〖精选9套试卷〗吉林省延边朝鲜族自治州2020年中考数学三模试卷

合集下载

延边朝鲜族自治州2020年中考数学试卷(I)卷

延边朝鲜族自治州2020年中考数学试卷(I)卷

延边朝鲜族自治州2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·桂平模拟) ﹣3的相反数是()A .B . ﹣3C .D . 32. (2分) (2019七下·醴陵期末) 如图,下列说法错误的是()A . 因为∠BAD+∠ADC=180°,所以AB∥CDB . 因为AB∥CD,所以∠BAC=∠ACDC . 因为∠ABD=∠CDB,所以AD∥BCD . 因为AD∥BC,所以∠BCA=∠DAC3. (2分) (2016九下·农安期中) 2014年吉林省对全省供热管网进行改造,改造后全年二氧化碳排放量共减少7620000吨,7620000这个数用科学记数法表示为()A . 762×104B . 76.2×105C . 7.62×106D . 0.762×1074. (2分)(2014·南宁) 数据1,2,4,0,5,3,5的中位数和众数分别是()A . 3和2B . 3和3C . 0和5D . 3和55. (2分) (2015九下·武平期中) 若一个正多边形的一个外角是40°,则这个正多边形的边数是()A . 10B . 9C . 8D . 66. (2分)(2019·定远模拟) 关于x的一元二次方程(x+1)(x﹣1)+mx=0根的情况,下列判断正确是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 没有实数根D . 无法确定7. (2分)(2017·冷水滩模拟) 如下图,已知△ABC周长为1,连结△ABC三边的中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,依此类推,第2017个三角形周长为()A .B .C .D .8. (2分) (2019八下·海安月考) 如图,已知菱形的对角线,的长分别为6cm,8cm,于点,则的长是()A .B .C .D .9. (2分)(2017·兰州模拟) 如图,关于x的二次函数y=x2﹣x+m的图象交x轴的正半轴于A,B两点,交y轴的正半轴于C点,如果x=a时,y<0,那么关于x的一次函数y=(a﹣1)x+m的图象可能是()A .B .C .D .10. (2分)在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A、B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM的延长线与x轴交于点N(n,0),如图3,当m=时,n的值为()A .B .C .D .二、填空题 (共8题;共8分)11. (1分) (2016九上·衢州期末) 多项式a2﹣4因式分解的结果是________.12. (1分) (2020八下·长春月考) 甲、乙、丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为,,.则数据波动最小的一组是________.13. (1分)(2019·荆州模拟) 已知点A、B、C、D均在圆上,AD∥BC,AC 平分∠BCD,∠ADC=120°,四边形的周长为10cm.,则∠ABC的度数为________.14. (1分)(2019·防城模拟) 解分式方程:得________.15. (1分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为________.16. (1分)已知:如图,BD为△ABC的内角平分线,CE为△ABC的外角平分线,AD⊥BD于D,AE⊥CE于E,延长AD交BC的延长线于F,连接DE,设BC=a,AC=b,AB=c,(a<b<c)给出以下结论正确的有________①CF=c﹣a;②AE=(a+b);③DE=(a+b﹣c);④DF=(b+c﹣a)17. (1分)(2020·河南模拟) 不等式组的所有整数解的和是________.18. (1分) (2016七上·平定期末) 观察下面一列有规律的数,根据这个规律可知第n个数是________(n是正整数)三、解答题 (共7题;共70分)19. (10分) (2020七下·东丽期末) 计算(1)(2);20. (5分)(2018九上·腾冲期末) 已知:如图,是和的平分线,.求证:.21. (10分) 4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:(1)九年(1)班有________ 名学生;(2)补全直方图;(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;(4)求该年级每天阅读时间不少于1小时的学生有多少人?22. (5分)(2019·丽水模拟) 如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角为,测得C点的俯角为60° ,求建筑物CD的高度(结果保留根号).23. (15分)(2019·赣县模拟) 在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥ 轴,垂足为点H,OH=3,tan∠AOH= ,点B的坐标为(,-2).(1)求该反比例函数和一次函数的解析式;(2)求△AHO的周长.24. (10分)(2020·怀化) 如图,在⊙O中,AB为直径,点C为圆上一点,延长AB到点D,使CD=CA,且.(1)求证:是⊙O的切线.(2)分别过A、B两点作直线CD的垂线,垂足分别为E、F两点,过C点作AB的垂线,垂足为点G.求证:.25. (15分) (2018九下·绍兴模拟) 如图,在平面直角坐标系中,直线分别交x轴,y轴于点A,C,点D(m,4)在直线AC上,点B在x轴正半轴上,且OB=2OC.点E是y轴上任意一点,连结DE,将线段DE 按顺时针旋转90°得线段DG,作正方形DEFG,记点E为(0,n).(1)求点D的坐标;(2)记正方形DEFG的面积为S,① 求S关于n的函数关系式;② 当DF∥x轴时,求S的值;(3)是否存在n的值,使正方形的顶点F或G落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共70分)19-1、19-2、20-1、21-1、21-2、21-3、21-4、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。

吉林省延边州2019--2020下学期九年级下学期教学质量检测数学试题(图片版,含答案)

吉林省延边州2019--2020下学期九年级下学期教学质量检测数学试题(图片版,含答案)

延边州2019~2020学年度下学期九年级教学质量检测数学试题参考答案及评分标准阅卷说明:1.评卷采用最小单位为1分,每步标出的是累积分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分.一、单项选择题(每小题2分,共12分)1. B2. B3. D4. A5. C6. D二、填空题(每小题3分,共24分) 7. 5 8. x ≥23- 9. b 310.x =2 11. (-1, 0) 12. 36 13. 32 14. 12 评分说明:第10题只写2 ,不扣分.三、解答题(每小题5分,共20分)15.解:原式=51)5)(5(2+--+x x x x =)5)(5(5)5)(5(2-+---+x x x x x x =)5)(5(52-++-x x x x=)5)(5(5-++x x x =51-x (4分) 当x =2时,原式=521-=31-(5分) 16.解:设甲、乙两种票分别买了x 、y 张,根据题意,⎩⎨⎧=+=+750182435y x y x(3分) 解得 ⎩⎨⎧==1520y x(5分) 答:甲种票买了20张,乙种票买了15张.17.树状图如下:甲盒 1 2 7乙盒4 5 6 4 5 6 4 5 6(3分)P(小明摸出的两个小球上的数字之和为4的倍数)29=(5分) 列表如下:(3分) P(小明摸出的两个小球上的数字之和为4的倍数)29=(5分) 18.证明:∵四边形ABCD 是平行四边形,∴∠B =∠D (1分)又EF ⊥AB , CG ⊥AD∴∠BFE =∠DGC =90° (2分) 盒盒 A B CD G FE (第18题)又∵ BE =CD∴△BEF ≌△CDG∴EF =CG . (5分)四、解答题(每小题7分,共28分)19. (1) 60(2分) (2)(4分) (第19题)(3) 解:200×60122760--=70(名)(7分)20. (1)12 27 24 人数 成绩A B质量检测成绩条形图21 AB C图1D(2分)(2 ) ①5 (3分)②(5分)(3)(7分)评分说明:虚线不扣分21.解:AC=16×2=32 (海里)(2分)在Rt△ACB中,AB=AC tan43°= 32×0.93≈29.8 (海里)(7分)(第21题)A B C北43°22. (1) 2 (1分)(2) -1 (3分)(3) 解:连接DC ,DC 是中位线,∴DC ∥x 轴,∴∠ACD =90°连接C ′D ′ , C ′D ′ =CD =1∠O AC ′= 90°,A (0, 4),∴D ′(2, 3)(5分) ∵双曲线x ky =过点D ′, ∴23k= k =6 ∴x y 6=(7分) 五、解答题(每小题8分,共16分)23. (1) 80 ,(2分) (2) 解:设解析式为y =kx +b ,图象过点(1,280) ,(3, 0) B ′ O (第22题) x y⎩⎨⎧=+=+03280b k b k 解得⎩⎨⎧=-=420140b k∴y =-140x +420,1≤x ﹤3 (6分)(3) 4.5(8分) 评分说明:自变量取值范围有无等号均给分24. (1) 平行四边形(1分) (2) 仍然成立.理由:∵四边形ABCD 是矩形∴AD =BC∵AM =21AD , CN =21BC∴AM =CN又∠A =∠C =90°, AE=CF∴△AME ≌△CNF∴∠AME =∠CNF(3分) 由于折叠,∠AMP =2∠AME , ∠QNC =2∠CNF ,∴∠AMP =∠QNC∵AD ∥BC∴∠AMG =∠MGC∴∠MGC =∠QNC∴MP ∥QN又MP =QN ∴四边形PMQN 是平行四边形. (6分)(3) 313 (8分) 六、解答题(每小题10分,共20分)25. 解:(1) 56 (2分) (2)①如图1,当0<t ≤56时, CD =AD∴∠A =∠ACD = 30°∴PQ =21PC =21×4t =2t MQ =23PQ =3t (图1)图2∴S =S 矩形PQMN =3t ×2t =23t 2 (4分) ②如图2,当56<t ≤23时,CQ =PC cos30°=23tAC =BC tan60°= 63AM =AC -MQ -CQ =63-3t -23t =63-33t (图2) ME =AM tan30°=(63-33t )33=6-3tEN =MN -ME =2t -(6-3t )=5t -6NF =EN tan60°=3(5t -6)∴S =S 矩形PQMN -S △ENF =23t 2-21(5t -6) 3(5t -6)=2321 t 2+303t -183(6分) ③如图3,当23<t ≤3时,AP =AD +DP =CD +DP =4tPQ =AP sin30°=2tA (图3)NP=MQ =23PQ =3tEN = NP tan30°=t DP = AP -AD =4t -6 ∴S =S 矩形PQMN -S △ENP -S △DFP =23t 2-21t ·3t -43(4t -6)2 = 235-t 2+123t -93 (8分)(3) 0<t ≤56或t =2 (10分)26.(1) -2(1分) (2)解:∵抛物线过点A 1 (-2, -2m ), B 1 (2, -2m ),∴⎪⎩⎪⎨⎧-=++⨯-=+--⨯mb a m b a 222221222)2(2122∴4a +4=-4m ∴a =-m -1(3分) (3) a =-2n -2 ,m = 2n +1 .(或m -2n =1)(7分)P 1(29, 0) , P 2(4, 0) , P 3(35, 0) . (10分)。

吉林省延边朝鲜族自治州2020版中考数学试卷B卷

吉林省延边朝鲜族自治州2020版中考数学试卷B卷

吉林省延边朝鲜族自治州2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)-5÷(-5)-(-7)=()A . 8B . -2.5C . -6D . 72. (2分) 2012年2月,国务院同意发布新修订的《环境空气质量标准》增加了PM2.5监测指标.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000 001 米,那么数据0.000 002 5用科学记数法可以表示为()A . 2.5×10-6B . 2.5×10-5C . -2.5×10-5D . -2.5×10-63. (2分)下面表示∠ABC的图是()A .B .C .D .4. (2分) (2016七上·常州期中) 如图是一个计算程序,当输出值y=16时,输入值x为()A . ±4B . 5C . ﹣3D . ﹣3或55. (2分)(2020·九江模拟) 如图,在4× 4的网格纸中,△ABC的三个顶点都在格点上.现要在这张网格纸中找出一格点作为旋转中心,绕着这个中心旋转后的三角形的顶点也在格点上,若旋转前后的两个三角形构成中心对称图形,那么满足条件的旋转中心有()A . 2个B . 3个C . 4个D . 20个6. (2分)(2011·宁波) 下列各数中是正整数的是()A . ﹣1B . 2C . 0.5D .7. (2分)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,点A的坐标为(1,0),则E点的坐标为().A . (,0)B . (,)C . (,)D . (2,2)8. (2分)(2017·黄石模拟) 如图,由几个相同的小正方体搭成的一个几何体,它的左视图为()A .B .C .D .9. (2分) (2017八下·路南期末) 如图,菱形ABCD的边长是2,∠B=120°,P是对角线AC上一个动点,E 是CD的中点,则PE+PD的最小值为()A .B .C . 2D .10. (2分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A . 600mB . 500mC . 400mD . 300m11. (2分)已知△ABC的边长分别为a,b,c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是()A . 2aB . ﹣2C . 2a+3D . 2b﹣2c12. (2分)下列各式中,正确的是()A .B .C .D .13. (2分)(2019·白银) 下面的计算过程中,从哪一步开始出现错误().A . ①B . ②C . ③D . ④14. (2分)如图所示是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民家庭教育支出占全年总支出的百分比作出的判断中,正确的是()A . 甲户比乙户大B . 乙户比甲户大C . 甲、乙两户一样大D . 无法确定哪一户大15. (2分)已知二次函数y=ax2+2ax+b(a>0).当x=x1时,对应的函数值为y1 ,当x=x2时对应的函数值为y2 ,若x1<x2且-2<x1+x2<0时,则()A . y1>y2B . y1=y2C . y1<y2D . y1、y2的大小关系不确定16. (2分)(2017·义乌模拟) 如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A .B .C .D .二、填空题 (共3题;共3分)17. (1分)如图,在▱ABCD中,BE平分∠ABC,CE平分∠BCD,BC=3,EF∥BC,EF的长为________。

2020年吉林省中考数学试卷(附答案详解)

2020年吉林省中考数学试卷(附答案详解)

2020年吉林省中考数学试卷一、选择题(本大题共18小题,共48.0分)1.下列实数是无理数的是()A. √2B. 1C. 0D. −52.下列图形是中心对称图形的是()A. B. C. D.3.2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A. 88.9×103B. 88.9×104C. 8.89×105D. 8.89×1064.下列运算正确的是()A. 2x2+x2=2x4B. x3⋅x3=2x3C. (x5)2=x7D. 2x7÷x5=2x25.以下调查中,最适合采用全面调查的是()A. 检测长征运载火箭的零部件质量情况B. 了解全国中小学生课外阅读情况C. 调查某批次汽车的抗撞击能力D. 检测某城市的空气质量6.一元二次方程x2−2x+1=0的根的情况是()A. 有两个不等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A. 60°B. 65°C. 70°D. 75°8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A. 16B. 14C. 13D. 129.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A. 15B. 20C. 25D. 3010.甲、乙两地相距600km,提速前动车的速度为vkm/ℎ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A. 600v −13=6001.2vB. 600v=6001.2v−13C. 600v −20=6001.2vD. 600v=6001.2v−2011.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A. 50.5寸B. 52寸C. 101寸D. 104寸12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=1x(x>0)于点C,D.若AC=√3BD,则3OD2−OC2的值为()B. 3√2C. 4D. 2√313.−6的相反数是()A. 6B. −6C. 16D. −1614.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A. 11.09×106B. 1.109×107C. 1.109×108D. 0.1109×10815.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.16.下列运算正确的是()A. a2⋅a3=a6B. (a2)3=a5C. (2a)2=2a2D. a3÷a2=a17.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A. 85°B. 75°C. 65°D. 60°18.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A. 54°B. 62°C. 72°二、填空题(本大题共14小题,共42.0分)19.如图,在数轴上表示的x的取值范围是______.20.计算:√12−√3=______.21.某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158231801“射中9环以上”的频率0.750.830.780.790.800.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).22.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是______.23.以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.24.如图,在边长为2√3的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为______.25.分解因式:a2−ab=______.26.不等式3x+1>7的解集为______.27.一元二次方程x2+3x−1=0根的判别式的值为______.28.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为______.29.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是______.30.如图,AB//CD//EF.若ACCE =12,BD=5,则DF=______.31.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为12,则四边形DBCE的面积为______.32.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则EF⏜的长为______(结果保留π).三、计算题(本大题共1小题,共6.0分)33.计算:−(−1)+32÷(1−4)×2.四、解答题(本大题共19小题,共144.0分)34.先化简,再求值:x+1x ÷(x−1x),其中x=3.35.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.36.小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90829986989690100898387888190931001009692100整理数据:80≤x<8585≤x<9090≤x<9595≤x<10034a8分析数据:平均分中位数众数92b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.37.如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40n mile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20√6n mile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?38.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.39.如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP 是⊙O 的切线;(2)连接AB 交OP 于点F ,求证:△FAD∽△DAE ; (3)若tan∠OAF =12,求AEAP 的值.40. 如图1,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =−2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC.设点A 的纵坐标为t ,△ABC 的面积为s . (1)当t =2时,请直接写出点B 的坐标; (2)s 关于t 的函数解析式为s ={14t 2+bt −54,t <−1或t >5a(t +1)(t −5),−1<t <5,其图象如图2所示,结合图1、2的信息,求出a 与b 的值;(3)在l 2上是否存在点A ,使得△ABC 是直角三角形?若存在,请求出此时点A 的坐标和△ABC 的面积;若不存在,请说明理由.41.先化简,再求值:(a+1)2+a(1−a)−1,其中a=√7.42.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.43.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.44.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE//AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.45.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.46.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)(x>0)的图象47.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=kx 上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.48.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.49.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为______L,机器工作的过程中每分钟耗油量为______L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.50.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为______.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角,则四边形DCFG 度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=43的面积为______.51.如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC−CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为______cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.52.如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为−m+32.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案和解析1.【答案】A【知识点】无理数【解析】【分析】本题考查无理数的意义,准确把握无理数的意义是正确判断的前提.无限不循环小数是无理数,而1,0,−5是整数,也是有理数,因此√2是无理数.【解答】解:无理数是无限不循环小数,而1,0,−5是有理数,因此√2是无理数,故选:A.2.【答案】D【知识点】中心对称图形【解析】【分析】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.3.【答案】C【知识点】科学记数法-绝对值较大的数【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于889000有6位,所以可以确定n=6−1=5.【解答】解:889000=8.89×105.故选:C.4.【答案】D【知识点】同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】【分析】此题主要考查了整式的运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、2x2+x2=3x2,故此选项错误;B、x3⋅x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;D、2x7÷x5=2x2,正确.故选:D.5.【答案】A【知识点】全面调查与抽样调查【解析】【分析】本题考查全面调查、抽样调查的意义,在具体实际的问题情境中理解全面调查、抽样调查的意义是正确判断的前提.利用全面调查、抽样调查的意义,结合具体的问题情境进行判断即可.【解答】解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”,“调查某批次汽车的抗撞击能力”,“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查,故选:A.6.【答案】B【知识点】根的判别式【解析】【分析】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.先根据方程的一般式得出a、b、c的值,再计算出△=b2−4ac的值,继而利用一元二次方程的根的情况与判别式的值之间的关系可得答案.【解答】解:∵a=1,b=−2,c=1,∴△=(−2)2−4×1×1=4−4=0,∴有两个相等的实数根,故选:B.7.【答案】B【知识点】作一个角的平分线、等腰三角形的性质【解析】【分析】本题考查了作图−基本作图、等腰三角形的性质,解决本题的关键是掌握等腰三角形的性质.根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE的度数.【解答】解:∵BA=BC,∠B=80°,×(180°−80°)=50°,∴∠A=∠ACB=12∴∠ACD=180°−∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE=12∠ACD=65°,∴∠DCE的度数为65°,故选:B.8.【答案】C【知识点】概率公式【解析】【分析】此题考查了列表法与树状图法有关知识,概率公式.用到的知识点为:概率=所求情况数与总情况数之比.由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.【解答】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是26=13,故选:C.9.【答案】B【知识点】相似三角形的判定与性质、正方形的性质【解析】【分析】本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF//BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.【解答】解:设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF//BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴ANAD =EFBC,∵BC=120,AD=60,∴AN=60−x,∴60−x60=x120,解得:x=40,∴AN=60−x=60−40=20.故选:B.10.【答案】A【知识点】由实际问题抽象出分式方程【解析】【分析】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶时间是解题关键.直接利用总时间的差值进而得出等式求出答案.【解答】解:因为提速前动车的速度为vkm/ℎ,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/ℎ,根据题意可得:600v −13=6001.2v.故选:A.11.【答案】C【知识点】勾股定理的应用【解析】【分析】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.构造直角三角形,根据勾股定理即可得到结论.【解答】解:过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r,CD=1,AE=r−1,则AB=2r,DE=10,OE=12在Rt△ADE中,AE2+DE2=AD2,即(r−1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.12.【答案】C【知识点】反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征、勾股定理【解析】【分析】本题考查了反比例函数、一次函数图象上点的坐标特征,勾股定理,正确利用AC=√3BD 得到a,b的关系是解题的关键.延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据AC=√3BD得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【解答】解:延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y=1x (x>0)上,则CE=1a,DF=1b.∴BD=BF−DF=b−1b ,AC=1a−a.又∵AC=√3BD,∴1a −a=√3(b−1b),两边平方得:a2+1a2−2=3(b2+1b2−2),即a2+1a2=3(b2+1b2)−4,在直角△ODF中,OD2=OF2+DF2=b2+1b2,同理OC2=a2+1a2,∴3OD2−OC2=3(b2+1b2)−(a2+1a2)=4.故选:C.13.【答案】A【知识点】相反数【解析】【分析】本题考查了相反数,解决本题的关键是熟记相反数的定义.根据相反数的定义,即可解答.【解答】解:−6的相反数是6,故选A.14.【答案】B【知识点】科学记数法-绝对值较大的数【解析】解:11090000=1.109×107,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.【答案】A【知识点】简单组合体的三视图【解析】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图.解题的关键是掌握简单组合体的三视图的定义,注意:从左边看得到的图形是左视图.16.【答案】D【知识点】同底数幂的除法、幂的乘方与积的乘方、同底数幂的乘法【解析】解:A、a2⋅a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.17.【答案】B【知识点】三角形内角和定理【解析】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD−∠BCA=60°−45°=15°,∠α=180°−∠D−∠ACD=180°−90°−15°=75°,故选B.18.【答案】C【知识点】圆内接四边形的性质、圆周角定理【解析】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°−∠B=180°−108°=72°,故选:C.运用圆内接四边形对角互补计算即可.本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.19.【答案】x<1【知识点】在数轴上表示不等式的解集【解析】【分析】本题主要考查在数轴上表示不等式的解集.用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.解:在数轴上表示的x的取值范围是x<1,故答案为:x<1.20.【答案】√3【知识点】二次根式的加减【解析】【分析】本题主要考查了二次根式的加减,属于基础题型.先化简√12=2√3,再合并同类二次根式即可.【解答】解:√12−√3=2√3−√3=√3.故答案为:√3.21.【答案】0.8【知识点】利用频率估计概率【解析】【分析】本题考查了利用频率估计概率,解决本题的关键是理解当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.故答案为:0.8.22.【答案】556个【知识点】数式规律问题【解析】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化性质规律.根据题意可得前区最后一排座位数为:20+2(8−1)=34,所以前区座位数为:(20+ 34)×8÷2=216,后区的座位数为:10×34=340,进而可得该礼堂的座位总数.【解答】解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8−1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.23.【答案】(−4,3)【知识点】旋转中的坐标变化*【解析】【分析】本题考查了坐标与图形变化−旋转,解决本题的关键是掌握旋转的性质.画出图示,根据点M(3,4)逆时针旋转90°得到点N,则可得点N的坐标为(−4,3).【解答】解:如图,∵点M(3,4)逆时针旋转90°得到点N,则点N的坐标为(−4,3).故答案为:(−4,3).24.【答案】43π【知识点】菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、轨迹【解析】【分析】本题考查菱形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.作△CBD的外接圆⊙O,连接OB,OD.利用全等三角形的性质证明∠BPD=120°,推出B,C,D,P四点共圆,利用弧长公式计算即可.【解答】解:如图,作△CBD的外接圆⊙O,连接OB,OD.∵四边形ABCD是菱形,∵∠A=∠C=60°,AB=BC=CD=AD,∴△ABD,△BCD都是等边三角形,∴BD=AD,∠BDF=∠DAE,∵DF=AE,∴△BDF≌△DAE(SAS),∴∠DBF=∠ADE,∵∠ADE+∠BDE=60°,∴∠DBF+∠BDP=60°,∴∠BPD=120°,∵∠C=60°,∴∠C+∠DPB=180°,∴B,C,D,P四点共圆,由BC=CD=BD=2√3,可得OB=OD=2,∵∠BOD=2∠C=120°,∴点P的运动的路径的长=120⋅π⋅2180=43π.故答案为43π.25.【答案】a(a−b)【知识点】因式分解-提公因式法【解析】解:a2−ab=a(a−b).直接把公因式a提出来即可.本题主要考查提公因式法分解因式,属于基础题.26.【答案】x>2【知识点】一元一次不等式的解法【解析】解:3x+1>7,移项得:3x>7−1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.移项、合并同类项、系数化为1即可得答案.此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤.27.【答案】13【知识点】根的判别式【解析】解:∵a=1,b=3,c=−1,∴△=b2−4ac=9+4=13.所以一元二次方程x2+3x−1=0根的判别式的值为13.故答案为:13.根据一元二次方程根的判别式△=b2−4ac即可求出值.本题考查了根的判别式,解决本题的关键是掌握根的判别式.28.【答案】(240−150)x=150×12【知识点】数学传统文化-代数类、由实际问题抽象出一元一次方程【解析】解:设快马x天可以追上慢马,依题意,得:(240−150)x=150×12.故答案为:(240−150)x=150×12.设快马x天可以追上慢马,根据两马的速度之差×快马出发的时间=慢马的速度×慢马提。

吉林省延边朝鲜族自治州2020年(春秋版)中考数学试卷D卷

吉林省延边朝鲜族自治州2020年(春秋版)中考数学试卷D卷

吉林省延边朝鲜族自治州2020年(春秋版)中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共14题;共28分)1. (2分) (2018八上·茂名期中) 下列四个实数中,其中最小的数是为()A . 0B . -3C .D .2. (2分) (2017七下·宝安期中) PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A . 0.25×10-5B . 0.25×10-6C . 2.5×10-5D . 2.5×10-63. (2分) (2019九上·临洮期末) 下列图形中,绕它的中心旋转60°后可以和原图形重合的是()A . 正六边形B . 正五边形C . 正方形D . 正三角形4. (2分)(2020·阜新) 如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A . 众数是9B . 中位数是8.5C . 平均数是9D . 方差是75. (2分)(2019·南山模拟) 下列计算正确的是()A . x4+x2=x6B . (﹣m)7÷(﹣m)2=﹣m5C . (3x2y)2=6x4y2D . (a+b)2=a2+b26. (2分)(2017·深圳模拟) 已知不等式组的解集如图所示(原点没标出),则a的值为()A . -1B . 0C . 1D . 27. (2分)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A . a户最长B . b户最长C . c户最长D . 三户一样长8. (2分) (2020九上·宁波月考) 如图,在等边三角形ABC中,AB、AC都是⊙O的弦,OM⊥AB ,ON⊥AC ,垂足分别为点M , N.如果MN=1,那么BC等于()A . 1B . 2C . 3D . 49. (2分) (2019七下·北京期中) 关于的叙述正确是()A . 在数轴上不存在表示的点B . = +C . =±2D . 与最接近的整数是310. (2分) (2019八下·江门月考) 如图,是的角平分线,于点,于点,连接交于.有以下三个结论:① ;② ;③当时,四边形是正方形;④ .其中正确的是()A . ②③B . ②④C . ①③④D . ②③④11. (2分)(2019·拱墅模拟) 如图,在△ABC中.∠ACB=90°,AC=4,,点D在AB上,将△ACD 沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D∥BC,则A1E的长为()A .B .C .D .12. (2分)(2017·桂平模拟) 将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A . 10cmB . 30cmC . 45cmD . 300cm13. (2分) (2020九上·榆林月考) 顺次连接一个四边形的各边中点,得到一个矩形,则下列四边形满足条件的是()①平行四边形;②菱形;③对角线相等的四边形;④对角线互相垂直的四边形.A . ②④B . ②③C . ①③D . ③④14. (2分)如图1,在菱形ABCD中,∠BAD=60°,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A . 线段ECB . 线段AEC . 线段EFD . 线段BF二、填空题 (共3题;共3分)15. (1分)(2020·湘西州) 若多边形的内角和是外角和的2倍,则该多边形是________边形.16. (1分)(2020·温州模拟) 某校为了解本校学生参加课外兴趣小组的情况,从全体学生中随机抽取了50名学生进行调查,并将调查结果绘制成统计表(如下),已知该校学生总数为1000人,由此可以估计参加体育类兴趣小组的学生为________兴趣小组美术类音乐类科技类体育类人数810122017. (1分) (2020七上·温州月考) 质点p从距原点1个单位的A点处向原点方向跳动,第一次从A跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2 ,第三次从A2跳动到OA2的中点A3处,如此不断地跳下去,则第10次跳动后,该质点到原点的距离为________.三、解答题 (共9题;共75分)18. (1分)如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,则楼BC的高度约为________ m(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)19. (5分) (2018·黑龙江模拟) 先化简,再求值,其中x=2sin60°-tan45°20. (10分)(2018·漳州模拟) 如图,在△ABC中,∠A=80°,∠B=40°.(1)求作线段BC的垂直平分线DE,垂足为E,交AB于点D;(要求;尺规作图,保留作图痕迹,不写作法) (2)在(1)的条件下,连接CD,求证:AC=CD.21. (6分)(2018·亭湖模拟) 甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.22. (10分)(2017·南山模拟) 某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.23. (10分) (2019八上·宜兴月考) 课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).24. (11分) (2018九上·孝感期末) 已知关于x的一元二次方程有两个不相等的实数根,.(1)求的取值范围;(2)若,满足,且为整数,求的值.25. (11分) (2018九上·西湖期中) 已知抛物线:y=ax2 过点(2,2)(1)直接写出抛物线的解析式;(2)如图,△ABC 的三个顶点都在抛物线上,且边 AC 所在的直线解析式为y=x+b,若 AC 边上的中线BD 平行于 y 轴,求的值;(3)如图,点 P 的坐标为(0,2),点 Q 为抛物线上上一动点,以 PQ 为直径作⊙M,直线 y=t 与⊙M 相交于 H、K 两点是否存在实数 t,使得 HK 的长度为定值?若存在,求出 HK 的长度;若不存在,请说明理由.26. (11分) (2019九上·台安月考) 如图①,E在AB上,、都为等腰直角三角形,,连接DB,以DE、DB为边作平行四边形DBFE,连接FC、DC.(1)求证:;;(2)将图①中绕A点顺时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)将图①中的绕A点顺时针旋转,,其它条件不变,当四边形DBFE为矩形时,直接写出的值.参考答案一、单选题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共3题;共3分)15-1、16-1、17-1、三、解答题 (共9题;共75分)18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

延边州2020年中考数学模拟试题及答案

延边州2020年中考数学模拟试题及答案

延边州2020年中考数学模拟试题及答案延边州2020年中考数学模拟试题及答案注意事项:1.考⽣务必将⾃⼰的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考⽣必须把答案写在答题卡上,在试卷上答题⼀律⽆效。

考试结束后,本试卷和答题卡⼀并交回。

3.本试卷满分120分,考试时间120分钟。

⼀、选择题(本题共12⼩题。

每⼩题3分,共36分。

在每⼩题给出的四个选项中,只有⼀项是正确的。

)1.﹣2的相反数是()A .2B .﹣2C .D .﹣2.下列运算正确的是() A .﹣a 2b +2a 2b =a 2b B .2a ﹣a =2C .3a 2+2a 2=5a 4D .2a +b =2ab3.作为“⼀带⼀路”倡议的重⼤先⾏项⽬,中国、巴基斯坦经济⾛廊建设进展快,成效显著,两年来,已有18个项⽬在建或建成,总投资额达185********美元,将“185********”⽤科学记数法可表⽰为() A .1.85×109B .1.85×1010C .1.85×1011D .185×1084.使分式24x x 有意义的x 的取值范围是()A .x =2B .x ≠2C .x =-2D .x ≠-2 5.下列选项中,左边的平⾯图形能够折成右边封闭的⽴体图形的是()A .B .C .D .6.通过测试从9位书法兴趣⼩组的同学中,择优挑选5位去参加中学⽣书法表演,若测试结果每位同学的成绩各不相同.则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的() A .平均数B .众数C .中位数D .⽅差7.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.18.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°9.在平⾯直⾓坐标系中,若点P(m﹣2,m+1)在第⼆象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣110.下列⼀元⼆次⽅程中,有两个相等的实数根的是()CA.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=011.在线段、等边三⾓形、平⾏四边形、圆、正六边形这五类图形中,既是轴对称图形⼜是中⼼对称图形的有()BA.2类B.3类C.4类D.5类12.已知⼆次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0⼆、填空题(本题共6⼩题,满分18分。

2020年中考三模数学试卷

2020年初中升学考试模拟试卷数学一、选择题:(本大题共有12小题,每小题3分,共36分。

每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑。

)1.下列整数中,与1841--0+⎪⎭⎫⎝⎛最接近的是( )A .1B .2C .3D .42.将一副三角板按如图方式放置,若∠BDC=65°,则∠EBA 的度数为( ) A .10° B .15° C .20° D .25°3.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的俯视图的面积是( ) A .2πcm 2B .25πcm 2 C .35πcm 2 D .38πcm 24.正六边形的内切圆与外接圆的面积比为( )A .1:2B .2:3C . 3:4D .4:55.经过某个十字路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现有两人经过该路口,则至少有一人直行的概率为( ) A . 31 B .94 C .95 D .326.在平面直角坐标系中,将函数y =﹣2x 的图象沿y 轴负方向平移4个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(﹣2,0)C .(﹣4,0)D .(0,﹣4)7.如图,平行四边形ABCD 中,CD =4,BC =6,按以下步骤作图:①以点C 为圆心,适当长度为半径作弧,分别交BC ,CD 于M ,N 两点:②分别以点M ,N 为圆心,以大于MN 的长为半径画弧,两弧在平行四边形ABCD 的内部交于点P ;③连接CP 并延长交AD 于点E ,交BA 的延长线于点F ,则AF 的长为( ) A .1 B .2 C .2.5 D .38. 如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40cm ,EF =20cm ,测得边DF 离地面的高度AC =1.5m ,CD =8m ,则树高AB 是( )A .4米B .4.5米C .5米D .5.5米9. 如果数m 使关于x 的方程(m +1)x 2﹣(2m ﹣1)x +m =0有实数根,且使关于x 的分式方程有正分数解,那么所有满足条件的整数m 的值的和为( )A .﹣6B .﹣5C .﹣4D .﹣310.如图,在平面直角坐标系xOy 中,△OAB 的边OB 在x 轴上,过点A 的反比例函数y =的图象交AB 于点C ,且AC :CB =2:1,S △OAC =,则k 的值为( ) A .B .C .2D .211.以下说法正确的是( )A .小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是B .一组对边平行,另一组对边相等的四边形是平行四边形C .点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =图象上,且x 1<x 2,则y 1<y 2D .对于一元二元方程ax 2+bx +c =0(ac <0),若b =0,则方程的两个根互为相反数12.如图,在正方形ABCD 中,对角线AC 、BD 相交于点O ,以AD 为边向外作等边△ADE ,AE =,连接CE ,交BD 于F ,若点M 为AB 的延长线上一点,连接CM ,连接FM 且FM 平分∠AMC ,下列选项正确的有( )①DF =﹣1;②S △AEC =;③∠AMC =60°; ④CM +AM =MF .A .1个B .2个C .3个D .4个二、填空题:(本大题共有8小题,每小题3分,共24分。

吉林省延边朝鲜族自治州2020年(春秋版)中考数学试卷D卷(精编)

吉林省延边朝鲜族自治州2020年(春秋版)中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题. (共12题;共24分)1. (2分) (2016七上·阳信期中) 将数13680000用科学记数法表示为()A . 0.1368×108B . 1.368×107C . 13.68×106D . 1.368×1082. (2分) (2017七上·鄂城期末) 骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A .B .C .D .3. (2分) (2019九下·广州月考) 若是实数,且分式,则的值是()A . 10B . 10或2C . 2D . 非上述答案4. (2分)(2019·江北模拟) 在直角坐标系中,⊙O的圆心在原点,半径为3,⊙A的圆心A的坐标为(﹣,1),半径为1,那么⊙O与⊙A的位置关系是()A . 内含B . 内切C . 相交D . 外切5. (2分)已知等腰三角形的两条边长分别为4和8,则它的周长为()A . 16B . 20C . 16或20D . 146. (2分)如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为()A . 6B . 3C . 2D .7. (2分)下面计算正确的是()A . a4-a4=a0B . a2÷a-2=a4C . a2÷a-2=a0D . a4×a6=a248. (2分)(2019·五华模拟) 不等式组的解集在数轴上表示为()A .B .C .D .9. (2分)已知等腰三角形的一个外角为130°,则这个等腰三角形的顶角为()A . 50°B . 80°C . 40°或65°D . 50°或80°10. (2分)(2019·白银) 下面的计算过程中,从哪一步开始出现错误().A . ①B . ②C . ③D . ④11. (2分)如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC为边作平行四边形PCQD,则对角线PQ的长的最小值是()A . 3B . 4C . 5D . 612. (2分)(2020·济南模拟) 如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()A .B . πC . 2πD . 4π二、填空题. (共6题;共9分)13. (2分)(﹣1)2009+(﹣1)2010=________;﹣(﹣)=________.14. (2分)▱ABCD的周长为60,对角线AC、BD交于O,如果△AOB的周长比△BOC的周长大8,则AD=________ CD=________15. (1分)(2019·杭州) 因式分解:1-x2=________.16. (1分)等腰三角形的周长为10cm,底边长为ycm,腰长为xcm,用x表示y的函数关系式为 ________ .17. (1分)(2017·新化模拟) 设x1 , x2是方程5x2﹣3x﹣1=0的两个实数根,则的值为________.18. (2分)(2017·大祥模拟) 某果园有果树200棵,从中随机抽取5棵,每棵果树的产量如下(单位:千克)98,102,97,103,105这5棵果树的平均产量为________千克,估计这200棵果树的总产量约为________千克.三、解答题. (共7题;共73分)19. (10分) (2020八下·江阴月考) 计算:(1)(2)20. (8分) (2018七上·萍乡期末) 实验初中组织了“英语手抄报”征集活动,现从中随机抽取部分作品,按A、B、C、D四个等级进行评价,并根据统计结果绘制了如下两幅不完整的统计图.(1)抽取了________份作品;(2)此次抽取的作品中等级为B的作品有________份,并补全条形统计图________;(3)若该校共征集到600份作品,请估计等级为A的作品约有多少份?21. (10分) (2017八下·苏州期中) 某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.22. (10分)(2020·绍兴模拟) 已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.23. (10分) (2016九下·苏州期中) 如图,在平面直角坐标系xOy中,△OAB如图放置,点A的坐标为(3,4),点P是AB边上的一点,过点P的反比例函数与OA边交于点E,连接OP.(1)如图1,若点B的坐标为(5,0),且△OPB的面积为,求反比例函数的解析式;(2)如图2,过P作PC∥OA,与OB交于点C,若,并且△OPC的面积为,求OE的长.24. (10分) (2016九上·仙游期中) 如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.(1)△DCF可以看做是△BCE绕点C旋转某个角度得到的吗?说明理由.(2)若∠CEB=60°,求∠EFD的度数.25. (15分) (2018九上·下城期末) 已知二次函数y=ax2+bx﹣3(a≠0),且a+b=3.(1)若其图象经过点(﹣3,0),求此二次函数的表达式.(2)若(m , n)为(1)中二次函数图象在第三象限内的点,请分别求m , n的取值范围.(3)点P(x1 , y1),Q(x2 , y2)是函数图象上两个点,满足x1+x2=2且x1<x2 ,试比较y1和y2的大小关系.参考答案一、选择题. (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题. (共6题;共9分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题. (共7题;共73分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。

2020年中考数学三模试卷(含答案)

2020年中考数学三模试卷一、选择题:本大题有10个小题,每小题3分,共30分。

1.-23等于( )A. -6B. 6C. -8D. 82.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D.3.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB均相切,切点分别是D、C、E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是().A. 9B. 10C. 12D. 144.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B 种饮料单价为x元/瓶,那么下面所列方程正确的是( )A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=135.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A. 8,9B. 8,8.5C. 16,8.5D. 16,10.56.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为( )A. 4 mB. mC. 5mD. m7.若等腰三角形中有一个角等于110°,则其它两个角的度数为().A. 70°B. 110°和70°C. 35°和35°D. 30°和70°8.已知点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A在第三象限,点B在第四象限,则下列判断一定正确的是()A. b<0B. b>0C. k<0D. k>09.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m 100m 95m 90m线与地面夹角30°45°45°60°A. 甲B. 乙C. 丙D. 丁10.已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A. 5B. 4C. 3D. 2二、填空题:本大题有6个小题,每小题4分,共24分11.把多项式2x2y﹣4xy2+2y3分解因式的结果是________12.一组数据7,x,8,y,10,z,6的平均数为4,则x,y,z的平均数是________.13.若圆锥的地面半径为,侧面积为,则圆锥的母线是________ .14.如图,和分别是的直径和弦,且,,交于点,若,则的长是________.15.一次函数y = kx + b ,当- 3 £x £ 1时,对应的y 值为1 £y £ 9 ,则k + b =________;16.已知等腰中,,,,在线段上,是线段上的动点,的最小值是________.三、解答题:本大题有7个小题,共66分17.化简:18.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表:(1)把表中所空各项数据填写完整;选手选拔成绩/环中位数平均数甲 10 9 8 8 10 9 ________ ________乙 10 10 8 10 7 ________ ________ 9(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.19.如图,已知:,,,点,分别在,上,连接,且,是上一点,的延长线交的延长线于点.(1)求证:;(2)求证:.20.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+ .(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A (10,0),B(8,2 ),C(0,2 ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.23.如图,在⊙中,弦,相交于点,且.(1)求证:;(2)若,,当时,求:①图中阴影部分面积.②弧的长.答案解析部分一、选择题1.C2.C3.D4.A5.A6.B7.C8.A9.D10.B二、填空题11.2y(x﹣y)2【解答】解:原式=2y(x2﹣2xy+y2)=2y(x﹣y)2.故答案为:2y(x﹣y)2.12.-1【解答】解:∵一组数据7,x,8,y,10,z,6的平均数为4,∴=4,解得,x+y+z=﹣3,∴=﹣1,故答案为:﹣1.13.13【解答】设母线长为R,则:解得:故答案为13.14.5【解答】连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5 ;在Rt△ACD中,∠A=30°,AD=2OA=10 ,∴AC=cos30°×10 =15,∴BC=AC-AB=15-10=5.故答案为515.9或1【解答】解:①当x=-3时,y=1;当x=1时,y=9,则解得:所以k + b =2+7=9;②当x=-3时,y=9;当x=1时,y=1,则解得:,所以k + b=-2+3=1.故答案为9或1.16.【解答】解:∵AC=BC,OC⊥AB,∴AB=2OB=6,∵OC=4,∴BC=5,∴A,B关于y轴对称,过A作AM⊥BC于M,交y轴于P,则此时,PM+PB的值最小且PM+PB的最小值=AM,∵∠AMB=∠COB=90°,∠ABM=∠CBO,∴△ABM∽△CBO,∴,即,∴AM=,∴PM+PB的最小值是,故答案为:.三、解答题:本大题有7个小题,共66分.17. 解:===1【分析】根据同分母分式的减法法则计算,再根据完全平方公式展开,合并同类项后约分计算即可求解.18. (1)9,9,9,9.5(2)解:s2甲= [2×(8﹣9)2+2×(9﹣9)2+2×(10﹣9)2]=;s2乙= [(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=(3)解:我认为推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适【解答】解:(1)甲:将六次测试成绩按从小到大的顺序排列为:8,8,9,9,10,10,中位数为(9+9)÷2=9,平均数为(10+9+8+8+10+9)÷6=9;乙:第6次成绩为9×6﹣(10+10+8+10+7)=9,将六次测试成绩按从小到大的顺序排列为:7,8,9,10,10,10,中位数为(9+10)÷2=9.5;填表如下:选手选拔成绩/环中位数平均数甲10 9 8 8 10 9 9 9乙10 10 8 10 7 9 9.5 919. (1)证明:∵,,∴,,又∵,∴(2)证明:∵在△BGF中,∴∠HGF>∠GBF,∵,∴∠ADE=∠GBF,∴20. (1)解:设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120(2)解:当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+ ﹣40)(﹣2x+120)= ﹣2250(3)解:当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y= ﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,于是,x=25时,y= ﹣2250有最大值y2,且y2=5400﹣2250=3150.∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元21. (1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),∴AP=CQ(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.422. (1)解:∵A,B两点的坐标分别是A(10,0)和B(8,2 ),∴tan∠OAB= = ,∴∠OAB=60°,当点A′在线段AB上时,∵∠OAB=60°,TA=TA′,∴△A′TA是等边三角形,且TP⊥AA′,∴TP=(10﹣t)sin60°= (10﹣t),A′P=AP= AT= (10﹣t),∴S=S△ATP= A′P•TP= (10﹣t)2,当A´与B重合时,AT=AB==4,所以此时6≤t<10(2)解:当点A′在线段AB的延长线上,且点P在线段AB(不与B重合)上时,纸片重叠部分的图形是四边形(如图①,其中E是TA′与CB的交点),假设点P与B重合时,AT=2AB=8,点T的坐标是(2,0),由(1)中求得当A´与B重合时,T的坐标是(6,0),则当纸片重叠部分的图形是四边形时,2<t<6(3)解:S存在最大值.①当6≤t<10时,S= (10﹣t)2,在对称轴t=10的左边,S的值随着t的增大而减小,∴当t=6时,S的值最大是2 ;②当2≤t<6时,由图①,重叠部分的面积S=S△A′TP﹣S△A′EB,∵△A′EB的高是A′B•sin60°,∴S= (10﹣t)2﹣(10﹣t﹣4)2×+ (﹣4)2×= (﹣t2+2t+30)=﹣(t﹣2)2+4 ,当t=2时,S的值最大是4 ;③当0<t≤2,即当点A′和点P都在线段AB的延长线上是(如图②,其中E是TA´与CB的交点,F是TP 与CB的交点),∵∠EFT=∠ETF,四边形ETAB是等腰梯形,∴EF=ET=AB=4,∴S= EF•OC= ×4×2 =4 .综上所述,S的最大值是4 ,此时t的值是t=2.23. (1)证明:连接,,∵,∴,∵,∴,∵,∴,∵,∴≌,∴.(2)解:作于,于,由()可知,∴,∵,,,,∴四边形是正方形,∴,∵,∴≌,∴,∵,,∴,,,∵,∴.①.②,∴,∴.。

吉林省延边朝鲜族自治州2020年(春秋版)中考数学试卷A卷

吉林省延边朝鲜族自治州2020年(春秋版)中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共7题;共14分)1. (2分)下列说法错误的是()A . 任何有理数都有倒数B . 互为倒数的两个数的积为1C . 互为倒数的两个数同号D . 1和-1互为负倒数2. (2分) (2020七下·云梦期中) 下列计算正确的是()A .B .C .D .3. (2分)(2017·泊头模拟) 如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A .B .C .D .4. (2分) (2020八上·郑州开学考) 在实数,3.1415926,π,,,,中,无理数的个数为()A . 2个B . 3个C . 4个D . 5个5. (2分) (2019七下·普陀期末) 如图,已知∠1 = ∠2 ,∠3 = 65° ,那么∠4 的度数是()A . 65°B . 95°C . 105°D . 115°6. (2分)(2017·新化模拟) 某校举行健美操比赛,甲、乙两班个班选20名学生参加比赛,两个班参赛学生的平均身高都是1.65米,其方差分别是s甲2=1.9,s乙2=2.4,则参赛学生身高比较整齐的班级是()A . 甲班B . 乙班C . 同样整齐D . 无法确定7. (2分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A . (31,50)B . (32,47)C . (33,46)D . (34,42)二、填空题 (共10题;共11分)8. (2分) (2017七下·个旧期中) 计算3 + ﹣2 =________,中x的取值范围是________.9. (1分)(2018·湘西) 分解因式:a2﹣9=________.10. (1分)据统计,2016年“五一”小长假湖北接待游客共14900000人次,14900000用科学记数法表示为________.11. (1分) (2017七上·北票期中) 若a、b互为倒数,c、d互为相反数,m为最大的负整数,则=________.12. (1分)(2017·六盘水模拟) 布袋中装有2个红球,3个白球,5个黑球,它们除颜色外均相同,则从袋中任意摸出一个球是白球的概率是________.13. (1分) (2018九上·垣曲期末) 如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y= (x<0)的图象经过点C,则k的值为________.14. (1分)如图,在半径为5cm的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为________.15. (1分) (2019七上·威海期末) 如图,有一块直角三角形纸片,两直角边AC=12,BC=16,现将直角边AC沿AD折叠,使它落在斜边AB上,且与AE重合,则△ADB的面积为________16. (1分)(2014·资阳) 已知⊙O1与⊙O2的圆心距为6,两圆的半径分别是方程x2﹣5x+5=0的两个根,则⊙O1与⊙O2的位置关系是________.17. (1分)已知bm=3,b2n=4,则bm+n=________.三、解答题 (共10题;共83分)18. (5分) (2018八上·濮阳开学考) 化简:19. (5分)(2019·柳州模拟) 解分式方程: ﹣ =1.20. (5分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.21. (11分)暑期,某学校将组织部分优秀学生分别到A、B、C、D四个地方进行夏令营活动,学校按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:(1)若去C地的车票占全部车票的30%,则去C地的车票数量是________ 张,补全统计图;(2)若学校采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么李明同学抽到去B地的概率是多少?(3)若有一张去A地的车票,红红和天天都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给红红,否则票给天天(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.22. (7分)如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s 速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t=________s时,四边形PBQE为菱形;②当t=________s时,四边形PBQE为矩形.23. (5分)如图所示,一块等腰直角三角形铁板,通过切割焊接成一个含有45°角的平行四边形,设计一种简要的方案并给出正确的理由.24. (10分)已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.25. (15分) (2015九下·海盐期中) 如图,以O为圆心的弧度数为60°,∠BOE=45°,DA⊥OB,EB⊥OB.(1)求的值;(2)若OE与交于点M,OC平分∠BOE,连接CM.说明CM为⊙O的切线;(3)在(2)的条件下,若BC=1,求tan∠BCO的值.26. (5分)(2012·盐城) 知识迁移当a>0且x>0时,因为,所以x﹣ + ≥0,从而x+ ≥ (当x= )是取等号).记函数y=x+ (a>0,x>0).由上述结论可知:当x= 时,该函数有最小值为2 .直接应用已知函数y1=x(x>0)与函数y2= (x>0),则当x=1时,y1+y2取得最小值为2.变形应用已知函数y1=x+1(x>﹣1)与函数y2=(x+1)2+4(x>﹣1),求的最小值,并指出取得该最小值时相应的x的值.实际应用已知某汽车的一次运输成本包含以下三个部分,一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?27. (15分)(2017·蒙自模拟) 如图,抛物线y=ax2+bx+3与x轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于C点,抛物线的对称轴l与x轴交于M点.(1)求抛物线的函数解析式;(2)设点P是直线l上的一个动点,当PA+PC的值最小时,求PA+PC长;(3)在直线l上是否存在点Q,使以M、O、Q为顶点的三角形与△AOC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案一、选择题 (共7题;共14分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、二、填空题 (共10题;共11分)8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共10题;共83分)18-1、19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、26-1、27-1、27-2、27-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年数学中考模拟试卷 一、选择题 1.如图是洛阳市某周内日最高气温的折线统计图,关于这7天的日最高气温说法正确的是( )

A.众数是28 B.中位数是24 C.平均数是26 D.方差是8 2.若正比例函数y=(a﹣4)x的图象经过第一、三象限,化简2(3)a的结果是( ) A.a﹣3 B.3﹣a C.(a﹣3)2 D.(3﹣a)2 3.如图,⊙O是△ABC的外接圆,OD⊥AB于点D,交⊙O于点E,∠C=60°,如果⊙O的半径为2,则结论错误的是( )

A.AD=DB B.AEEB C.OD=1 D.AB=3 4.已知二次函数y=x2﹣6x+m的最小值是1,那么m的值等于( ) A.10 B.4 C.5 D.6 5.今年寒假期间,小芮参观了中国扇博物馆,如图是她看到的折扇和团扇.已知折扇的骨柄长为30cm,扇面的宽度为18cm,某扇张开的角度为120°,若这两把扇子的扇面面积相等,则团扇的半径为( )cm.

A.67 B.87 C.66 D.86 6.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是( ) A.AD=CD B.∠A=∠DCB C.∠ADE=∠DCB D.∠A=∠DCA 7.下列运算正确的是( ) A.a2×a3=a6 B.a2+a2=2a4 C.a8÷a4=a4 D.(a2)3=a5

8.分式方程13125xx的解是( )

A.6x B.6x C.65x D.65x 9.利用运算律简便计算52×(–999)+49×(–999)+999正确的是 A.–999×(52+49)=–999×101=–100899 B.–999×(52+49–1)=–999×100=–99900 C.–999×(52+49+1)=–999×102=–101898 D.–999×(52+49–99)=–999×2=–1998 10.某校举行“社会主义核心价值观”演讲比赛,学校对30名参赛选手的成绩进行了分组统计,结果如下表:

分数x(分) 4≤x<5 5≤x<6 6≤x<7 7≤x<8 8≤x<9 9≤x<10

频数 2 6 8 5 5 4 由上可知,参赛选手分数的中位数所在的分数段为( ) A.5≤x<6 B.6≤x<7 C.7≤x<8 D.8≤x<9 11.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:

每天锻炼时间(分钟) 20 40 60 90 学生数 2 3 4 1 则关于这些同学的每天锻炼时间,下列说法错误的是( ) A.众数是60 B.平均数是21 C.抽查了10个同学 D.中位数是50 12.如图,在△ABC中,5,6ABACBC,动点P,Q在边BC上(P在Q的左边),且2PQ,则APAQ的最小值为( )

A.8 B.213 C.9 D.217 二、填空题 13.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是_____.

14.如图,AB∥CD.EF⊥AB于E,EF交CD于F,已知∠1=58°12',则∠2=______. 15.一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有____个. 16.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点,若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后2分钟内,两人相遇的次数为_____. 17.圆锥形冰淇淋的母线长是12cm,侧面积是60πcm2,则底面圆的半径长等于_____.

18.已知二元一次方程组52523xyxy,则x﹣y=_____. 三、解答题 19.如图,正例函数y=kx(k>0)的图象与反比例函数y=mx(m>0,x>0)的图象交于点A,过A作AB⊥x轴于点B.已知点B的坐标为(2,0),平移直线y=kx,使其经过点B,并与y轴交于点C(0,﹣3) (1)求k和m的值

(2)点M是线段OA上一点,过点M作MN∥AB,交反比例函数y=mx(m>0,x>0)的图象交于点N,

若MN=52,求点M的坐标

20.已知反比例函数3ymx和一次函数y=kx﹣1的图象都经过点P(m,﹣3m). (1)求点P的坐标和这个一次函数的解析式; (2)若点M(a,y1)和点N(a+1,y2)都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明y1大于y2. 21.某校1200名学生发起向贫困山区学生捐款活动,为了解捐款情况,学生会随机抽取了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②.

请根据以上信息,解答下列问题: (1)本次抽样调查的样本容量为____; (2)图①中“20元”对应扇形的圆心角的度数为_____°; (3)估计该校本次活动捐款金额为15元以上(含15元)的学生人数. 22.某水果零售商店,通过对市场行情的调查,了解到两种水果销路比较好,一种是冰糖橙,一种是睡美人西瓜.通过两次订货购进情况分析发现,买40箱冰糖橙和15箱睡美人西瓜花去2000元,买20箱冰糖橙和30箱睡美人西瓜花去1900元. (1)请求出购进这两种水果每箱的价格是多少元? (2)该水果零售商在五一期间共购进了这两种水果200箱,冰糖橙每箱以40元价格出售,西瓜以每箱50元的价格出售,获得的利润为w元.设购进的冰糖橙箱数为a箱,求w关于a的函数关系式; (3)在条件(2)的销售情况下,但是每种水果进货箱数不少于30箱,西瓜的箱数不少于冰糖橙箱数的5倍,请你设计进货方案,并计算出该水果零售商店能获得的最大利润是多少? 23.如图,在矩形ABCD中,点E在BC上,且AE=CE,请仅用一把无刻度的直尺按要求画出图形. (1)在图(1)中,画出∠DAE的角平分线; (2)在图(2)中,以AE为边画一个菱形.

24.计算:1019|3|5(3.14)2 25.解不等式组25332xxx①② 请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得_____________________; (Ⅱ)解不等式②,得_____________________; (Ⅲ)把不等式①和②的解集在数轴上表示出来: (Ⅳ)原不等式组的解集为_____________________.

【参考答案】*** 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A A D A A B C B B B B D 二、填空题

13.18 14.31°48′ 15. 16.5 17.5cm.

18.23 三、解答题 19.(1)k=32,m=6(2)(43,2) 【解析】 【分析】

(1)设平移后的直线解析式为y=kx+b,待定系数法求出k,A在32yx,求出A点坐标;又由A在反比例函数上,求出m; (2)设点36Ma,a,Na,2a,根据635MNaa22求出M点坐标,结合a的取值范围0<a<2,确定符合条件的M. 【详解】 解:(1)设平移后的直线解析式为y=kx+b, ∵点B的坐标为(2,0),点C(0,﹣3)代入,

得023kbb,

∴3k2b3, ∴3y=x32, ∴32yx, ∵A点横坐标为2, ∴A点纵坐标为3, ∴A(2,3),

∵A在反比例函数myx(m>0,x>0)的图象上, ∴m=6, ∴k=32,m=6;

(2)设点M(a,32a),N(a,6a), 635MNaa22 ,

∴3a2+5a﹣12=0, ∴a=﹣3或a=43, ∵M在线段OA之间, ∴0<a<2,

∴a=43,

∴M(43,2); 【点睛】 本题考查一次函数与反比例函数的图象及解析式,能够利用待定系数法求解析式是解题的必要方法,根据两点间的距离建立方程式求解点坐标的关键. 20.(1)P的坐标(1,﹣3),y=﹣2x﹣1;(2)见解析. 【解析】 【分析】 解:(1)将点P(m,−3m)代入反比例函数解析式可得m=1;故P的坐标(1,−3);再将点P(1,−3)代入一次函数解析式可得:−3=k−1;故k=−2;故一次函数的解析式为y=−2x−1; (2)将M、N的值代入一次函数解析式可得y1=−2a−1,y2=−2(a+1)−1=−2a−3,做差可得y1−y2=−2a−1−(−2a−3),由a的值判断可得y1大于y2. 【详解】 解:(1)将点P(m,﹣3m)代入反比例函数解析式可得:﹣3m=﹣3;即m=1,故P的坐标(1,﹣3), 将点P(1,﹣3)代入一次函数解析式可得:﹣3=k﹣1,故k=﹣2, 故一次函数的解析式为y=﹣2x﹣1; (2)∵M、N都在y=﹣2x﹣1上, ∴y1=﹣2a﹣1,y2=﹣2(a+1)﹣1=﹣2a﹣3, ∴y1﹣y2=﹣2a﹣1﹣(﹣2a﹣3)=﹣1+3=2>0, ∴y1>y2. 【点睛】 此题综合考查了反比例函数,一次函数等多个知识点.难度一般,综合性比较强,注意对各个知识点的灵活应用. 21.(1)50;(2)72°;(3)720

相关文档
最新文档