五年级奥数倒推法【精选】

合集下载

五年级下册奥数讲义-第十讲 倒推法解题(无答案)全国通用

五年级下册奥数讲义-第十讲 倒推法解题(无答案)全国通用

第十讲倒推法解题在我们生活中经常会遇到“还原问题”,如把一盒包装精美的玩具打开,再把它重新包装好,重新包装的步骤与打开的步骤正好相反。

其实在数学中,也有许多类似的还原问题。

解决这类问题最常用的方法就是倒推法,即从结果入手,逐步向前逆推,最终找到原问题的答案。

例题选讲例1:有一群猴子分吃桃子,第一只拿走—半,第二只拿走余下的一半多3个,第三只拿走第二只取剩的一半少3个,第四只拿走第三只取剩的一半多3个,第五只拿走第四只取剩的一半,最后还剩3个,这堆桃原来有多少个?【分析与艉答】l|这道题条件比较多,顺向思考很困难,如果根据最后的结果倒推还原,解决起来就轻松了。

曲于第五只猴子拿走余下的一半,还剩3个,所以第五只猴子拿之前应该有桃子:3×2=6(个),同理,第四只猴子拿之前应该有桃子:(6+3)×2=18(个),第三只猴子拿之前应该有桃子:(18—3)×2=30(个),第二只猴子拿之前应该有桃子:(30+3)×2=66(个),第一只猴子拿之前应该有桃子:66×2=132(个),即这堆桃有132个。

例2:甲、乙、丙三人各有若干元钱,甲拿出与乙相同多的钱给乙,也拿出与丙相同多的钱给丙;然后乙也按甲和雨手中的钱分别给甲、丙相同的钱;最后丙也按甲和乙手中的钱分别给甲、乙相同的钱,此时三人都有48元钱。

问:开始时三人各有多少元钱?【分析与解答】从第三次丙给甲、乙钱逐步向前推算,根据三人最后都有48元,那么在丙给甲、乙添钱之前:甲:48÷2:24(元),乙:48÷2—24(元),丙:48+24+24—96(元);第二次在乙给甲、丙添钱之前:甲:24÷2—12(元),乙:24+12+48===84(元),丙:96÷2=48(元);第一次在甲给乙、丙添钱之前:甲:12+42+24—78(元),乙:84÷2=42(元),丙:48÷2=24(元)。

五年级奥数讲义:倒推法解题

五年级奥数讲义:倒推法解题

五年级奥数讲义:倒推法解题在我们生活中经常会遇到“还原问题”,如把一盒包装精美的玩具打开,再把它重新包装好,重新包装的步骤与打开的步骤正好相反.其实在数学中,也有许多类似的还原问题.解决这类问题最常用的方法就是倒推法,即从结果入手,逐步向前逆推,最终找到原问题的答案. 例题选讲例1:有一群猴子分吃桃子,第一只拿走—半,第二只拿走余下的一半多3个,第三只拿走第二只取剩的一半少3个,第四只拿走第三只取剩的一半多3个,第五只拿走第四只取剩的一半,最后还剩3个,这堆桃原来有多少个?【分析与艉答】l|这道题条件比较多,顺向思考很困难,如果根据最后的结果倒推还原,解决起来就轻松了.曲于第五只猴子拿走余下的一半,还剩3个,所以第五只猴子拿之前应该有桃子:3×2=6(个),同理,第四只猴子拿之前应该有桃子:(6+3)×2=18(个),第三只猴子拿之前应该有桃子:(18—3)×2=30(个),第二只猴子拿之前应该有桃子:(30+3)×2=66(个),第一只猴子拿之前应该有桃子:66×2=132(个),即这堆桃有132个.例2:甲、乙、丙三人各有若干元钱,甲拿出与乙相同多的钱给乙,也拿出与丙相同多的钱给丙;然后乙也按甲和雨手中的钱分别给甲、丙相同的钱;最后丙也按甲和乙手中的钱分别给甲、乙相同的钱,此时三人都有48元钱.问:开始时三人各有多少元钱?【分析与解答】从第三次丙给甲、乙钱逐步向前推算,根据三人最后都有48元,那么在丙给甲、乙添钱之前:甲:48÷2:24(元),乙:48÷2—24(元),丙:48+24+24—96(元);第二次在乙给甲、丙添钱之前:甲:24÷2—12(元),乙:24+12+48===84(元),丙:96÷2=48(元);第一次在甲给乙、丙添钱之前:甲:12+42+24—78(元),乙:84÷2=42(元),丙:48÷2=24(元). 所以开始时甲有78元,乙有42元,丙有24元.例3:甲、乙、丙三人共有48张邮票,第一次甲先拿出与乙的邮票数相等的张数给乙;第三次乙拿出与丙的邮票数相等的张数给丙;第三次丙又拿出与这时的甲的邮票数相等的张数给甲,最后三人的邮票数相等,三人原来各有多少张邮票?【分析与解答】此题条件复杂,因此我们可以用列表的方法,从最后的果一步步按每次的变化倒推,这样就容易看清题中的数量关系了.列表如下:练习与思考1.张强去银行取款,第一次取了存款的一半多100元,第二次取了余下的一半少50元,第三次取了余下的一半多50元,这时他的存折上还剩下575元.问:张强原来有存款多少元?2.书架上有上、中、下三层书,共2400本一先从上层拿出与中层同样多的书放进中层,再从中层拿出与下层同样多的书放进下层,最后从下层拿出与上层现在同样多的书放进上层,这时三层书同样多.问:开始时,上、中、下三层各有多少本书?3.做一道整数加一个学生把个位上的7看作5,把十位上的5看作7,把百位上的9看作6,结果得出和为775.问:正确的答案应该是多少?4.有26块砖,兄弟两人争着去挑,弟弟走在前面,刚摆好砖哥哥赶来了.哥哥见弟弟挑得太多,就拿来一半给自己.弟弟觉得自己能行,又从哥哥那里拿来一半.哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块.问:开始时,弟弟准备挑多少块?5.甲、乙、丙三个瓶子共装了24升水,现在把甲瓶的水分别倒给乙、丙两瓶,使乙、丙两瓶的水比原来增加1倍;之后,又将乙瓶的水按上面的要求倒给甲、丙;最后,再按上面的要求将丙瓶的水倒一部分给甲、乙两瓶,这样倒了三次后,三个瓶中的水一样多.问:开始时甲、乙、丙三瓶各装水多少升?6.世纪商场里有一批儿童玩具,第一天运出总数的一半少4 个,第二天运出剩下的一半多2个,第三天又运进25个,这时库存儿童玩具45个,世纪商场原来有多少个儿童玩具?7.有一堆书,第一次搬一半,第二次般走剩下的一半多3本,第三次搬走剩下的一半少3本,第四次搬走剩下的一半多3本,第五次搬走剩下的一半,最后剩3本.问:原来有多少本书?8.甲、乙、丙各有若干个橘子.第一次甲给乙、丙橘子,各给与他们原有橘子数量相等的个数;同样,第二次乙给甲、丙橘子,各给与他们现有橘子数量相等的个数;第三次丙给甲、乙橘子,同样各给与他们现有数量相等的个数.最后三人都各有48个橘子,那么开始时三人各有多少个橘子?9.一种有益的菌种每小时可增长.l倍,现有一批这样的细菌:10小时后达到100万个,当它们达到25万个时,经历了多少长时间?。

小学奥数思维训练—倒推法

小学奥数思维训练—倒推法

小明兜里有一些糖,第一次吃掉了5个,第二次吃掉 了3个,妈妈又给了他4个,他一看兜里还有6个糖, 请问小明原来有几个糖?
例Hale Waihona Puke 题 展 示6 妈妈给了4个
-4
2 5 1 第二次吃了3个 第一次吃了5个
+3
+5 0
6-4+3+5=10
奥数思想
倒推法是一种非常常见的数学思想。每一个学段 都有涉及。理解掌握倒推法的特点尤为重要。
所谓倒推法就是利用相反的运算方法得到上一步 的答案,直到找到最开始的答案。
训练加油站
威尔做一道加法题时,把一个加数个位上的9看作6 , 十位上的6 看作9 , 结果和是174 , 那么正确的结果 应该是?
关注不迷路, 我们下次见!
数学这样学
小学奥数思维训练
倒推法
主讲人:成成老师
理解概念
小明放学回到家发现,妈妈给他买的电话手表不 见了!
于是,他回想起自己回家的过程中先在公交车站 等车、又在菜市场买了最爱吃的烧麦、最后回到 小区门口帮妈妈拿快递。 他想回到这些地方找一找,他会先找哪个地方呢?
根据答案,倒回去一步一步推理出原因, 这就叫做倒推法!

五年级数学《倒推》教案

五年级数学《倒推》教案

五年级数学《倒推》教案五年级数学《倒推》教案1教学内容:教科书第88~89页的例1、例2和“练一练”,练习十六的相关习题教学目标:1、使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。

2、使学生在对自己解决实际问题过程的不断反思中,感受“逆推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:学会用倒推的解题策略解决实际问题教学难点:根据具体问题确定合理的解题步骤教学准备:多媒体课件,练习纸。

教学过程:一、激趣导入,初步建立倒推法的一般解题流程1、路线倒推师:前不久,学校组织大家去春游,还记得吗?生:记得师:游玩后一位同学写了这样的一篇数学日记。

来,听一听。

(录音:我们8点从学校出发,一路经过长江大桥、老山风景区,最后到达雏鹰军校。

下午沿原路返回,你知道我们的返回路线吗?出示:学校→长江大桥→老山风景区→雏鹰军校)师:谁能回答?生:返回路线是从雏鹰军校出发,经过老山风景区、长江大桥,最后到学校。

(出示:学校←长江大桥←老山风景区←雏鹰军校)师:原来你是倒过来想的。

2、翻牌倒推师:下面老师玩一个小魔术,想不想看?生:想师:看好了。

(出示三张牌:先第一张和第二张交换位置,再将第二张和第三张交换位置)师:要想知道原来这三张牌是怎样摆放的,怎么办?生:(上台操作)先交换第二张和第三张位置,再交换第一张和第二张位置。

师:你为什么这样操作?生:我是倒过来想的,刚才最后交换的是第二和第三张,那我就先交换这两张,在交换第一张和第二张。

师:原来你也是倒过来想的。

3、运算倒推师:我们再来玩一个小游戏,比比谁的反应快!(出示:)师:你能立刻报出表示多少吗?生:18师:你是怎么想的?生:6×5=3030-20=1010+8=18师:你也是倒过来想的4、小结师:刚才这3个问题,大家都是怎么想的?生:倒过来想的:师:在数学上,我们把倒过来想的方法称之为“倒推”(板书:倒推)今天这节课,我们就一起来研究怎样用倒推解决生活中的实际问题。

五年级奥数教学课件:倒推法

五年级奥数教学课件:倒推法

100
答:这段公路的全长是700米。
练1、元元读一本科幻小说,第一天读了全书的一半多 30页,第二天读了余下的一半多16页,还剩下64页没 有读。求这本科幻小说一共有多少页?
原:
30
(160+30)×2 = 380
16
( 64+16)×2 = 160
64
答:这本科幻小说一共有380页。
练2、有一筐橙子,第一次取出全部的一半还多10个, 第二次取出余下的还多5个,最后还剩下5个,求这筐 橙子一共有多少个?
提示:先用“和差”解法求出弟弟最后挑几块砖: (26-2)÷2=12(块)
再用倒推法求出弟弟最初准备挑几块砖. {26-〔26-(12+5)]×2}×2
=16(块) 答:弟弟最初准备挑砖16块.
2、甲、乙两桶油各有若干千克,如果要从甲桶中倒出和 乙桶同样多的油放入乙桶,再从乙桶中倒和甲桶剩下的 同样多的油放入甲桶。这时两桶油恰好都是36千克。问 两桶油本来各有多少千克?
解:①现在三棵树上各有鸟 多少只?48÷3=16(只)
②第一棵树上原有鸟只数. 16+8=24(只)
③第二棵树上原有鸟只数. 16+6—8=14(只)
④第三棵树上原有鸟只数. 16—6=10(只)
答:第一、二、三棵树上本来各 落鸟24只、14只和10只.
2.有砖26块,兄弟二人争着挑.弟弟抢在前, 刚刚摆好砖,哥哥赶到了.哥哥看弟弟挑的太 多,就抢过一半.弟弟不肯,又从哥哥那儿抢 走一半.哥哥不服,弟弟只好给哥哥5块.这时 哥哥比弟弟多2块.问:最初弟弟准备挑几块砖?
于是,商人将口袋里所有的金币都放进魔术师的盒子里,从一数到十,打开盒子一看, 哇!钱真的翻了一倍,商人十分高兴,取出钱,并付给魔术师80个金币。然后商人又将 其余的金币都放进魔术师的盒子里,商人的钱有翻倍了,魔术师又得到了80个金币,接 着商人又放入第三笔钱,钱又翻倍了。但此时的商人付给魔术师80个金币后,他自己已 是分文不剩了。小朋友请你算一算,这个贪心的商人本来有多少金币呢?

小学五年级奥数课件:倒推法PPT文档共45页

小学五年级奥数课件:倒推法PPT文档共45页
小学五年级奥数课件:倒推法
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
ቤተ መጻሕፍቲ ባይዱ

五年级奥数练习倒推法解题

倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐.所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法.二、精讲精练【例题1】一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-3/5=2/5。

第一天看后还剩下48÷2/5=120页,这120页占全书的1-1/3=2/3,这本书共有120÷2/3=180页。

即48÷(1-3/5)÷(1-1/3)=180(页)答:这本书共有180页。

练习1:1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。

甲、乙两地间的路程是多少千米?3.把一堆苹果分给四个人,甲拿走了其中的1/6,乙拿走了余下的2/5,丙拿走这时所剩的3/4,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-2/7=5/7,第一天修后还剩500÷5/7=700米,如果第一天正好修全长的1/5,还余下700+100=800米,这800米占全长的1-1/5=4/5,这段路全长800÷4/5=1000米.列式为:【500÷(1-2/7)+100】÷(1-1/5)=1000米答:这段公路全长1000米。

练习2:1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?3.一批水泥,第一天用去了1/2多1吨,第二天用去了余下1/3少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?【思路导航】从最后的结果出发倒推,甲、乙两桶共有(24×2)=48千克,当乙桶没有倒出1/5给甲桶时,乙桶内有油24÷(1-1/5)=30千克,这时甲桶内只有48-30=18千克,而甲桶已倒出1/3给了乙桶,可见甲桶原有的油为18÷(1-1/3)=27千克,乙桶原有的油为48-27=21千克。

倒推法解题(小学奥数)

倒推法解题【专题简析】:有些应用题按照一般的方法顺着题目条件一步一步的列式出来解 答过程会比较繁琐,所以有些题我们从后面往前面推会很好的简化题,使题变得 很简单,很容易理解也便于解答?例1、建筑队修一条路,第一天修了全长的51多100米,第二次修了余下的72,还剩下500米,求公路的全长。

练习1、乙队煤上午运走72,下午运走的比余下的31还多6吨,最后还剩下14吨没有运走,这堆煤原有多少吨?例2、某果地里有一些桃树结了一些桃子,有一群调皮猴子每天都去摘果园里的桃子吃,第一天摘下桃子总数的101,第二天摘了剩下总数的91,第三天摘了第二天摘后剩下总数的81……,第八天摘了第七天摘后剩下总数的31,第九天摘了第八天摘后剩下总数的21,这时树上还剩下10个桃子,果园里原来有多少个桃子?练习2、将一根绳子从中间剪开,再取其中的一端再从中间剪开,这样剪了四次,正好剩下一米,这根绳子原来有多长?例3、有甲乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲,这时两桶正好各有24千克,原来甲乙两桶各有多少千克油?练习3、甲乙两人个有钱若干,甲拿出自己钱总数的51给乙,乙从自己现在所有的钱中拿出41给甲,这时两人各有12元钱,原来两人个有多少钱?综合练习:1、一个数减去1,乘以3,再加上2,最后除以4,结果是5,这个数是多少?2、猴子摘桃,第一天摘了树上桃子的一半多1个,第二天又摘上了余下桃子的一半多1个,这时树上还有15个桃子,原来树上有多少个桃子?3、兔妈妈带着小白兔和小黑兔去拔萝卜,小白兔把全部的萝卜平均分成三份,运走了其中的一份;小黑兔又把余下的萝卜平均分成三份,运走了其中的一份;兔妈妈运走了剩下的16个萝卜。

小白兔和小黑兔各运走多少个萝卜?4、一条小虫由幼虫长到成虫,每天长大1倍(即第二天是第一天的2倍,第三天是第二天的2倍,……)。

30天能长到20厘米,那么长到2.5厘米时用了多少天?5、有120个队伍进行单循环淘汰赛比赛,最后要决出一个冠军队,问:需要多少场比赛才能决出冠军队?6.一种荷叶每天长大1倍,第100天把整个池塘铺满了,求盖满池塘的一半需要多少天?盖满池塘的四分之一需要多少天?。

小学奥数 分数应用题 倒推法 讲解

小学奥数之倒推法例题讲解例题:商店购进一种商品来销售,第一天卖出总数的17又8个,第二天卖出余下的14又5个,第三天卖出余下的25又15个,正好卖完。

求这种商品原有多少个?分析:有时候一些应用题里面有多个单位“1”,或者说单位“1”不统一,这时候我们该怎么办呢?就像上面这题,“原来的商品个数”是一个单位“1”,第二天余下的商品是另一个单位“1”,第三天余下的商品又是另一个单位“1”。

这个时候我们就可以运用“倒推法”,从结果出发一步步往前推。

首先我们画出线段图:先推理①的数量:根据题意“第三天卖出余下的25又15个,正好卖完。

”,可知15个占了①的(1-25),因此我们用除法可以求出①的数量。

15÷(1-25)=15÷35=25(个)再推理②的数量:根据题意“第二天卖出余下的14又5个”,可知②的数量+5,就占了②的(1-14),因此我们用除法可以求出②的数量。

(25+5)÷(1-14)=40(个)最后推理③的数量:根据题意“第一天卖出总数的17又8个”,可知③的数量+8,就占了③的(1-17),因此我们用除法可以求出③的数量。

(40+8)÷(1-17)=56(个)答:这种商品原有56个。

老司机的话:这种题型虽然也可以用初中的“一元一次方程”做出来,但小学生不好理解。

我们灵活运用“线段图”和“倒推法”,可以有效率地提高小学生的思维能力,促进他们智力的开发。

“倒推法”在其他领域也有不少用处,例如名侦探查案的时候,可以根据现场的蛛丝马迹查出坏人是谁。

是一种很有趣的方法呢~。

五年级奥数倒推法

1.甲、乙两桶中各有油若干千克,如果从甲桶中倒甲桶同样多的油放入甲桶,这时两桶油恰好都是24千克。 原来甲、乙两桶各有油多少千克? 2.兄妹二人共有零花钱48元。如果哥哥拿出和妹妹同样多的钱给妹妹,妹妹再 拿出和哥哥同样多的钱给哥哥,这时哥哥昀零花钱是妹妹的3倍。哥哥和妹妹原 来各有多少零花钱?
1.书架共有三层,各有若干本书。先从第一层上取出一些书放入第二、 三层,使第二、三层书的本数各增加了一倍;再从第二层上取出一些书放 入第一、三层,使第一、三层书的本数各增加了一倍;最后从第三层上取 出一些书放入第一、二层,使第一、二层书的本数各增加了一倍,这时三 层上各有48本书,原来三层各有多少本书? 2.两只小猴分28个桃子。甲猴眼疾手快,抢先拿了,乙猴见甲猴拿得太 多,就抢去了一半,甲猴不服,又从乙猴那儿抢走一半,乙猴不肯,甲猴 还给乙猴5个,这时两只猴拿的桃子同样多。甲猴最初准备拿多少个桃子? 1.-个数加上100,乘以100,减去100,除以100,结果还是100,求这个 数。 2.猴子摘桃,第一天摘了树上桃子的一半多1个,第二天又摘了余下桃 子的一半多1个,这时树上还有15个桃子,原来树上有多少个桃子?
例5 甲、乙、丙各有纪念邮票若干枚,开始时甲把自己的邮 票各拿一部分给了乙、丙,使乙、丙的邮票数各增加了一倍, 后来乙也把自己的邮票各拿了一部分给了甲、丙,使甲、丙 的邮票数各增加了一倍,最后,丙也照此办法,使甲、乙的 邮票数各增加了一倍,这时三人的邮票数都是16枚,原来甲、 乙、丙各有邮票多少枚? 思路导航 利用“倒推法”,我们可以从“三人最后邮票数 都是16枚”这个结果出发,求出每一次变化之前的邮票数, 逐步推出原有邮票数。列表如下:
例2 捆电线,第一次用去全长的一半多4米,第二次用去余下 的一半多8米,第三次用去33米,最后还剩下7米,这捆电线 原来有多少米? 思路导航 采用“倒推法”,从“最后还剩下7米”人手向 前逐步推算。为了进一步理清各数量之间的关系,还可以 根据题意画线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例5 甲、乙、丙各有纪念邮票若干枚,开始时甲把自己的邮 票各拿一部分给了乙、丙,使乙、丙的邮票数各增加了一倍,
后来乙也把自己的邮票各拿了一部分给了甲、丙,使甲、丙
的邮票数各增加了一倍,最后,丙也照此办法,使甲、乙的 邮票数各增加了一倍,这时三人的邮票数都是16枚,原来甲、 乙、丙各有邮票多少枚?
思路导航 利用“倒推法”,我们可以从“三人最后邮票数
1.-个数加上100,乘以100,减去100,除以100,结果还是100,求 这个数。
2.猴子摘桃,第一天摘了树上桃子的一半多1个,第二天又摘了余下桃 子的一半多1个,这时树上还有15个桃子,原来树上有多少个桃子?
都是16枚”这个结果出发,求出每一次变化之前的邮票数, 逐步推出原有邮票数。列表如下:
1.书架共有三层,各有若干本书。先从第一层上取出一些书放入第二、 三层,使第二、三层书的本数各增加了一倍;再从第二层上取出一些书放
入第一、三层,使第一、三层书的本数各增加了一倍;最后从第三层上取
出一些书放入第一、二层,使第一、二层书的本数各增加了一倍,这时三 层上各有48本书,原来三层各有多少本书? 2.两只小猴分28个桃子。甲猴眼疾手快,抢先拿了,乙猴见甲猴拿得 太多,就抢去了一半,甲猴不服,又从乙猴那儿抢走一半,乙猴不肯,甲 猴还给乙猴5个,这时两只猴拿的桃子同样多。甲猴最初准备拿多少个桃 子?
为了清楚地表示出各班人数的变化,我们也可以根据题意列出表格:
129÷3 =43(人)……现在的人数 43 -3 =40(人)……三班的人数 43 +3 -2 =44(人)……二班的人数 43 +2= 45(人)……一班的人数 答:原来一班有45人,二班有44人,三班 有40人。
例4 李明和王刚各有画片若干张,如果李明拿出和王刚同样 多的画片送给王刚,王刚再拿出和李明同样多的画片给李明, 这时两人都有36张。李明和王刚原来各有画片多少张?
例3 一班、二班、三班共有学生129人,如果从一班调2人去 二班,从二班调3人去三班,这时三个班的人数相等。原来三 个班各有多少人?
思路导航 利用“倒推法”,从最后一个条件“三个班的人数相等”人手,由
“一班、二班、三班共有学生129人”,两次调整后,三个班的总人数仍是129 人,求出这时每个班的人数是129÷3 =43(人);再往前推算,根搌“从二班 调3人去三班”后两班人数都是43人,求出这次调整前,二班应是43 +3 =46 (人),三班应是43 -3 =40(人);再根据“从一班调2人去二班”后二班是 46人,求出这次调整前,二班是46 -2 =44(人),一班是43 +2=45 (人)。
1.甲、乙两桶中各有油若干千克,如果从甲桶中倒出和乙桶同样多的油放入乙 桶,再从乙桶中倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是24千克。 原来甲、乙两桶各有油多少千克? 2.兄妹二人共有零花钱48元。如果哥哥拿出和妹妹同样多的钱给妹妹,妹哥和妹妹原 来各有多少零花钱?
例2 捆电线,第一次用去全长的一半多4米,第二次用去余下 的一半多8米,第三次用去33米,最后还剩下7米,这捆电线 原来有多少米?
思路导航 采用“倒推法”,从“最后还剩下7米”人手向 前逐步推算。为了进一步理清各数量之间的关系,还可以 根据题意画线
从线段图上可以看出:①33 +7= 40(米)……第二次用去后的电线长 ②40 +8 =48(米)……第一次用去后余下的一半 ③48 x2 =96(米)……第一次用去后的电线长度 ④96 +4 =100(米)……全长的一半 ⑤100 x2 =200(米)……原电线的长度 [ (33 +7 +8) ×2 +4] ×2 =200(米) 答:这捆电线原来有200米。
有些数学问题,如果按照一般方法,顺着题意一步一步求
解,根本无从下手或计算过程比较烦琐。在这种情况下,我 们可以试着从最后的结果出发,运用加与减、乘与除之间的 互逆关系,从后往前步步逆推,从而推算出原数。这种思考 问题的方法叫做“倒推法”。
倒 推
例1 李老师说:“把我的年龄数加上4,除以2,减去8,再 乘6,正好是72。”同学们,你能推算出李老师今年多大吗?
(72÷6+8)×2 -4 =36(岁)
答:李老师今年36岁。
为了保证解题正确,我们可以把36这个数按原题的叙述顺 序进行计算,看最后的结果是否等于72。如果等于72,那么 解题结果就是正确的,验算如下:[(36+4)÷2—8]×6 =72
1.小明的爷爷今年的年龄加上16后,缩小3倍,再减去 18之后,扩大10倍,恰好是100岁,小明爷爷今年多少岁? 2。小聪问小明:“你今年几岁?”小明回答说:“用我 的年龄数减去8,乘以7,加上6,除以5,正好等于4,请 你算一算,我今年几岁?”
思路导航 利用“倒推法”,从“这时两人都有36张”这个 结果出发,在“王刚再拿出和李明同样多的画片给李明”之 前,李明应有画片36÷2 =18(张),王刚应有画片36 +18 =54(张);在“李明拿出和王刚同样多的画片送给王 刚”之前,王刚应有画片54÷2= =27(张),李明应有画 片18 +27 =45(张)。

思路导航 利用“倒推法”,从最后一个条件“正好是72”向前逐步推 算:①“再乘6,正好是72”,乘6之前的数是72÷6 =12;②“减去8,
差是12”,减去8之前的数是12+8 =20;③“除以2,商是20”,除以
2之前的数是20 x2 =40;④“加上4,和是40”,加上4之前的数是40
-4 =36(岁)。
相关文档
最新文档