高中数学选修2-1椭圆 同步练习
高中数学选修2-1同步练习题库:椭圆(简答题:容易)

椭圆(简答题:容易)1、(本题满分15分) 设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA 的中点为B(O为坐标原点),如图.若抛物线C2:与y轴的交点为B,且经过F1,F2点.(Ⅰ)求椭圆C1的方程;(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值.2、在直角坐标系中,已知中心在原点,离心率为的椭圆的一个焦点为圆:的圆心.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆上一点,过作两条斜率之积为的直线,,当直线,都与圆相切时,求的坐标.3、已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程.4、设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.(1) 求椭圆方程.(2) 过点的直线与椭圆交于不同的两点,当面积最大时,求.5、(本小题满分14分)如图7,已知椭圆:的离心率为,以椭圆的左顶点为圆心作圆:,设圆与椭圆交于点与点.(1)求椭圆的方程;(2)求的最小值,并求此时圆的方程;(3)设点是椭圆上异于的任意一点,且直线分别与轴交于点,为坐标原点,求证:为定值.6、(本题满分15分)如图,在矩形中,分别为四边的中点,且都在坐标轴上,设.(Ⅰ)求直线与的交点的轨迹的方程;(Ⅱ)过圆上一点作圆的切线与轨迹交于两点,若,试求出的值.7、(本题18分,第(1)小题4分;第(2)小题6分;第(3)小题8分)如图,已知椭圆:过点,上、下焦点分别为、,向量.直线与椭圆交于两点,线段中点为.(1)求椭圆的方程;(2)求直线的方程;(3)记椭圆在直线下方的部分与线段所围成的平面区域(含边界)为,若曲线与区域有公共点,试求的最小值.8、已知点是离心率为的椭圆C:上的一点。
斜率为直线BD交椭圆C于B、D两点,且A、B、D三点不重合。
(Ⅰ)求椭圆C的方程;(Ⅱ)面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?9、已知椭圆的离心率为,其左、右焦点分别为,点是椭圆上一点,且,(为坐标原点).(Ⅰ)求椭圆的方程;(Ⅱ)过点且斜率为的动直线交椭圆于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出的坐标,若不存在,说明理由.10、已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(其中为坐标原点),求整数的最大值.11、如图,椭圆C:的顶点为A1,A2,B1,B2,焦点为F1,F2,,= ,(Ⅰ)求椭圆C的方程;(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由。
高二数学(人教B版)选修2-1全册同步练习:2-2-2椭圆的几何性质

2.2.2椭圆的几何性质一、选择题1.(2010·广东文,7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45B.35C.25D.15[答案] B[解析] 本题考查了离心率的求法,这种题目主要是设法把条件转化为含a ,b ,c 的方程式,消去b 得到关于e 的方程,由题意得:4b =2(a +c )⇒4b 2=(a +c )2⇒3a 2-2ac -5c 2=0⇒5e 2+2e -3=0(两边都除以a 2)⇒e =35或e =-1(舍),故选B. 2.已知椭圆C :x 2a 2y 2b 2=1与椭圆x 24+y 28=1有相同的离心率,则椭圆C 的方程可能是( )A.x 28+y 24=m 2(m ≠0) B.x 216+y 264=1 C.x 28+y 22=1 D .以上都不可能[答案] A[解析] 椭圆x 24+y 28=1中,a 2=8,b 2=4,所以c 2=a 2-b 2=4,即a =22,c =2,离心率e =c a =22.容易求出B ,C 项中的离心率均不为此值,A 项中,m ≠0,所以m 2>0,有x 28m 2+y 24m 2=1,所以a 2=8m 2,b 2=4m 2.所以a =22|m |,c =2|m |,即e =c a =22. 3.将椭圆C 1∶2x 2+y 2=4上的每一点的纵坐标变为原来的一半,而横坐标不变,得一新椭圆C 2,则C 2与C 1有( )A .相等的短轴长B .相等的焦距C .相等的离心率D .相同的长轴长[答案] C[解析] 把C 1的方程化为标准方程,即C 1:x 22+y 24=1,从而得C 2:x 22+y 2=1. 因此C 1的长轴在y 轴上,C 2的长轴在x 轴上.e 1=22,e 2=12=e 1=22, 故离心率相等,选C.4.若椭圆的短轴为AB ,它的一个焦点为F 1,则满足△ABF 1为等边三角形的椭圆的离心率是( )A.14B.12C.22D.32 [答案] D[解析] 由△ABF 1为等边三角形,∴2b =a ,∴c 2=a 2-b 2=3b 2,∴e =c a =c 2a 2=3b 24b 2=32. 5.我们把离心率等于黄金比5-12的椭圆称为“优美椭圆”.设x 2a 2+y 2b2=1(a >b >0)是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则∠ABF 等于( )A .60°B .75°C .90°D .120°[答案] C[解析] cos ∠ABF =|AB |2+|BF |2-|AF |22·|AB |·|BF |=a 2+b 2-(a +c )22·|AB |·|BF |=(2+5-12)a 2-(1+5-12)2a 22·|AB |·|BF | =(5+32-5+32)a 22·|AB |·|BF |0, ∴∠ABF =90°,选C. 6.椭圆x 2-m +y 2-n=1(m <n <0)的焦点坐标分别是( ) A .(0,-m +n ),(0-m +n )B .(n -m ,0),(-n -m ,0)C .(0,m -n ),(0,-m -n )D .(m -n ,0),(-m -n ,0)[答案] B[解析] 因为m <n <0,所以-m >-m >0,故焦点在x 轴上,所以c =(-m )-(-n )=n -m ,故焦点坐标为(n -m ,0),(-n -m ,0),故选B.7.(2010·福建文,11)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8[答案] C[解析] 本题主要考查椭圆和向量等知识.由题易知F (-1,0),设P (x ,y ),其-2≤x ≤2,则OP →·FP →=(x ,y )·(x +1,y )=x (x +1)+y 2=x 2+x +3-34x 2=14x 2+x +3=14(x +2)2+2 当x =2时,(OP →·FP →)max =6.8.椭圆的一个顶点与两个焦点组成等边三角形,则它的离心率e 为( )A.12B.13C.14D.22 [答案] A[解析] 由题意知a =2c ,所以e =c a =12. 9.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)的位置( )A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能[答案] A[解析] 由e =12知c a =12,a =2c .由a 2=b 2+c 2得b =3c ,代入ax 2+bx -c =0,得2cx 2+3cx -c =0,即2x 2+3x -1=0,则x 1+x 2=-32,x 1x 2=-12,x 21+x 22=(x 1+x 2)2-2x 1x 2=74<2. 10.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( ) A.33 B.23 C.22 D.32[答案] A[解析] 如图,△ABF 2为正三角形,∴|AF 2|=2|AF 1|,|AF 2|+|AF 1|=2a ,3|AF 1|=|F 1F 2|.∴|AF 1|=23,又|F 1F 2|=2c , ∴23a 2c =13. ∴c a =33.故选A. 二、填空题11.在平面直角坐标系xOy 中,设椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2c ,以点O 为圆心,a 为半径的圆过点P ⎝⎛⎭⎫a 2c ,0过P 作圆的两切线又互相垂直,则离心率e =________. [答案] 22 [解析] 如图,切线P A 、PB 互相垂直,又半径OA 垂直于P A ,所以△OAP 是等腰直角三角形,故a 2c =2a ,解得e =c a=22.12.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为__________.[答案] 53[解析] 易知直线AB 的方程为y =2(x -1),与椭圆方程联立解得A (0,-2),B ⎝⎛53,43,故S △ABC =S △AOF +S △BOF =12×1×2+12×1×43=53. 13.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点,若|F 2A |+|F 2B |=12,则|AB |=________.[答案] 8[解析] 由椭圆的第一定义得|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,两式相加,得|AB |+|BF 2|+|AF 2|=4a =20⇒|AB |=20-12=8.14.在△ABC 中,∠A =90°,tan B =34.若以A 、B 为焦点的椭圆经过点C ,则该椭圆的离心率e =________.[答案] 12[解析] 设|AC |=3x ,|AB |=4x ,又∵∠A =90°,∴|BC |=5x ,由椭圆定义:|AC |+|BC |=2a =8x ,那么2c =|AB |=4x ,∴e =c a =4x 8x =12. 三、解答题15.已知点P 在以坐标轴为对称轴,长轴在x 轴的椭圆上,点P 到两焦点的距离分别为43和23,且点P 与两焦点连线所张角的平分线交x 轴于点Q (1,0),求椭圆的方程.[解析] 根据题意,设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0), ∵|PF 1|=43,|PF 2|=23,∴2a =63,即a =33,又根据三角形内角平分线的性质,得|PF 1| |P F 2|=|F 1Q | |Q F 2|=2 1,即c +1=2(c -1),∴c =3,∴b 2=a 2-c 2=18,故所求椭圆方程为x 227+y 218=1. 16. 设P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1、F 2是椭圆的焦点,且∠F 1PF 2=90°,求证:椭圆的圆心率e ≥22. [证明] 证法一:∵P 是椭圆上的点,F 1、F 2是焦点,由椭圆的定义,得|PF 1|+|PF 2|=2a ,①在Rt △F 1PF 2中,|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,由①2,得|PF 1|2+2|PF 1||PF 2|+|PF 2|2=4a 2,∴|PF 1|·|PF 2|=2(a 2-c 2),②由①和②,知|PF 1|,|PF 2|是方程z 2-2az +2(a 2-c 2)=0的两根,且两根均在(a -c ,a +c )之间. 令f (z )=z 2-2az +2(a 2-c 2)则⎩⎪⎨⎪⎧ Δ≥0f (a -c )>0f (a +c )>0可得(c a )2≥12,即e ≥22. 证法二:由题意知c ≥b ,∴c 2≥b 2=a 2-c 2∴c 2a 2≥12,故e ≥22. 17.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32椭圆与直线x +2y +8=0相交于P 、Q ,且|PQ |=10,求椭圆方程.[解析] ∵e =32,∴b 2=14a 2. ∴椭圆方程为x 2+4y 2=a 2.与x +2y +8=0联立消去y 得2x 2+16x +64-a 2=0,由Δ>0得a 2>32,由弦长公式得10=54[64-2(64-a 2)]. ∴a 2=36,b 2=9.∴椭圆方程为x 236+y 29=1. 18.过椭圆x 216+y 24=1内一点M (2,1)的一条直线与椭圆交于A ,B 两点,如果弦AB 被M 点平分,那么这样的直线是否存在?若存在,求其方程;若不存在,说明理由.[解析] 设所求直线存在,方程y -1=k (x -2),代入椭圆方程并整理,得(4k 2+1)x 2-8(2k 2-k )x +4(2k 2-1)2-16=0①.设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程①的两根,所以x 1+x 2=8(2k 2-k )4k 2+1.又M 为AB 的中点,所以x 1+x 22=4(2k 2-k )4k 2+1=2,解得k =-12.又k =-12时,使得①式Δ>0,故这样的直线存在,直线方程为x +2y -4=0.。
高中数学选修2-1《椭圆》综合练习含答案

椭圆一、以考查知识为主试题 【容易题】1.椭圆22194x y k+=+的离心率为45,则k 的值为( ) (A )-21 (B )21 (C )1925-或21 (D )1925或21【答案】C2.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( )A.x236+y216=1 B.x216+y236=1 C.x26+y24=1 D.y26+x24=1 【答案】A3. 若焦点在x 轴上的椭圆x22+y2m =1的离心率为12,则m 等于( )A.3 B.32 C.83 D.23【答案】B4. 已知1F 、2F 分别为椭圆C 的两个焦点,点B 为其短轴的一个端点,若12BF F ∆为等边三角形,则该椭圆的离心率为( )AB .12C .2D 【答案】B5. 若以椭圆上一点和两个焦点为顶点的三角形的最大面积为1,则长轴长的最小值为 ( )A.1B.2C.2D.22【答案】D6. 椭圆221123x y +=的一个焦点为1F ,点P 在椭圆上且线段1PF 的中点M 在y 轴上,则点M 的纵坐标为 ( ) A.3± B.3± C.2± D.34±【答案】A7.过椭圆左焦点F 且斜率为3的直线交椭圆于A 、B 两点,若|FA|=2|FB|,则椭圆的离心e=__ 【答案】328.椭圆 )0(12222>>=+b a by a x 的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2。
若1AF ,21F F ,B F 1 成等比数列,则此椭圆的离心率为_____________.【答案】559.设F1,F2分别是椭圆22x y 12516+=的左、右焦点,P 为椭圆上一点,M 是F1P 的中点,|OM|=3,则P 点到椭圆左焦点距离为_________. 【答案】410.已知椭圆22195x y +=的右焦点为F , P 是椭圆上一点,点(0,A ,当点P 在椭圆上运动时, APF ∆的周长的最大值为____________ . 【答案】1411.若椭圆上一点到两个焦点的距离之和为 ,则此椭圆的离心率为__________.【答案】312.设 , 为椭圆 :的焦点,过 所在的直线交椭圆于 , 两点,且 ,则椭圆 的离心率为__________.13.已知椭圆的左、右焦点分别为 、 ,且 ,点 在椭圆上,, ,则椭圆的离心率 等于__________.二、以考查技能为主试题 【中等题】14. 椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得△F1F2P 为等腰三角形,则椭圆C 的离心率的取值范围是_________ 【答案】111(,)(,1)32215.已知椭圆方程,椭圆上点M 到该椭圆一个焦点F 1的距离是2,N 是MF 1的中点,O 是椭圆的中心,那么线段ON 的长是________ 【答案】416.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则C 的离心率e =______. 【答案】5717.如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x 轴上,且a c - =3, 那么椭圆的方程是 .【答案】191222=+y x18.如图,椭圆C :(Ⅰ)求椭圆C 的方程;(Ⅱ)设n 是过原点的直线,l 是与n 垂直相交于P 点、与椭圆相交于A,B 两点的直线,是否存在上述直线l 使成立?若存在,求出直线l 的方程;若不存在,请说明理由。
高中数学选修2-1同步练习题库:椭圆(选择题:较难)

椭圆(选择题:较难)1、点是椭圆上一点,是椭圆的两个焦点,且的内切圆半径为1,当在第一象限时,点的纵坐标为()A. B.3 C.2 D.2、已知分别是椭圆的左、右焦点,为椭圆上一点,且(为坐标原点),若,则椭圆的离心率为()A. B. C. D.3、点P是双曲线上的点,是其焦点,双曲线的离心率是,且,若的面积是18,则的值等于()A.7 B.9 C. D.4、设椭圆的两个焦点是、,过的直线与椭圆交于、,若,且,则椭圆的离心率为()A. B. C. D.5、已知椭圆:()的右焦点为,短轴的一个端点为,直线:交椭圆于,两点,若,点到直线的距离等于,则椭圆的焦距长为()A. B. C. D.6、已知椭圆的左、右焦点分别为、,离心率为,过的直线交椭圆于、两点,若的周长为,则椭圆的方程为()A. B. C. D.7、在中,,若一个椭圆通过两点,它的一个焦点为点,另一个焦点在线段上,则这个椭圆的离心率为( )A. B. C. D.8、设椭圆的左、右焦点分别为,其焦距为,点在椭圆的外部,点是椭圆上的动点,且恒成立,则椭圆离心率的取值范围是()A. B. C. D.9、如图,椭圆的中心在坐标原点,焦点在轴上,为椭圆的顶点,为右焦点,延长与交于点,若为钝角,则该椭圆的离心率的取值范围是()A. B.C. D.10、已知F1,F2是椭圆的左、右焦点,点P在椭圆上,且,线段PF1与y 轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1: 2,则该椭圆的离心率等于 ( )A. B. C. D.11、已知椭圆和双曲线有共同焦点是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值是()A. B. C.2 D.312、已知椭圆,点为长轴的两个端点,若在椭圆上存在点,使,则离心率的取值范围为A. B.C. D.13、已知分别为椭圆()的左、右顶点,是椭圆上的不同两点且关于轴对称,设直线的斜率分别为,若点到直线的距离为1,则该椭圆的离心率为()A. B. C. D.14、已知椭圆的左、右焦点分别为过作一条直线(不与轴垂直)与椭圆交于两点,如果恰好为等腰直角三角形,该直线的斜率为A. B. C. D.15、已知椭圆,若直线经过,与椭圆交于两点,且,则直线的方程为A. B. C. D.16、设椭圆的左右焦点分别为,,点在椭圆上,且满足,则的值为()A.8 B.10 C.12 D.1517、曲线与直线交于两点,为中点,则()A B C D18、如图,为椭圆的长轴的左、右端点,为坐标原点,为椭圆上不同于的三点,直线,围成一个平行四边形,则()A.5 B. C.9 D.1419、已知两定点和,动点在直线上移动,椭圆以为焦点且经过点,记椭圆的离心率为,则函数的大致图像是()A. B.C. D.20、设椭圆的方程为右焦点为,方程的两实根分别为,则的取值范围是()A. B. C. D.21、已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线的焦点重合,是C的准线与E的两个交点,则 ( )A. B. C. D.22、如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A.0个 B.1个 C.2个 D.3个23、已知椭圆的右焦点为为坐标原点,为轴上一点,点是直线与椭圆的一个交点,且,则椭圆的离心率为()A. B. C. D.24、已知是椭圆的左焦点,设动点在椭圆上,若直线的斜率大于,则直线(为原点)的斜率的取值范围是()A. B. C. D.25、已知在椭圆方程中,参数都通过随机程序在区间上随机选取,其中,则椭圆的离心率在之内的概率为()A. B. C. D.26、中心为原点的椭圆焦点在轴上,为该椭圆右顶点,为椭圆上一点,,则该椭圆的离心率的取值范围是()A. B. C. D.27、已知椭圆:()的一个焦点为,离心率为,过点的动直线交于,两点,若轴上的点使得总成立(为坐标原点),则()A. B.2 C. D.28、如图,两个椭圆的方程分别为和(,),从大椭圆两个顶点分别向小椭圆引切线、,若、的斜率之积恒为,则椭圆的离心率为()A. B. C. D.29、如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为,过圆柱的轴的平面截该几何体所得的四边形为矩形,若沿将其侧面剪开,其侧面展开图形状大致为()A. B.C. D.30、已知椭圆的左、右焦点分别为过作一条直线(不与轴垂直)与椭圆交于两点,如果恰好为等腰直角三角形,该直线的斜率为A. B. C. D.31、一光源在桌面的正上方,半径为的球与桌面相切,且与球相切,小球在光源的中心投影下在桌面产生的投影为一椭圆,如图所示,形成一个空间几何体,且正视图是,其中,则该椭圆的短轴长为()A. B. C. D.32、(理科)在平面直角坐标系中,是椭圆上的一个动点,点,则的最大值为()A.5 B.4 C.3 D.233、已知椭圆的左右焦点分别为,,过的直线与椭圆交于A,B两点,若是以A为直角顶点的等腰直角三角形,则椭圆的离心率为()A. B. C. D.34、椭圆的焦点为,椭圆上的点满足,则的面积是()A. B. C. D.35、设分别是椭圆的左、右焦点,过点的直线交椭圆于两点,若,且,则椭圆的离心率是()A. B. C. D.36、若是过椭圆中心的弦,为椭圆的焦点,则面积的最大值是()A. B. C. D.37、椭圆的左、右焦点分别为,过作x轴的垂线交椭圆于点P,过P与原点o的直线交椭圆于另一点Q,则△的周长为()A.4 B.8 C. D.38、已知,分别是椭圆的左,右焦点, 椭圆上存在点使为钝角,则椭圆的离心率的取值范围是A. B. C. D.39、已知是圆(为圆心)上一动点,线段的垂直平分线交于,则动点的轨迹方程为()A. B. C. D.40、设,分别为椭圆:与双曲线:的公共焦点,它们在第一象限内交于点,,若椭圆的离心率,则双曲线的离心率的值为()A. B. C. D.41、已知为坐标原点,是椭圆的左焦点,分别为的左,右顶点.为上一点,且轴过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为()A. B.C. D.42、已知椭圆的左、右焦点分别为,过的直线交椭圆于两点,若,则等于()A.8 B.6C.4 D.243、过椭圆:的左顶点且斜率为的直线交椭圆于另一点,且点在轴上的射影恰好为右焦点,若,则椭圆的离心率的取值范围是()A. B.C. D.44、已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为,.这两条曲线在第一象限的交点为,是以为底边的等腰三角形.若,记椭圆与双曲线的离心率分别为、,则的取值范围是()A. B.C. D.45、已知,椭圆的方程为,双曲线的方程为与离心率之积为,则的渐近线方程为()A. B.C. D.46、设为椭圆上一点,点关于原点的对称点为为椭圆的右焦点,且,若,则该椭圆离心率的取值范围为()A. B.C. D.47、已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,抛物线y2= (a+c)x与椭圆交于B,C两点,若四边形ABFC是菱形,则椭圆的离心率等于( )A. B. C. D.48、设椭圆的方程为+=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)( )A.必在圆x2+y2=2内B.必在圆x2+y2=2外C.必在圆x2+y2=1外D.必在圆x2+y2=1与圆x2+y2=2形成的圆环之间49、已知抛物线C的顶点是椭圆+=1的中心,焦点与该椭圆的右焦点F2重合,若抛物线C与该椭圆在第一象限的交点为P,椭圆的左焦点为F1,则|PF1|=( )A. B. C. D.250、已知椭圆C1:+y2=1,双曲线C2:-=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则双曲线C2的离心率为( )A.4 B.C. D.51、已知双曲线+=1,以右顶点为圆心,实半轴长为半径的圆被双曲线的一条渐近线分为弧长为12的两部分,则双曲线的离心率为( )A. B.C. D.52、设分别为椭圆的左右顶点,若在椭圆上存在点P,使得,则该椭圆的离心率的取值范围是()A. B. C. D.53、已知点,椭圆与直线交于点,则的周长为( ) A.4 B.8 C.12 D.1654、椭圆上存在个不同的点,椭圆的右焦点为。
高中新课标数学选修(2-1)椭圆练习题

椭圆及其标准方程基础卷1.椭圆2211625x y +=的焦点坐标为(A )(0, ±3) (B )(±3, 0) (C )(0, ±5) (D )(±4, 0)2.在方程22110064x y +=中,下列a , b , c 全部正确的一项是 (A )a =100, b =64, c =36 (B )a =10, b =6, c =8 (C )a =10, b =8, c =6 (D )a =100, c =64, b =36 3.已知a =4, b =1,焦点在x 轴上的椭圆方程是(A )2214x y += (B )2214y x += (C )22116x y += (D )22116y x += 4.已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是(A )2213620x y += (B )2212036x y += (C )2213616x y += (D )2211636x y += 5.若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是 (A )4 (B )194 (C )94 (D )146.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 7.若y 2-lga ·x 2=31-a 表示焦点在x 轴上的椭圆,则a 的取值范围是 . 8.当a +b =10, c =25时的椭圆的标准方程是 .9.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ’,则线段PP ’的中点M 的轨迹方程为 .10.经过点M (3, -2), N (-23, 1)的椭圆的标准方程是 .11.椭圆的两焦点为F 1(-4, 0), F 2(4, 0),点P 在椭圆上,已知△PF 1F 2的面积的最大值为12,求此椭圆的方程。
高中数学选修2—1椭圆测试卷

高中数学选修2-1《圆锥曲线》2.2—2.3阶段训练(椭圆) 时间120分钟 总分150分一、选择题(本大题共10小题,每小题5分,共50分) 1.已知椭圆2222:1(0)x y C a b ab+=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =A 1B 2C 3 D2 【答案】B 2.已知椭圆C :22221x y ab+=(a>b>0)的离心率为32,过右焦点F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =。
则k =A1 B 2 C 3 D2 【答案】B3.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是A. 直线B. 椭圆C. 抛物线D. 双曲线 【答案】 D解析:排除法 轨迹是轴对称图形,排除A 、C ,轨迹与已知直线不能有交点,排除B 4.椭圆22221()x y a b ab+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是A 20,2⎛⎤⎥ ⎝⎦B 10,2⎛⎤ ⎥⎝⎦C)21,1⎡-⎣ D 1,12⎡⎫⎪⎢⎣⎭【答案】D5.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 A.54 B.53 C.52 D.51【答案】B6.若点O 和点F 分别为椭圆22143xy+=的中心和左焦点,点P 为椭圆上的任意一点,则O P FP的最大值为A .2B .3C .6D .8【答案】C 7.椭圆()222210x y a ab+=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 A (0,22] B (0,12] C[21-,1) D[12,1)【答案】D 8.椭圆141622=+yx上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .10【答案】D 9.在椭圆13422=+yx内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是( )A .25 B .27C .3D .4【答案】C10.过点M (-2,0)的直线m 与椭圆1222=+yx交于P 1,P 2,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为 ( )A .2B .-2C .21 D .-21【答案】D二、填空题(本大题共5小题,每小题5分,共25分) 11.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 ___________ .【答案】1273622=+xy12.与椭圆4 x 2 + 9 y 2 = 36 有相同的焦点,且过点(-3,2)的椭圆方程为_______________. 【答案】1101522=+yx13.已知()y x P ,是椭圆12514422=+yx上的点,则y x +的取值范围是________________ .【答案】]13,13[-14.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于__________________. 【答案】5415.已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程____________. 【答案】18014422=+yx或18014422=+xy.三、解答题(本大题共6题,16—18每小题12分,19—21题每小题13分,共75分) 16.已知A 、B 为椭圆22ax +22925ay =1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=58a ,AB中点到椭圆左准线的距离为23,求该椭圆方程.【答案】设A(x 1,y 1),B(x 2,y 2),,54=e 由焦半径公式有a -ex 1+a -ex 2=a58,∴x 1+x 2=a21,即AB 中点横坐标为a41,又左准线方程为ax 45-=,∴234541=+a a ,即a =1,∴椭圆方程为x 2+925y 2=1.17.过椭圆4:),(148:220022=+=+yx O y x P yxC 向圆上一点引两条切线PA 、PB 、A 、B 为切点,如直线AB 与x 轴、y 轴交于M 、N 两点. (1)若0=⋅PB PA ,求P 点坐标; (2)求直线AB 的方程(用00,y x 表示); (3)求△MON 面积的最小值.(O 为原点) 【答案】(1)PBPA PB PA ⊥∴=⋅0∴OAPB 的正方形由843214882020202020==⇒⎪⎩⎪⎨⎧=+=+x y x y x 220±=∴x ∴P 点坐标为(0,22±)(2)设A (x1,y1),B (x2,y2)则PA 、PB 的方程分别为4,42211=+=+y y x x y y x x ,而PA 、PB 交于P (x0,y0) 即x1x0+y1y0=4,x2x0+y2y0=4,∴AB 的直线方程为:x0x+y0y=4(3)由)0,4(4000x M y y x x 得=+、)4,0(0y N||18|4||4|21||||21000y x y x ON OM S MON ⋅=⋅=⋅=∆22)48(22|222|24||20200000=+≤⋅=y x y x y x 22228||800=≥=∴∆y x S MON当且仅当22,|2||22|m in00==∆MONS y x 时.18.椭圆12222=+by ax (a>b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O为坐标原点. (1)求2211ba+的值;(2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.【答案】设),(),,(2211y x P y x P ,由OP ⊥ OQ ⇔ x 1 x 2 + y 1 y 2 = 0 ① 01)(2,1,121212211=++--=-=x x x x x y x y 代入上式得: 又将代入x y-=112222=+by ax 0)1(2)(222222=-+-+⇒b a x a x b a ,,2,022221ba ax x +=+∴>∆222221)1(ba b a x x +-=代入①化简得21122=+ba.(2) ,3221211311222222222≤≤⇒≤-≤∴-==ab ab ab ac e又由(1)知12222-=a ab26252345321212122≤≤⇒≤≤⇒≤-≤∴a aa,∴长轴 2a ∈ [6,5].19.一条变动的直线L 与椭圆42x+2y2=1交于P 、Q 两点,M 是L 上的动点,满足关系|MP|·|MQ|=2.若直线L 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.【答案】设动点M(x ,y),动直线L :y=x +m ,并设P(x 1,y 1),Q(x 2,y 2)是方程组⎩⎨⎧=-++=042,22y x m x y的解,消去y ,得3x 2+4m x +2m 2-4=0,其中Δ=16m 2-12(2m 2-4)>0,∴-6<m<6,且x 1+x 2=-3m 4,x 1x 2=34m22-,又∵|MP|=2|x -x 1|,|MQ|=2|x -x 2|.由|MP||MQ|=2,得|x-x 1||x -x 2|=1,也即 |x 2-(x 1+x 2)x +x 1x 2|=1,于是有.13423422=-++mmx x∵m=y -x ,∴|x2+2y 2-4|=3.由x 2+2y 2-4=3,得椭圆172722=+x x夹在直线6±=x y 间两段弧,且不包含端点.由x 2+2y 2-4=-3,得椭圆x 2+2y 2=1.20.椭圆的中心是原点O ,它的短轴长为22,相应于焦点F (c ,0)(0>c )的准线l 与x轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点 .(1)求椭圆的方程及离心率;(2)若0=⋅OQ OP ,求直线PQ 的方程;(3)设AQ AP λ=(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FQ FM λ-=.(14分) 【答案】(1)由题意,可设椭圆的方程为)2(12222>=+a yax .由已知得⎪⎩⎪⎨⎧-==-).(2,2222c c ac c a 解得2,6==c a,所以椭圆的方程为12622=+yx,离心率36=e .(2)解:由(1)可得A (3,0) .设直线PQ的方程为)3(-=x k y .由方程组⎪⎩⎪⎨⎧-==+)3(,12622x k y yx 得062718)13(2222=-+-+k x k x k ,依题意0)32(122>-=∆k ,得3636<<-k .设),(),,(2211y x Q y x P ,则13182221+=+kk x x , ①136272221+-=kk x x . ②,由直线PQ 的方程得)3(),3(2211-=-=x k y x k y .于是]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y. ③∵0=⋅OQOP ,∴02121=+y y x x. ④,由①②③④得152=k ,从而)36,36(55-∈±=k.所以直线PQ 的方程为035=--y x 或035=-+y x .(2)证明:),3(),,3(2211y x AQ y x AP-=-=.由已知得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ注意1>λ,解得λλ2152-=x ,因),(),0,2(11y x M F -,故 ),1)3((),2(1211y x y x FM -+-=--=λ),21(),21(21y y λλλλ--=--= .而),21(),2(222y y x FQ λλ-=-=,所以FQ FM λ-=.21.在平面直角坐标系xoy中,如图,已知椭圆15922=+yx的左、右顶点为A 、B ,右焦点为F 。
选修2-1 椭圆习题及答案
选修2-1 椭圆练习题及答案1. 已知动点M 到定点12(4,0),(4,0)F F -的距离之和不小于8的常数,则动点M 的轨迹是 .A 椭圆 .B 线段 .C 椭圆或线段 .D 不存在2.若方程m x -252+my +162=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( ) A.(-16,25) B.( 29,25) C.(-16,29) D.( 29,+∞) 3、已知M 是椭圆14922=+y x 上的一点,21,F F 是椭圆的焦点,则||||21MF MF ⋅的最大值是( )A 、4B 、6C 、9D 、124、椭圆22125x y m m +=-+的焦点坐标是 (A )(±7, 0) (B )(0, ±7) (C )(±7,0) (D )(0, ±7)5、若△ABC 顶点B , C 的坐标分别为(-4, 0), (4, 0),AC , AB 边上的中线长之和为30,则△ABC 的重心G 的轨迹方程为(A )221(0)10036x y y +=≠(B )221(0)10084x y y +=≠ (C )221(0)10036x y x +=≠(D )221(0)10084x y x +=≠ 6、点P 为椭圆22154x y +=上一点,以点P 以及焦点F 1, F 2为顶点的三角形的面积为1,则点P 的坐标是(A )(, 1) (B ), ±1) (C )(D )(, ±1) 7.椭圆 221123x y += 的焦点为 1F 和 2F ,点P 在椭圆上,如果线段 1PF 的中点在 y 轴上,那么 1PF 是 2PF的 ( ) A .7倍 B .5倍 C .4倍 D .3倍8.P 为椭圆22110064x y +=上的一点,F 1和F 2是其焦点,若∠F 1PF 2=60°,则△F 1PF 2的面积为 . 9.椭圆12222=+by a x (a >b >0)的半焦距为c ,若直线y =2x 与椭圆的一个交点的横坐标为c ,则椭圆的离心率为 .10.已知直线1y kx =+与椭圆2215x y m+=,对任意的k 值总有公共点,则m 的取值范围是___________11、求椭圆的方程:(1)、焦距为,求方程; (2)、椭圆过点3(,4)5P -和4(,3)5Q -,求方程; (3)、已知椭圆两焦点为1(F -,2F ,过1F 且与坐标轴不平行的直线l 与椭圆相交于,M N 两点,若2MF N ∆的周长为12,求方程;(4)、在Rt ABC ∆中,1AB AC ==,如果一个椭圆通过,A B 两点,它的一个焦点为C ,另一个焦点在AB 边上;12、求离心率:(1)、椭圆的一个焦点将长轴分成3:2两部分线段,求离心率;(2)、椭圆22221(0)x y a b a b+=>>的四个顶点,,,A B C D ,若四边形ABCD 的内切圆恰好过焦点,则椭圆的离心率?(3)、设F 为椭圆的左焦点,P 为椭圆上一点,且有PF x ⊥轴,//OP AB ,求离心率;13、已知圆:(3)100A x y ++=,圆A 内一定点(3,0)B ,圆P 过B 且与圆A 内切,求圆心P 的轨迹方程; 14、 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程.1、C2、B3、C4、D5、B6、D7、A8、391 10. m 大于等于1且不等5 13.解:方法一:设所求直线方程为)4(2-=-x k y .代入椭圆方程,整理得036)24(4)24(8)14(222=--+--+k x k k x k ①设直线与椭圆的交点为),(11y x A ,),(22y x B ,则1x 、2x 是①的两根,∴14)24(8221+-=+k k k x x ∵)2,4(P 为AB 中点,∴14)24(424221+-=+=k k k x x ,21-=k .∴所求直线方程为082=-+y x .方法二:设直线与椭圆交点),(11y x A ,),(22y x B .∵)2,4(P 为AB 中点,∴821=+x x ,421=+y y .又∵A ,B 在椭圆上,∴3642121=+y x ,3642222=+y x 两式相减得0)(4)(22212221=-+-y y x x ,即0))((4))((21212121=-++-+y y y y x x x x .∴21)(4)(21212121-=++-=--y y x x x x y y .∴直线方程为082=-+y x .方法三:设所求直线与椭圆的一个交点为),(y x A ,另一个交点)4,8(y x B --.∵A 、B 在椭圆上,∴36422=+y x ①。
数学选修2-1椭圆练习题及详细答案(含准线练习题)
数学选修2-1椭圆练习题及详细答案(含准线练习题)1.若椭圆my 12m 3x 22-+=1的准线平行于y 轴,则m 的取值范围是 。
答案:-3<m <02.椭圆的长半轴是短半轴的3倍,过左焦点倾斜角为30°的弦长为2则此椭圆的标准方程是 。
答案:9x 2+y 2=13. 椭圆的中心在原点,焦点在x 轴上,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距,又已知直线2x -y -4=0被此椭圆所截得的弦长为354,求此椭圆的方程。
答案:4x 2+5y 2=24提示:∵椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距, ∴4c 2=(a +c )(a -c ),解得a 2=5c 2, ∴b 2=4c 2, 将4 x 2+5y 2=m 与2x -y -4=0联立,代入消去y 得24x 2-80x +80-m =0, 由弦长公式l =2k 1+|x 1-x 2|得354=5×1840m 3-,解得m =24,∴椭圆的方程是4x 2+5y 2=24 4.证明:椭圆上任意一点到中心的距离的平方与到两焦点距离的乘积之和为一定值。
|PF1|²=(x - c)² + y²=[a²(x - c)² + a²y²]/a²=[a²x² - 2a²cx + a²c² + a²y²]/a² /***--根据b²x² + a²y² = a²b² ***/=[a²x² - 2a²cx + a²c² + a²b² - b²x²]/a²=[(a²-b²)x² - 2a²cx + a²(b² + c²)]/a²=[c²x² -2a²cx + a^4]/a²=(a² - cx)²/a²∴PF1 = (a² - cx)/a = a - (c/a)x = a - ex同理可证:PF2 = a + ex5. 已知椭圆的对称轴是坐标轴,离心率e =32,长轴长为6,那么椭圆的方程是( )。
高中数学人教A版选修2-1同步练习:2.2.1-椭圆及其标准方程(含答案)
2.2.1 椭圆及其标准方程一、选择题1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( )A .椭圆B .直线C .圆D .线段 [答案] D[解析] ∵|MF 1|+|MF 2|=6,|F 1F 2|=6,∴|MF 1|+|MF 2|=|F 1F 2|,∴点M 的轨迹是线段F 1F 2.2.椭圆x 2m +y 24=1的焦距是2,则m 的值是( ) A .5B .3或8C .3或5D .20 [答案] C[解析] 2c =2,c =1,故有m -4=1或4-m =1,∴m =5或m =3,故选C.3.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( )A .(±a -b ,0)B .(±b -a ,0)C .(0,±a -b )D .(0,±b -a )[答案] D[解析] ax 2+by 2+ab =0可化为x 2-b +y 2-a =1, ∵a <b <0,∴-a >-b >0,∴焦点在y 轴上,c =-a +b =b -a ,∴焦点坐标为(0,±b -a ).4.(2014·长春市高二期末调研)中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是( )A.x 281+y 245=1 B .x 281+y 29=1 C.x 281+y 272=1 D .x 281+y 236=1 [答案] C[解析] 由长轴长为18知a =9,∵两个焦点将长轴长三等分,∴2c =13(2a )=6,∴c =3,∴b 2=a 2-c 2=72,故选C.5.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A .95B .3C .977D .94 [答案] D[解析] a 2=16,b 2=9⇒c 2=7⇒c =7.∵△PF 1F 2为直角三角形.且b =3>7=c .∴F 1或F 2为直角三角形的直角顶点,∴点P 的横坐标为±7,设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94. 6.(2014·洛阳市期末)已知中心在原点的椭圆C 的右焦点为F (15,0),直线y =x 与椭圆的一个交点的横坐标为2,则椭圆方程为( )A.x 216+y 2=1 B .x 2+y 216=1 C.x 220+y 25=1 D .x 25+y 220=1 [答案] C[解析] 由椭圆过点(2,2),排除A 、B 、D ,选C.二、填空题7.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________.[答案] x 24+y 23=1 [解析] 由题意可得⎩⎪⎨⎪⎧ a +c =3,a -c =1.∴⎩⎪⎨⎪⎧a =2,c =1. 故b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1. 8.如图所示,F1,F 2分别为椭圆x 2a 2+y 2b2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=________________. [答案] 2 3[解析] 由题意S △POF 2=34c 2=3,∴c =2,∴a 2=b 2+4.∴点P 坐标为(1,3),把x =1,y =3代入椭圆方程x 2b 2+4+y 2b 2=1中得, 1b 2+4+3b 2=1,解得b 2=2 3. 三、解答题9.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.[解析] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0b 2=1,又a =3b ,解得b 2=1,a 2=9,故椭圆的方程为x 29+y 2=1. 当焦点在y 轴上时,设其方程为y 2a 2+x 2b 2=1(a >b >0). 由椭圆过点P (3,0),知0a 2+9b 2=1,又a =3b ,联立解得a 2=81,b 2=9,故椭圆的方程为y 281+x 29=1. 故椭圆的标准方程为y 281+x 29=1或x 29+y 2=1. 10.已知点A (-12,0),B 是圆F :(x -12) 2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,求动点P 的轨迹方程.[解析] 如图所示,由题意知,|P A |=|PB |,|PF |+|BP |=2,∴|P A |+|PF |=2,且|P A |+|PF |>|AF |,∴动点P 的轨迹是以A 、F 为焦点的椭圆,∴a =1,c =12,b 2=34. ∴动点P 的轨迹方程为x 2+y 234=1,即x 2+43y 2=1.一、选择题11.已知方程x 2|m |-1+y 22-m=1表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .m <2B .1<m <2C .m <-1或1<m <2D .m <-1或1<m <32[解析] 由题意得⎩⎪⎨⎪⎧ |m |-1>0,2-m >0,2-m >|m |-1.即⎩⎪⎨⎪⎧ m >1或m <-1,m <2,m <32.∴1<m <32或m <-1,故选D. [点评] 解答本题应注意,方程表示椭圆,分母应取正值,焦点在y 轴上,含y 2项的分母较大,二者缺一不可.12.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( ) A.x 225+y 29=1 B .y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D .x 225+y 29=1(y ≠0) [答案] D[解析] ∵|AB |=8,△ABC 的周长为18,∴|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D.13.已知椭圆的两个焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .射线D .直线 [答案] A[解析] ∵|PQ |=|PF 2|且|PF 1|+|PF 2|=2a ,∴|PQ |+|PF 1|=2a ,又∵F 1、P 、Q 三点共线,∴|PF 1|+|PQ |=|F 1Q |,∴|F 1Q |=2a .即Q 在以F 1为圆心,以2a 为半径的圆上.14.在平面直角坐标系xOy 中,已知△ABC 的顶点A (0,-2)和C (0,2),顶点B 在椭圆y 212+x 28=1上,则sin A +sin C sin B的值是( ) A. 3B .2C .2 3D .4[解析] 由椭圆定义得|BA |+|BC |=43,又∵sin A +sin C sin B =|BC |+|BA ||AC |=434=3,故选A. 二、填空题15.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 是椭圆上的一点,若|F 1F 2|是|PF 1|和|PF 2|的等差中项,则该椭圆的方程是________.[答案] x 24+y 23=1 [解析] 由题意得2|F 1F 2|=|PF 1|+|PF 2|,∴4c =2a ,∵c =1,∴a =2.∴b 2=a 2-c 2=3,故椭圆方程为x 24+y 23=1. 16.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.[答案] 35[解析] 设椭圆右焦点为F ′,由椭圆的对称性知,|P 1F |=|P 7F ′|,|P 2F |=|P 6F ′|,|P 3F |=|P 5F ′|,∴原式=(|P 7F |+|P 7F ′|)+(|P 6F |+|P 6F ′|)+(|P 5F |+|P 5F ′|)+12(|P 4F |+|P 4F ′|)=7a =35. [点评] 对椭圆的定义要正确理解、熟练运用,解决与焦点有关的问题时,要结合图形看能否运用定义.三、解答题17.(2013·四川省绵阳中学月考)求满足下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点M (3,2);(2)a c =13 5,且椭圆上一点到两焦点的距离的和为26.[解析] (1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,2a =32+(2+2)2+32+(2-2)2=8,所以a =4,所以b 2=a 2-c 2=16-4=12.又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1. (2)由题意知,2a =26,即a =13,又a c =135,所以c =5, 所以b 2=a 2-c 2=132-52=144,因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1. [点评] 用待定系数法求椭圆的标准方程时,要首先进行“定位”,即确定焦点的位置;其次是进行“定量”,即求a 、b 的大小,a 、b 、c 满足的关系有:①a 2=b 2+c 2;②a >b >0;③a >c >0.若不能确定焦点的位置,可进行分类讨论或设为mx 2+ny 2=1(m >0,n >0)的形式.18.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.[解析] 设|PF 1|=m ,|PF 2|=n .根据椭圆定义有m +n =20,又c =100-64=6,∴在△F 1PF 2中,由余弦定理得m 2+n 2-2mn cos π3=122, ∴m 2+n 2-mn =144,∴(m +n )2-3mn =144,∴mn =2563, ∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2 =12×2563×32=6433.。
高中数学选修2-1第二章第5课时同步练习§2.2.2(1)椭圆及其简单性质
§2.2.2椭圆的简单几何性质(1)1、椭圆2266x y +=的长轴的端点坐标是( )A 、(1,0)-、(1,0)B 、(6,0)-、(6,0)C 、(、D 、(0,、2、已知椭圆22221x y a b +=与椭圆2212516x y +=有相同的长轴,椭圆22221x y a b+=的短轴与椭圆221219x y +=的短轴长相等,则( ) A 、2225,16a b == B 、229,25a b ==C 、222225,99,25a b a b ====或D 、2225,9a b ==3、已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2ABF ∆是正三角形,则这个椭圆的离心率是( )A 、3B 、3C 、2D 、24、已知椭圆2222:1x y C a b +=与椭圆22148x y +=有相同离心率,则椭圆C 的方程可能是( ) A 、222(0)84x y m m +=≠B 、2211664x y += C 、22182x y += D 、以上都不可能 5、椭圆224936x y +=的长轴长为 ;短轴长为 ;焦点坐标为 ;顶点坐标为 ;离心率为 ;6、椭圆的短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程是 ;7、经过点(3,0)P -、(0,2)Q -的椭圆的标准方程为:8、已知椭圆22189x y k +=+的离心率为12,则k = ; 9、方程22221(1)x y m m +=-表示焦点在y 轴上的椭圆,则m 的取值范围是 ;10、如图,过椭圆22110064x y +=的左焦点1F 的直线l 与 椭圆交于A 、B 两点,(1)2ABF ∆的周长为 ;(2)若C 为1AF 的中点,14AF =,则OC = ; 11、求与椭圆22194x y +=共同焦点,有过点(3,2)M -的椭圆的标准方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆 同步练习一、选择题:本大题共5小题,每小题5分,共25分.1. 若椭圆116222=+by x 过点(-2,3),则其焦距为 ( )A .25B .23C .45D .432. 设F 1、F 2为椭圆42x +y 2=1的两焦点,P 在椭圆上,当△F 1PF 2面积为1时,21PF PF ⋅ 的A .0B .1C .2D .213. 椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为 ( )A .14 B .12 C .2 D .44. 已知椭圆的焦点为1F (-1,0)和2F (1,0),P 是椭圆上的一点,且21F F 是1PF 与2PF 的等差中项,则该椭圆的方程为 ( )A .191622=+y xB .1121622=+y xC .13422=+y xD .14322=+y x5. 椭圆31222y x +=1的焦点F1和F2,点P 在椭圆上,如果线段P F1的中点在y 轴上,那么|PF1|∶|PF2|的值为 ( )A .7∶1B .5∶1C .9∶2D .8∶3 二、填写题:本大题共3小题,每小题5分,共15分.6. 已知椭圆的长轴的长是短轴的长的5倍,且经过点(10,-5)则椭圆的标准方程为 .7. 已知椭圆 19822=++y a x 的离心率为21,则a =______________.8. 椭圆)0(12222>>=+b a b y a x 且满足b a 3≤,若离心率为e ,则221ee +的最小值为 .三、解答题:本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤. 9. 求适合下列条件的椭圆的标准方程:(1)离心率为22,准线方程为8±=x ;(2)长轴与短轴之和为20,焦距为 54.10. 已知椭圆C 的焦点分别为)0,22()0,22(21F F 和-,长轴长为6,设直2+=x y 交椭圆C 于A 、B 两点,求线段AB 的中点坐标.11. 已知椭圆C 的焦点分别为)0,22(1-F 和)0,22(2F ,长轴长为6,设直线2+=x y 交椭圆C 于A 、B 两点,求线段AB 的中点坐标.12. 椭圆E 中心在原点O ,焦点在x 轴上,其离心率32=e ,过点C (-1,0)的直线l 与椭圆E相交于A 、B 两点,且C 分有向线段AB 的比为2.(Ⅰ)用直线l 的斜率k(k ≠0)表示△OAB 的面积; (Ⅱ)当△OAB 的面积最大时,求椭圆E 的方程.13*.已知椭圆的中心在原点,离心率为12 ,一个焦点是F (-m,0)(m 是大于0的常数). (Ⅰ)求椭圆的方程; (Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. 若QFMQ 2=,求直线l 的斜率.14*.已知椭圆C 的方程为1222=+y x ,点),(b a P 的坐标满足1222≤+b a .过点P 的直线l 与椭圆交于A 、B 两点,点Q 为线段AB 的中点,求: (Ⅰ)点Q 的轨迹方程;(Ⅱ)点Q 的轨迹与坐标轴的交点的个数.参考答案一、选择题: 1. D 2. A 3. A 4. C 5. A 二、填空题:6.【答案】12972522=+y x 和1252510122=+y x .7.【 答案】4或45- 8.【 答案】613三、解答题:9. 【解析】(1)由准线方程为8±=x ,可知椭圆的焦点在x 轴上.设所求椭圆的方程为)0(12222>>=+b a b y a x ,由题意,得 ⎪⎪⎩⎪⎪⎨⎧===.8,222ca a c e 解得24=a ,4=c . 所以161632222=-=-=c a b .因此,所求椭圆的方程为1163222=+y x .(2)当焦点在x 轴上时,设所求椭圆的方程为)0(12222>>=+b a by a x由题意,得⎪⎩⎪⎨⎧==+.542,2022c b a 即 ⎩⎨⎧=-=+.20,1022b a b a 解得6=a ,4=b .所以焦点在x 轴上的椭圆的方程为1163622=+y x ,同理可求当焦点在y 轴上椭圆的方程为1361622=+y x .10. 【 解析】设椭圆C 的方程为2222 1 x y ab+=由题意 1,22,3===b c a 于是22 1 .9x C y ∴+=椭圆的方程为⎪⎩⎪⎨⎧=++=++=,0273610192222x x y x x y 得由 因为该二次方程的判别式△>0,所以直线与椭圆有两个不同交点,1122121891(,),(,),,(,) . 555A x yB x y x x AB +=--设则故线段的中点坐标为 11. 【 解析】 设椭圆C 的方程为12222=+by a x由题意3=a ,22=c ,于是1=b . ∴椭圆C 的方程为1922=+y x 由⎪⎩⎪⎨⎧=++=19222y x x y 得02736102=++x x 因为该二次方程的判别0 ∆,所以直线与椭圆有两个不同交点.设),(),,(2211y x B y x A 则51821-=+x x , 故线段AB 的中点坐标为)51,59(-12. 【 解析】 (Ⅰ)设椭圆E 的方程为12222=+by a x (a >b >0),由e=32=a c ∴a 2=3b 2,故椭圆方程x 2+3y 2=3b 2.设A(x 1,y 1)、B(x 2,y 2),由于点C (-1,0)分有向线段AB 的比为2.∴⎪⎪⎩⎪⎪⎨⎧=+-=+0321322121y y x x 即⎩⎨⎧-=+-=+21212)1(21y y x x 由⎩⎨⎧+==+)1(33222x k y b y x消去y 整理并化简得(3k 2+1)x 2+6k 2x+3k 2-3b 2=0 由直线l 与椭圆E 相交于A (x 1,y 1),B(x 2,y 2)两点⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+>-+-=13331360)23)(13(4362222122212224k b k x x k k x x b k k k Δ 而S △OAB |1|||23|)1(|23||23|2|21||212222221+=+==--=-=x k x k y y y y y 推得:x 2+1=-1322+k ,从而:S △OAB =)0(13||32≠+k k k .(Ⅱ)因S △OAB =23323||1||3313||32=≤+=+k k k k ,当且仅当,33±=k S △OAB 取得最大值.此时x 1+x 2=-1,又∵3221x x +=-1∴x 1=1,x 2=-2.将x 1,x 2及k 2=31代入⑤得3b 2=5,∴椭圆方程x 2+3y 2=5.13. 【 解析】 (1)设所求椭圆方程是)0(12222>>=+b a b y a x 由已知得21,==a c m c ,所以m b m a 3,2==,故所求椭圆方程是1342222=+m y m x(2)设),(00y x Q ,直线)(:m x k y l +=,则点),0(km M ,当QF MQ 2=时,由于)0,(m F -,),0(km M ,由定比分点坐标公式得3210,322120km km y m m x Q Q =++=-=+-=,又点)3,32(kmm Q -在椭圆上,所以13)3(4)32(2222=+mkmm m ,62±=k ;当QF MQ 2-=时km km y m m x Q Q -=-+=-=-+=210,22120,所以13)(4)2(2222=+m km m m 得,解得0=k ,故直线l 的斜率是62,0±。
14. 【 解析】 (1)设点A 、B 的坐标分别为),(11y x A 、),(22y x B ,点Q 的坐标为),(y x Q .当21x x ≠时,设直线l 的斜率为k ,则l 的方程为b a x k y +-=)(由已知12,1222222121=+=+y x y x (1) b a x k y b a x k y +-=+-=)(,)(2211(2)由(1)得0))((21))((21212121=-++-+y y y y x x x x , (3)由(2)得b ak x x k y y 22)(2121+-+=+, (4) 由(3)、(4)及221x x x +=,221y y y +=,2121x x y y k --=,得点Q 的坐标满足方程02222=--+by ax y x . (5)当21x x =时,k 不存在,此时l 平行于y 轴,因此AB 的中点Q 一定落在x 轴上,即Q 的坐标为(a ,0).显然点Q 的坐标满足方程(5).综上所述,点Q 的坐标满足方程02222=--+by ax y x .设方程(5)所表示的曲线为L ,则由⎪⎩⎪⎨⎧=+=--+,12,0222222y x by ax y x得024)2(2222=-+-+b ax x b a .因为⎪⎪⎭⎫ ⎝⎛-+=∆128222b a b ,由已知1222≤+b a ,所以当1222=+b a 时,△=0,曲线L 与椭圆C 有且只有一个交点P (a ,b ). 当1222<+b a 时,△<0,曲线L 与椭圆C 没有交点. 因为(0,0)在椭圆C 内,又在曲线L 上,所以曲线L 在椭圆C 内. 故点Q 的轨迹方程为02222=--+by ax y x(2)由⎩⎨⎧==--+,0,02222x by ax y x 解得曲线L 与y 轴交于点(0,0),(0,b ).由⎩⎨⎧==--+,0,02222y by ax y x 解得曲线L 与x 轴交于点(0,0),(a ,0) 当a =0,b =0,即点P (a ,b )为原点时,(a ,0)、(0,b )与(0,0)重点,曲线L 与坐标轴只有一个交点(0,0). 当a =0且20≤<b ,即点P (a ,b )不在椭圆C 外且在除去原点的y 轴上时,点(a ,0)与(0,0)重合,曲线L 与坐标轴有两个交点(0,b )与(0,0).同理,当b =0且10≤<a ,即点P (a ,b )不在椭圆C 外且在除去原点的x 轴上时,曲线L 与坐标轴有两个交点(a ,0)与(0,0).当10<<a 且)1(202a b -<<,即点P (a ,b )在椭圆C 内且不在坐标轴上时,曲线L 与坐标轴有三个交点(a ,0)、(0,b )与(0,0).。