硫酸铵0.075%(溶解后加入)、Na2HPO40.2%、pH7.0。
2. 主要试剂和溶液的配制:
氢氧化钠溶液中,加入蒸馏水50ml,再加入四水酒石酸钾钠30g,待溶解后用蒸馏水定容
100ml,盖紧瓶塞,隔绝CO2。
解后定容至100ml。
采样与稀释:
a) 从实验楼前的小树林中采集土样,称取5g土样,放入装有 45mL无菌水的三
角瓶中, 震荡 20m in后静置 5min。然后对其进行浓度梯度稀释到10-6, 分别稀释到10-4、10-5、
10-6浓度下。
初步筛选:
a) 培养24小时后,取出平板,向平板中注入1滴革兰氏碘液,因淀粉遇碘变蓝
色,如菌落周围有无色透明圈,说明该菌能分解淀粉,即该菌株可以产生淀粉酶。通过影印
法或点种法将可以产生淀粉酶的菌株接种到相同的无菌培养中,重复操作进行培养。 4.

四.分离纯化:
a) 初筛所得的菌落中选择菌落周围透明圈和菌落直径之比值较大的菌落,进行划
线分离。将划线分离后的培养皿放入37 ℃ 培养箱中培养24小时。 5.
性能测定:
a) 标准曲线的制作:
i. 取7支20ml预先洁净灭菌干燥的试管,编号,加入试剂见表1。每个浓
度做3个平行样本。摇匀,至沸水浴中煮沸5min。取出后流水冷却,加蒸馏水定容至20ml,
以1号管作为空白调零点,在520nm的波长下比色测定吸光度值,并建立通过吸光度值求
麦芽糖含量的回归方程。

b) 酶活力测定:
i. 首先制备待测粗酶液:取培养好菌株的分离培养基进行4000rpm离心
20min,并收集上清液即为待测粗酶液。 ii. 取20ml预先洁净灭菌干燥的具塞刻度试管,编
号。并按步骤操作:取粗酶液1.0ml → 加2%的可溶性淀粉1ml,蒸馏水3ml,于60 ℃水浴
中预热5min → 加0.1ml/l柠檬酸缓冲液(pH6.0)1ml于60 ℃水浴中保温30min → 加3,5-
二硝基水杨酸1.5ml,沸水浴中煮沸5min,迅速冷却,加蒸馏水定容至20ml。 iii. 空白对照:
取粗酶液1.0ml,加入pH1.0的盐酸钝化淀粉酶,使酶失活,在按照以上步骤操作。定容、
摇匀后,用分光光度计测定520nm处的OD值。 iv. 在上述条件下,以单位体积样品在30min
释放1mg麦芽糖所需的酶量为一个麦芽糖单位表示酶活性。

五、 结果与分析:(待测)

相关文档
最新文档