线性规划模型
工业系统工程线性规划模型

资源分配问题
确定资源需求
通过线性规划模型,可以确定完成生 产任务所需的资源需求,如劳动力、 原材料、设备等。
优化资源分配
线性规划模型可以用于优化资源分配 ,包括确定各种资源的最佳组合和分 配方案,以满足生产需求并最小化资 源消耗。
考虑资源约束
资源分配过程中需要考虑各种资源约 束条件,如资源数量、可用时间等, 线性规划模型可以有效地处理这些约 束条件。
分析不同决策方案
通过构建多个线性规划模型,可以分 析不同的决策方案对系统性能的影响 ,从而为决策者提供参考。
预测未来趋势
基于历史数据和线性规划模型,可以 预测未来趋势,为决策者提供前瞻性 的建议。
制定合理决策方案
确定关键因素
通过线性规划模型,可以确定影响系统 性能的关键因素,从而有针对性地制定 决策方案。
1 2
确定目标变量
明确要优化的目标变量,如成本、利润、产量等 。
确定目标函数的数学形式
根据目标变量的性质和要求,选择适当的目标函 数形式,如最小化、最大化等。
3
确定目标函数的约束条件
明确目标函数的约束条件,如资源限制、时间限 制等。
确定决策变量
01
确定决策变量的类 型
根据问题实际情况,选择适当的 决策变量类型,如连续变量、离 散变量等。
生产计划制定
确定生产目标
通过线性规划模型,可以确定生 产计划的目标,如最大化产量、 最小化成本等。
优化生产流程
线性规划模型可以用于优化生产 流程,包括确定原材料采购、库 存管理、生产调度等方面的最佳 策略。
考虑约束条件
生产计划制定过程中需要考虑各 种约束条件,如设备能力、人员 数量、原材料供应等,线性规划 模型可以有效地处理这些约束条 件。
线性规划模型及其举例

线性规划模型及其举例摘要:在日常生活中,我们常常对一个问题有诸多解决办法,如何寻找最优方案,成为关键,本文提出了线性规划数学模型及其举例,在一定约束条件下寻求最优解的过程,目的是想说明线性规划模型在生产中的巨大应用。
关键词:资源规划;约束条件;优化模型;最优解在工农业生产与经营过程中,人们总想用有限的资源投入,获得尽可能多的使用价值或经济利益。
如:当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多,利润最大)。
一.背景介绍如果产出量与投入量存在(或近似存在)比例关系,则可以写出投入产品的线性函数式:1()ni ij j j f x a x ==∑,1,2,,,1i m m =+ (1)若将(1)式中第(1m +)个线性方程作为待求的目标函数,其余m 个线性方程作为资源投入的限制条件(或约束条件),则(1)式变为:OPT. 1()nj j j f x c x ==∑ST. 1nij j j a x =∑> ( =, < )i b , 1,2,,i m = (2)0,j x ≥ 1,2,,j n =…(2)式特点是有n 个待求的变量j x (1,2,,j n =…);有1个待求的线性目标函数()f x ,有m 个线性约束等式或不等式,其中i b (1,2,,i m =…)为有限的资源投入常量。
将客观实际问题经过系统分析后,构建线性规划模型,有决策变量,目标函数和约束条件等构成。
1.决策变量(Decision Variable,DV )在约束条件范围内变化且能影响(或限定)目标函数大小的变量。
决策变量表示一种活动,变量的一组数据代表一个解决方案,通常这些变量取非负值。
2.约束条件(Subject To,ST )在资源有限与竞争激烈的环境中进行有目的性的一切活动,都应考虑是否符合实际,有没有可行性,因而要构造基于科学预测的综合性约束(或限定)条件。
5 线性规划模型

其中,
a11 a21 A a m1
a12 a22 am 2
a1n a2 n 约束系数矩阵 amn
工序Ⅰ的产品总量,它等于 工序Ⅰ的最终产品产量+工序 Ⅱ的原料用量(x2/成材率)
5.2 线性规划模型的建立
③ 约束条件
电力供应约束(供电能力300×104kwh) 20(x1 +1/0.5x2)+40x2 ≤300 20x1 + 80x2 ≤300 2x1+ 6x2 ≥ 24 (104kwh) (106元) 利润指标约束 (获得利润不得少于24×106元) 原料供应约束(供应能力为17.5×104t)
设工序Ⅰ的产品总量为x1 万t,工序Ⅱ的产品总量为x2 万t, (总量=最终产品量) 则总能耗为: 约束条件: S = 50x1+ 30x2 (万kgce)
电力供应约束 20x1 + 40x2 ≤301-1/0.5x2)+ 6x2 ≥ 24 (106元) 工序间的相互关系约束 x1-1/0.5x2≥0
4x1+2x2≤120 2x1+3x2≤100 x1 ≥0 x2≥0
5.1线性规划问题及其数学描述
(2)线性规划问题的基本特征
① 每个问题有一组待求的未知量, x1 , x2 ….xn称为线性 规划模型中的决策变量(Decision Variables),是决策者可以 控制的量。 ② 用一组等式或不等式描述资源(广义的)与决策变量之 间的数量关系。 这种限制变量取值范围的条件,称为约束条件( Constraints);或者说各种变量的取值应满足于(Subject to )若干约束条件,用s.t.表示。
7.2 线性规划模型的建立
1.1 线性规划模型

计算机应 用软件
a1n xn (或 ,或 )b1 a2 n xn (或 ,或 )b2 LLL amn xn (或 ,或 )bm
• 线性规划研究的问题: 1、在现有的人、财、物等资源的条件下, 研究如何合理地计划、安排,可使得 如产量、利润等。 某一目标达到最大, 2、在任务确定后,如何计划、安排,使 用最少的人、财、物等资源,去实现 该任务, 如使生产成本、费用最少等。 寻求在一定约束 条件下使某个指标达到最优
§1.1 线性规划的基本概念
即找到目标值与决策变量的数量关系
步骤三:确定约束条件 即决策变量所受到的外界条件的制约。 约束条件一般为决策变量的等式或不等式
要求:目标函数与约束条件均是线性的,
且目标函数只能是一个。
2、线性规划模型的一般形式:
max (或 min )z c1 x1 c2 x2 L cn xn
maximum minimum
¤Ð ¸ ò º Ò ú ¶ ù È ¥Î µ ºÀ øÈ ó ¨Ô £ ¨£ §
z 工厂的总利润 目标函数:z 3x1 2 x2 5 x3
û ¿ úú ²Æ «» Ó¸ ¤Ê ª» ä¨ £« ÖÖ Ó£ § ¿ ÃÌ ì» Ó¸ ¤Ä ÜÁ ¦ ¬² » úÆ « Ò² úÆ « ø ª² úÆ « £« ¨ ÖÖ Ó£ § 1 2 1 430 3 0 2 460 1 4 0 420 3 2 5
现在我们希望每天得到的维生素不少于所规定的最低需要 量,问应该如何搭配各种食品才能使所花的费用最少?
x2 每天采购乙食品的数量 解:x1 每天采购甲食品的数量 ,
线性规划模型

x1 x2 x3
X= 输出 30.0000 50.0000 40.0000
Z=
490.0000
欢迎参加全国大学生 数学建模竞赛
最优解存在定理 定理1 如果线性规划(1)有可行解,那么一定有基可行解。 定理2 如果线性规划(1)有最优解,那么一定存在一个基可行 解是最优解。 由于基可行解的个数有限,而且,一旦问题优最优解一定 在基可行解中取得,因此只要对所有基可行解一一检察,就可 判定出最优解。但计算量较大,因此需设计搜索算法。
f 0 xB x0
n
j x j cB B b
j m 1
上式称为线性规划的典式。 定理3 若设 x [ x , x , x ] 是规划的一个可行基,B是对应的基阵, 如果上面典式中 , , 0 ,则基可行解 x [ B b , 0 ]
1
2
n
0
1
j
,故只要此时的基B对应的基
解仍是可行解,则 x * 仍是最优解。
xB B
1
b B
1
1
(b bs e s ) B
T
T
1
b B
1
bs es
T
若
B
1
b B
bs es
0
,则 x * 仍为最优解。
Matlab 优化工具箱求解线性规划
1、X=LP(c,A,b)
基可行解是最优解的判断准则
A(B, N )
B ( P1 , P2 , Pm ) N ( Pm 1 , Pm 2 , Pn )
相应
x [xB , x N ] B
1
线性规划模型的标准形式

第三部分运筹学第四章运筹学建模4.1 运筹学概述运筹学是用数学方法研究各种系统最优化问题的学科。
其研究方法是应用数学语言来描述实际系统,建立相应的数学模型,并对模型进行研究和分析,据此求得模型的最优解;其目的是制定合理运用人力、物力和财力的最优方案;为决策者提供科学决策的依据;其研究对象是各种社会系统,可以是对新的系统进行优化设计,也可以是研究已有系统的最佳运营问题。
因此,运筹学既是应用数学,也是管理科学,同时也是系统工程的基础之一。
运筹学一词最早出现于第二次世界大战期间,当时为了急待解决作战中所遇到的许多错综复杂的战略战术问题,英美一些具有不同学科和背景的科学家,组成了许多研究小组,专门从事军事行动的优化研究。
研究的典型课题有:高射炮阵地火力的最佳配置、护航舰队规模的大小以及开展反潜艇作战的侦察等方面。
由于受到战时压力的推动,加上不同学科互相渗透而产生的协同作用,在上述几个方面的研究都卓有成效,为第二次世界大战盟军的胜利起到积极作用,也为运筹学各个分支的进一步研究打下了基础。
战后,这些科学家们转向研究在民用部门应用类似方法的可能性。
因而,促进了在民用部门中应用运筹学有关方法的研究和实践。
1947年,美国数学家G.B.Dantzig提出了求解线性规划的有效方法——单纯形法。
50年代初,应用电子计算机求解线性规划问题获得了成功。
50年代末,工业先进国家的一些大型企业也陆续应用了运筹学的方法以解决企业在生产经营活动中所出现的许多问题,取得了良好效果。
60年代中期,一些银行、医院、图书馆等都已陆续认识到运筹学对帮助改进服务功能、提高服务效率所起的作用,由此带来了运筹学在服务性行业和公用事业中的广泛应用。
电子计算机技术的迅速发展,为广泛应用运筹学方法提供了有力工具,运筹学的应用又开创了新的局面。
当前,运筹学在经济管理、生产管理、工程建设、军事作战、科学试验以及社会系统等各个领域中都得到了极为广泛的应用。
线性规划模型
原料供应
x1 x2 50
规划
劳动时间
12x18x2480 模型
加工能力 非负约束
3x1 100 x1,x2 0
.
(LP)
23
模型求解
图解法
Ax2
约 x1 x2 50
l1:x1x250
l1
束 12x18x2480 l2:12 x18x2480
B
条件目函标数3x1x,1xM z2=1c 00(常0z a数7 )x~lx 4 等1 2 : x 值l316 : 线3x 0 x4 2 ,1l5:1在x02B 0(200l,0430)c点Zl=5得0 到lD2最CZl3=优Z2=4解x0310600
在工程技术、经济管理、科学研究和日常生活等诸 多领域中,人们经常遇到的一类决策问题:在一系列 客观或主观限制条件下,寻求所关注的某个或多个指 标达到最大(或最小)的决策。例如,生产计划要按 照产品工艺流程和顾客需求,制定原料、零件、部件 等订购、投产的日程和数量,尽量降低成本使利润最 高;运输方案要在满足物资需求和装载条件下安排从 各供应点到各需求点的运量和路线,使运输总费用最 低。
14.0000 24.0000 lam = 100.0000 4.0000
0 0 说明:x解为最优解,lam说明约束条件发挥了作用。
.
15
(3)用LINGO实现 我们可以直接在下面的窗口输入LP程序
.
16
.
17
例2、营养学家指出,成人良好的日常饮食应该至少提 供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg 的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋 白质,0.14kg脂肪,花费28元;而1食物B含有0.105kg 碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。 为了满足营养专家指出的日常饮食要求,同时使花费 最低,需要同时食用食物A和食物B多少kg?
线性规划模型
(约束条件不变 约束条件不变) 约束条件不变 x1系数范围 系数范围(64,96) x2系数范围 系数范围(48,72) x1系数由 ×3=72 系数由24 增加为 × 增加为30×3=90, , 在允许范围内
A1获利增加到 30元/千克,应否改变生产计划 千克, 元 千克
不变! 不变!
结果解释 影子价格有意义时约束右端的允许变化范围
“资源” 剩余为零的约束为紧约束(有效约束) 资源” 剩余为零的约束为紧约束(有效约束) 资源
Objective value: Variable X1 X2 Value 20.00000 30.00000
3360.000 Reduced Cost 0.0000000 0.0000000 Dual Price 1.000000 48.00000 2.000000 0.0000000
引 言
由于战争的需要, 美国的经济学家T. 由于战争的需要, 美国的经济学家T. C. (库普曼斯 库普曼斯) Koopmans (库普曼斯) 重新独立的研究运输问 题, 并很快看到了线性规划在经济学中应用的 意义. 在这之后, 意义. 在这之后, 线性规划也被人们广泛地用 于军事、经济等各方面。 于军事、经济等各方面。 由于Kantorovich Koopmans在这方面 由于Kantorovich 和 Koopmans在这方面 的突出贡献,他们一起得到1975 1975年诺贝尔经济 的突出贡献,他们一起得到1975年诺贝尔经济 学奖。 学奖。 为更好地理解线性规划所描述的问题, 为更好地理解线性规划所描述的问题, 我们先看一个例子。 我们先看一个例子。
模型开始 目标函数求极大 约束条件 (无非负限制) 无非负限制) 模型结束
求解
Lingo软件的计算结果 Lingo软件的计算结果
运筹学模型的分类和类型
运筹学模型的分类和类型运筹学是一门应用于决策制定和问题解决的学科,它通过数学模型和分析方法来优化资源的利用。
运筹学模型是在特定情境中描述问题和优化目标的数学表示。
根据问题的性质和优化目标的类型,运筹学模型可以被分类为多种类型。
在本文中,我将介绍一些常见的运筹学模型分类。
一、线性规划模型:线性规划模型是最基本的运筹学模型之一。
它的特点是目标函数和约束条件均为线性的。
线性规划模型常用于求解资源分配、生产计划、物流运输等问题。
通过线性规划模型,我们可以找到使资源利用最优化的决策方案。
某公司需要确定每种产品的生产数量,以最大化总利润,且需满足各种资源约束条件,这时可以使用线性规划模型进行求解。
二、整数规划模型:整数规划模型是在线性规划模型的基础上引入整数变量的扩展。
在某些情况下,问题的决策变量只能取整数值,这时就需要使用整数规划模型进行求解。
某物流公司需要确定车辆的调度方案,每辆车的装载量可以是整数,这时可以使用整数规划模型来求解最佳调度方案。
三、动态规划模型:动态规划模型是一种考虑时间因素的决策模型。
它通常用于求解多阶段决策问题。
动态规划模型通过将问题划分为多个阶段,并建立各阶段之间的转移方程,来寻找最优决策序列。
在项目管理中,我们需要确定每个阶段的最佳决策,以最小化总工期和成本,这时可以使用动态规划模型进行求解。
四、网络流模型:网络流模型是一种描述网络中资源分配和流量传输的模型。
它通常用于求解网络优化问题,如最小费用流问题、最大流问题等。
网络流模型中,节点表示资源或流量的源点、汇点和中间节点,边表示资源或流量的传输通道。
通过建立网络流模型,我们可以确定资源的最优分配方案,以及网络中的最大流量或最小成本。
在供应链管理中,我们需要确定货物从生产商到消费者的最佳流向,以最小化总运输成本,这时可以使用网络流模型进行求解。
五、排队论模型:排队论模型是一种描述排队系统的模型。
它通常用于评估系统性能指标,如平均等待时间、平均逗留时间等。
线性规划的数学模型和基本性质
1.线性规划介绍
美国科学院院士DANTZIG(丹齐克),1948年在 研究美国空军资源的优化配置时提出线性规划及其通用 解法 “单纯形法”。被称为线性规划之父。
线性规划之父的Dantzig (丹齐克)。据说,一次上课,Dantzig迟到 了,仰头看去,黑板上留了几个几个题目,他就抄了一下,回家后埋头 苦做。几个星期之后,疲惫的去找老师说,这件事情真的对不起,作业 好像太难了,我所以现在才交,言下很是 惭愧。几天之后,他的老师 就把他召了过去,兴奋的告诉他说他太兴奋了。Dantzig很不解 , 后来 才知道原来黑板上的题目根本就不是什么家庭作业,而是老师说的本领 域的未解决的问题,他给出的那个解法也就是单纯形法。这个方法是上 个世纪前十位的算法。
s.t.
2.线性规划数学模型
线性规划问题应用 市场营销(广告预算和媒介选择,竞争性定价,新产品 开发,制定销售计划) 生产计划制定(合理下料,配料,“生产计划、库存、 劳力综合”) 库存管理(合理物资库存量,停车场大小,设备容量) 运输问题 财政、会计(预算,贷款,成本分析,投资,证券管理) 人事(人员分配,人才评价,工资和奖金的确定) 设备管理(维修计划,设备更新) 城市管理(供水,污水管理,服务系统设计、运用)
1.线性规划介绍
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高?
某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。