§1.1. 锐角三角函数(第二课时)教案

§1.1.  锐角三角函数(第二课时)教案
§1.1.  锐角三角函数(第二课时)教案

§1.1. 锐角三角函数(第二课时)教案

授课教师:授课日期:2017、11、17

教学目标:

1.使学生理解锐角正弦、余弦的定义

2.会求直角三角形中锐角的正弦、余弦值

3.通过探索正弦、余弦定义,培养学生观察、比较、分析、概括等逻辑思维能力.

教学重点:

1. 理解锐角正弦、余弦的定义;会求直角三角形中锐角的正弦、余弦值.

教学难点:

求直角三角形中锐角的正弦、余弦值.

教学方法:

引导—探索法.

教学过程

一、温故互查

,BC=3,则AC=_______

1.在Rt△ABC中,∠C=90 ,tanA=12

13

2.在Rt△ABC中,如果各边的长度都扩大2倍,则锐角A的正切()

A.扩大2倍

B. 缩小到原来的0.5倍

C.扩大4倍

D.不变

二、设问导学

(1)如图,在Rt△ABC中,∠C=90,∠A的对边是_________,∠A的邻边是________,锐角A的大小确定后,其对边与邻边的比值是

__________的。

(2)如图,Rt △AB 1C 1和Rt △AB 2C 2的关系是 ;

(3)的关系是和2

22111AB C B AB C B ; (4)如果改变B 2在斜边上的位置,则的关系是和2

22111AB C B AB C B ; 从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________.

【归纳结论】在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之___.

∠A 的对边与斜边的比值叫做∠A 的正弦(sine),记作sinA ,即:sinA=___

∠A 的邻边与斜边的比值叫做∠A 的余弦(cosine),记作cosA ,即:cosA= ___

锐角A 的正切、正弦、余弦都是∠A 的三角函数,当∠A 变化时,相应的∠A 的正切、正弦、余弦值也随之_____.

在图中,梯子的倾斜度与与sinA 和cosA 有关,

sinA 的值越大,梯子越___,cosA 的值越大,梯子越___.

三、自学检测

1、求出图中∠A 的三个锐角三角函数值。

2、在Rt △ABC 中,∠B=90,AC=200,sinA=3

5

,求BC 的长,cosA 和B 1 B 2 A

C 1 C 2

tanB的值。

,AC=10,AB等于3、.如图,在 Rt△ABC 中,∠C =90°,cos A=12

13

多少?sinB呢?

四、巩固练习

1、在△ABC中∠C=90° tanA=1/3 求sinB的值

2、课本随堂练习第1、2题。

五、课堂小结(俩人小组互述今天的收获)

六、作业布置(课本第6页第1题,第7页第4题。)

初中数学《锐角三角函数的应用》教案

初中数学《锐角三角函数的应用》教案 31.3锐角三角函数的应用 教学目标 1.能够把数学问题转化成数学问题。 2.能够错助于计算器进行有三角函数的计算,并能对结果的意义进行说明,发展数学的应用意识和解决问题的能力。过程与方法 经历探索实际问题的过程,进一步体会三角函数在解决实际问题过程中的应用。 情感态度与价值观 积极参与探索活动,并在探索过程中发表自己的见解,体会三角函数是解决实际问题的有效工具。 重点:能够把数学问题转化成数学问题,能够借助于计算器进行有三角函数的计算。 难点:能够把数学问题转化成解直角三角形问题,会正确选用适合的直角三角形的边角关系。 教学过程 一、问题引入,了解仰角俯角的概念。 提出问题:某飞机在空中A处的高度AC=1500米,此时从飞机看地面目标B的俯角为18,求A、B间的距离。 提问:1.俯角是什么样的角?,如果这时从地面B点看飞机呢,称ABC是什么角呢?这两个角有什么关系?

2.这个△ABC是什么三角形?图中的边角在实际问题中的意义是什么,求的是什么,在这个几何图形中已知什么,又是求哪条线段的长,选用什么方法? 教师通过问题的分析与讨论与学生共同学习也仰角与俯角 的概念,也为运用新知识解决实际问题提供了一定的模式。 二、测量物体的高度或宽度问题. 1.提出老问题,寻找新方法 我们学习中介绍过测量物高的一些方法,现在我们又学习了锐角三角函数,能不能利用新的知识来解决这些问题呢。 利用三角函数的前提条件是什么?那么如果要测旗杆的高度,你能设计一个方案来利用三角函数的知识来解决吗? 学生分组讨论体会用多种方法解决问题,解决问题需要适当的数学模型。 2.运用新方法,解决新问题. ⑴从1.5米高的测量仪上测得古塔顶端的仰角是30,测量仪距古塔60米,则古塔高()米。 ⑵从山顶望地面正西方向有C、D两个地点,俯角分别是45、30,已知C、D相距100米,那么山高()米。 ⑶要测量河流某段的宽度,测量员在洒一岸选了一点A,在另一岸选了两个点B和C,且B、C相距200米,测得ACB =45,ABC=60,求河宽(精确到0.1米)。 在这一部分的练习中,引导学生正确来图,构造直角三角形

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

(完整)初中锐角三角函数教案

锐角三角函数 中考主要考查点: 1. 锐角三角函数定义;特殊角的三角函数值; 2. 解直角三角形;解直角三角形的应用; 3. 直角三角形的边角关系的应用 ? 知识点1. 直角三角形中边与角的关系 中,∠C=90° (1)边的关系: (2)角的关系: (3)边与角的关系: sinA = cosA= tanA= cotA= sinA =cosB = a c , cosA =sinB = b c ,tanA ==a b , tanB =b a , cotA=b a ? 知识点2. 特殊角的三角函数值 特殊角30°,45°,60°的三角函数值列表如下: α sinα cosα tanα 30° 1 2 33 45° 22 22 1 60° 1 2 斜边 的对边 A ∠斜边 的邻边A ∠邻边的对边A ∠ 对边的邻边A ∠2 3 233

? 知识点3. 三角函数的增减性 已知∠A 为锐角,sinA 随着角度的增大而 增大 ,tanA 随着角度的增大而 增大 , cosA 随着角度的增大而 减小 。 例1. 已知∠A 为锐角,且cosA≤ 2 1 ,那么( ) (A ) 0°<A≤60°(B )60°≤A <90°(C )0°<A≤30°(D )30°≤A <90° ? 知识点4. 同角三角函数与互为余角的三角函数之间的关系。 1. 同角三角函数的关系 1cos sin 22=+A A A A A cos sin tan = 1cot tan =?A A 2. 互为余角的三角函数之间的关系90=+B A B A B A sin cos cos sin == ?=47cos 43sin ο 1tan tan =?B A ? 知识点5. 直角三角形的解法 直角三角形中各元素间的关系是解直角三角形的依据,因此,解直角三角形的关键是 正确选择直角三角形的边角关系式,使两个已知元素(其中至少有一个元素是边). 重要类型: 1.已知一边一角求其它。 2.已知两边求其它。 例2. 在中,∠C=90°,,∠A -∠B=30°,试求的值。 A C B

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

省优秀课一等奖:锐角三角函数全章教案

【锐角三角函数全章教案】 锐角三角函数(第一课时) 教学三维目标: 一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。 二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。 三.情感目标:提高学生对几何图形美的认识。 教材分析: 1.教学重点: 正弦,余弦,正切概念 2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动 1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。 2.归纳三角函数定义。 siaA= 斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边 的对边 A A ∠∠ 3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。 4.学生练习P21练习1,2,3 二.探究活动二 1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°

2. 求下列各式的值 (1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)0 4530cos sia +ta60°-tan30° 三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=2 3 ,AC=23,求AB 四.小结 五.作业课本p85-86 2,3,6,7,8,10

解直角三角形应用(一) 一.教学三维目标 (一)知识目标 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. (二)能力训练点 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感目标 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法. 2.难点:三角函数在解直角三角形中的灵活运用. 3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾 1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=c a cosA=c b tanA=b a (2)三边之间关系 a 2 + b 2 = c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°. 以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动 1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情. 2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题评析

三角函数推导公式及公式大全

锐角三角函数 锐角三角函数三角关系 倒数关系:tanα2cotα=1 sinα2cscα=1 cosα2secα=1 商的关系: 平方关系:

三角函数公式 2公式相关 编辑 两角和公式 cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ -cosαsinβ tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

三角和公式 sin(α+β+γ)=sinα2cosβ2cosγ+cosα2sinβ2cos γ+cosα2cosβ2sinγ-sinα2sinβ2sinγ cos(α+β+γ)=cosα2cosβ2cosγ-cosα2sinβ2sin γ-sinα2cosβ2sinγ-sinα2sinβ2cosγ 诱导公式 三角函数的诱导公式(六公式)[1] 公式一: sin(α+k*2π)=sinα cos(α+k*2π)=cosα tan(α+k*π)=tanα 公式二: sin(π+α) = -sinα

cos(π+α) = -cosα tan(π+α)=tanα 公式三: sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα 公式四: sin(π-α) = sinα cos(π-α) = -cosα tan(π-α) =-tanα 公式五: sin(π/2-α) = cosα cos(π/2-α) =sinα 由于π/2+α=π-(π/2-α),由公式四和公式五可得

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

《锐角三角函数》教案

《锐角三角函数》教案 教学目标 1.知识与技能: (1)经历探索直角三角形中边角关系的过程,理解正切正弦、余弦的意义和与现实生活的联系. (2)能够用tan A表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度(坡比)等. (3)能够根据直角三角形的边角关系,用正切、正弦、余弦进行简单的计算. 2.过程与方法: 体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题. 3.情感态度与价值观: 进一步锻炼学生用数学的观点来解释身边的事物,形成良好的数学思维习惯和思维品质. 教学重点 理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系. 教学难点 理解正切、正弦、余弦的意义,并用它来表示两边的比. 教学过程 第一环节创设问题情境 活动内容:观察梯子的倾斜程度 梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?为了描述梯子的这种倾斜程度,先给大家介绍三个简单的概念:倾斜角,铅垂高,水平宽.1.图1—1和图1—2中,这里摆放的两个梯子,你能辨别出那一个比较陡一些吗?你是如何判断的?

2.图1—3中,这里摆放的两个梯子,你能辨别出那一个比较陡一些吗?你又是如何判断的? 对于图1—3,学生可能难于下手,这时老师可以借助几何画板的动态演示,引导学生比较对边与邻边的比值,即比较表一中的1t 与2t 大小,当12t t >、12t t <、12t t 时,借助几何画板直观的验证梯子的倾斜程度,以突破学生认识上的障碍.(为了方便研究,表格中的数据精确到十分位). 活动目的:先让学生从图1-1和图1-2中直观感受梯子的倾斜程度,再让学生理性思考该如何寻找方法判断图1-3中梯子的倾斜程度.这样学生会感到知识上的匮乏,从而对数学产生好奇心和求知欲.让他们从实例中体会不同情况下比较梯子的倾斜程度只靠直观感受是不够的,还需要其他方法——用边的比进行比较. 第二环节 探求新知 活动内容1:在小明家的墙角处放有一架较长的梯子,墙很高,又没有足够长的尺来测量,你有什么巧妙的方法得到梯子的倾斜程度呢? 图1— 1 图1—2 图1— 3 表 1

锐角三角函数及应用

锐角三角函数【知识梳理】 【思想方法】 1. 常用解题方法——设k法 2. 常用基本图形——双直角 【例题精讲】 例题1.在△ABC中,∠C=90°. (1)若cosA=1 2 ,则tanB=______;(?2)?若cosA= 4 5 ,则tanB=______. 例题2.(1)已知:cosα=2 3 ,则锐角α的取值范围是() A.0°<α<30° B.45°<α<60° C.30°<α<45° D.60°<α<90° (2)当45°<θ<90°时,下列各式中正确的是() A.tanθ>cosθ>sinθ B.sinθ>cosθ>tanθ C.tanθ>sinθ>cosθ D.sinθ>tanθ>cosθ 例题3.(1)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,∠CAB=60°,?CD=3,BD=23,求AC,AB的长. 例题4.“曙光中学”有一块三角形状的花园ABC,有人已经测出∠A=30°,AC=40米,BC=25米,你能求出这块花园的面积吗? 例题5.某片绿地形状如图所示,其中AB⊥BC,CD⊥AD,∠A=60°,AB=200m,CD=100m,?求AD、BC的长.

【当堂检测】 1.若∠A 是锐角,且cosA=sinA ,则∠A 的度数是( ) A.300 B.450 C.600 D.不能确定 2.如图,梯形ABCD 中,AD ∥BC ,∠B=450,∠C=1200,AB=8,则CD 的长为( ) A.638 B.64 C.328 D.24 3.在Rt △ABC 中,∠C=900,AB=2AC ,在BC 上取一点D ,使AC=CD ,则CD :BD=( ) A.213+ B.13- C.2 3 D.不能确定 4.在Rt △ABC 中,∠C=900,∠A=300,b=310,则a= ,c= ; 5.已知在直角梯形ABCD 中,上底CD=4,下底AB=10,非直角腰BC=34, 则底角∠B= ; 6.若∠A 是锐角,且cosA=5 3,则cos (900-A )= ; 7.在Rt △ABC 中,∠C=900,AC=1,sinA= 23,求tanA ,BC . 8.在△ABC 中,AD ⊥BC ,垂足为D ,AB=22,AC=BC=52,求AD 的长. 9. 去年某省将地处A 、B 两地的两所大学合并成一所综合性大学,为了方便两地师生交往,学校准备在相距2km 的A 、B 两地之间修一条笔直的公路,经测量在A 地北偏东600方向,B 地北偏西450方向的C 处有一个半径为0.7km 的公园,问计划修筑的这条公路会不会穿过公园?为什么? B A D C A B C D C A B 第2题图 第8题图 第9题图

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

锐角三角函数教案

第一章 直角三角形的边角关系 1.1 锐角三角函数(2) 一、知识点 1. 认识锐角三角函数——正弦、余弦 2. 用sinA,cosA 表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算. 二、教学目标 知识与技能 1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系. 2. 能够用sinA,cosA 表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算. 过程与方法 1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点. 2、体会解决问题的策略的多样性,发展实践能力和创新精神. 情感态度与价值观 1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学. 2、形成实事求是的态度以及交流分享的习惯. 三、重点与难点 重点:理解正弦、余弦的数学定义,感受数学与生活的联系. 难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题. 四、复习引入 设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望. 五、探究新知 探究活动1(出示幻灯片4):如图,请思考: (1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2) 的关系是和2 2 2111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则 的关系是和2 2 2111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________. B 1 B 2 A C 1 C 2

锐角三角函数及其应用真题练习

锐角三角函数及其应用 命题点1 直角三角形的边角关系 1. (怀化6题4分)如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是() A. 3 5B. 3 4C. 4 5D. 4 3 第1题图第3题图 2. (怀化10题4分)在Rt△ABC中,∠C=90°,sin A=4 5,AC=6 cm.则BC的长度为() A. 6 cm B. 7 cm C. 8 cm D. 9 cm 3. (株洲15题3分)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH 等于________. 4. (张家界16题3分)如图,在四边形ABCD中,AD=AB=BC,连接AC,且∠ACD= 30°,tan∠BAC=23 3,CD=3,则AC=________. 第4题图 命题点2 锐角三角函数的实际应用 5. (益阳7题5分)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB =α,则拉线BC的长度为(A、D、B在同一条直线上)() A. h sinα B. h cosα C. h tanα D. h·cosα

第5题图第6题图第7题图 6. (益阳8题3分)小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB的长度相等,小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为() A. 1 1-sinα B. 1 1+sinα C. 1 1-cosα D. 1 1+cosα 7. (岳阳14题4分)如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了________米. 8. (邵阳22题8分)图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC、OB与水平面所形成的夹角∠OCA、∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm,温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73). 第8题图 9. (郴州22题8分)如图所示,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100 km为半径的圆形区域,请问计划修建的这条高速铁路是否

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

锐角三角函数-正切教学设计

23.1锐角的三角函数 1. 锐角的三角函数 第一课时正切 教学目标 ◆知识与技能 1.初步了解角度与数值的一一对应的函数关系。 2.会求直角三角形中某个锐角的正切值。 3.了解坡度的有关概念。 ◆过程与方法 让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维习惯,提高学生运用数学知识解决实际问题的能力。 ◆情感态度 通过探究活动激发学生学习的积极性和主动性,引导学生自主探索,合作交流,培养学生的创新意识。 教学重点: 1.从现实情境中探索直角三角形的边角关系。 2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。 教学难点: 锐角三角函数的概念的理解。 教学准备 多媒体课件制作 教学设计 一、导入新课 导语:因为这座桥的设计让它成为了旅游新热点,火起来的原因不是因为怪异的设计或者美不胜收的景色,而是大家都很好奇这个桥的坡度到底有多陡?陡峭堪比过山车!

不少人给这座桥赋予了极不靠谱的数据,实际上这个坡的斜率仅为6.1%,如果按咱们口头常用单位来讲还不足4度。 大家看到这个图片后一定很吃惊,那我们要想了解这副图的背景故事,我们就要来学习这里出现的数据6.1%和4度代表了什么? (导入课题锐角三角函数) 二、推进新课 1.交流合作 【问题1】在图23-2中有两个直角三角形,直角边AC与A 1C 1 表示水平面,斜 边AB与A 1B 1 分别表示两个不同的坡面,哪个更陡?你是怎么判断的? 学生可由水平长度相等,铅直高度不同进行判断. 【问题2】当水平长度和铅直高度都不相等时,类似的在图23-3中,坡面AB 与A 1B 1 哪个更陡?你又是如何判断呢?

三角函数定义及其三角函数公式大全

三角函数定义及其三角函数公式汇总 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A 邻边 A C A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。依据: ①边的关系:2 22c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注 意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度( 坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 sin (α+β)=sinαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβ cos (α+β)=cosαcosβ-s inαsinβ cos (α-β)=cosαcosβ+sinαsinβ 三角函数公式汇总1 :i h l =h l α

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

锐角三角函数教学设计

6.1锐角三角函数⑴教学设计 一.教学目标: 1.知识与技能: 了解三角函数的概念,理解正弦、余弦、正切的概念; 掌握在直角三角形之中,锐角三角函数与两边之比的对应关系; 掌握锐角三角函数的概念并会求一个锐角的三角函数值. 2.过程与方法: ⑴ 通过经历三角函数概念的形成过程,丰富学生的数学活动经验; ⑵ 渗透数形结合的数学思想方法. 3.情感态度与价值观: ⑴ 让学生感受数学来源于生活又应用于生活,体验数学的生活化经历; ⑵ 培养学生主动探索,敢于实践,勇于发现,合作交流的精神. 二.重点、难点: 重点:锐角三角函数的概念. 难点:锐角三角函数概念的形成. 三.教学过程: (一)、创设情境,激趣设疑 通过创设“生活中测量塔的高度、山坡上修建的扬水站需要的水管 ”的情境,让学生思考利用直角三角形的边角关系能否求物体的高度和长度. 设计意图:从生活中的实例出发,设置疑问,激发学生的求知欲. (二)、合作探究,引出新知 1.实践:已知一个45°的∠A ,在角的一边上任意取一点B ,作BC ⊥AC 于点C.量出BC ,AB 的长度(精确到1毫米).计算AB BC 的值(结果保留2个有效数字),并将所得的结果与你同伴所得的结果进行比较. 设计意图:通过动手操作、合作、交流,直观感知比值AB BC 非常接近,大小和点B 的位置无关,并由此猜想比值是个定值。在活动的过程中,教给学生探

究的常用方法:观察、测量、比较、归纳、猜想等,有效培养学生的探究能力,丰富学生的数学活动经验。同时学生的实践活动,让他们经历了三角函数的概念的初步形成过程. 教师引导学生验证:对于给定一锐角α,比值AB BC 是一定值. ① 利用相似三角形的性质,说明“对于每一个确定的锐角α,在角的一边上任取一点B,作BC ⊥AC 于点C,比值AB BC 都是一个确定的值,与点B 在角的边上的位置无关”. ② 出示几何画板,演示对应于不同大小的角度,总有相应的比值AB BC ,让学生直观感知比值AB BC 与角度的对应. 设计意图:利用相似三角形对应边成比例的性质,验证第一环节的猜想是正 确的,即:当角度确定时,比值AB BC 是个定值.同时利用几何画板的直观演示,让学生 进一步感知:对应于每一个不同的角度, AB BC 都会有一个确定的值.至此,锐角三角函数的概念已是呼之欲出. 教师引导学生发现当锐角α确定时,AB AC ,AC BC 的比值也是定值,并说明理由. 设计意图: 先给出比值AB BC 是定值的验证,然后类比2的验证过程得出另两个比值也是定值,这样的设计可以降低难度,并渗透“类比”的数学思想方法和探究方法. 4.新知应用、变式1、变式2于学生掌握新知,为本节课的后续学习打下基础。 5.教师引导学生说出锐角α与AB BC ,AB AC ,AC BC

相关文档
最新文档