第5章 不确定推理习题解答

合集下载

2020高考数学刷题首秧第五章不等式推理与证明算法初步与复数考点测试39复数文含解析

2020高考数学刷题首秧第五章不等式推理与证明算法初步与复数考点测试39复数文含解析

考点测试39复数高考概览高考在本考点的常考题型为选择题,分值5分,低难度考纲研读1.理解复数的基本概念2.理解复数相等的充要条件3.了解复数的代数表示法及其几何意义4.会进行复数代数形式的四则运算5.了解复数代数形式的加、减运算的几何意义一、基础小题1.设z1=2+b i,z2=a+i,当z1+z2=0时,复数a+b i=()A.1+i B.2+i C.3 D.-2-i答案 D解析∵z1+z2=(2+b i)+(a+i)=(2+a)+(b+1)i=0,∴Error!∴Error!∴a+b i=-2-i,故选D.2.若(1+i)+(2-3i)=a+b i(a,b∈R,i是虚数单位),则a,b的值分别等于() A.3,-2 B.3,2 C.3,-3 D.-1,4答案 A解析由于(1+i)+(2-3i)=3-2i,所以3-2i=a+b i(a,b∈R),由复数相等定义,a=3,且b=-2,故选A.3.若复数z满足z+(3-4i)=1,则z的虚部是()A.-2 B.4 C.3 D.-4答案 B解析z=1-(3-4i)=-2+4i,所以z的虚部是4,故选B.4.如图,在复平面内,点A表示复数z,由图中表示z的共轭复数的点是()A.A B.BC.C D.D答案 B解析表示复数z的点A与表示z的共轭复数的点关于x轴对称,∴B点表示z.选B.z25.已知复数z=1-i,则=()z-1A.2 B.-2 C.2i D.-2i答案 Az2 1-i2解析==2,故选A.z-1 1-i-12+i6.已知z=(i是虚数单位),则复数z的实部是()-2i+1A.0 B.-1 C.1 D.2答案 A2+ii1-2i解析因为z===i,所以复数z的实部为0,故选A.-2i+1 -2i+1i2+i3+i47.复数=()1-i1 1 1 1A.--i B.-+i2 2 2 21 1 1 1C. -iD. +i2 2 2 2答案 Ci2+i3+i4 -i解析==1-i 1-i 1-i-1+-i+1-i1+i1-i1 1 ===-i.1-i1+i 2 221+a i8.设i是虚数单位,复数为纯虚数,则实数a为()2-i1 1A.2 B.-2 C.- D.2 2答案 A1+a i 1+a i2+i解析解法一:因为=2-i2-i2+i2-a+2a+1i=为纯虚数,所以2-a=0,a=2.51+a i解法二:令=m i(m≠0),∴1+a i=(2-i)m i=m+2m i.∴Error!∴a=2.2-i→→→9.在复平面内,向量AB对应的复数是2+i,向量CB对应的复数是-1-3i,则向量CA对应的复数为()A.1-2i B.-1+2iC.3+4i D.-3-4i答案 D→→→解析CA=CB-AB=-1-3i-2-i=-3-4i,故选D.10.设z是复数,则下列命题中的假命题是()A.若z2≥0,则z是实数B.若z2<0,则z是虚数C.若z是虚数,则z2≥0D.若z是纯虚数,则z2<0答案 C解析设z=a+b i(a,b∈R),z2=a2-b2+2ab i,由z2≥0,得Error!即Error!或Error!所以a=0时b=0,b=0时a∈R.故z是实数,所以A为真命题;由于实数的平方不小于0,所以当z2<0时,z一定是虚数,且为纯虚数,故B为真命题;由于i2=-1<0,故C为假命题,D为真命题.11.已知z是复数z的共轭复数,若z·z=2(z+i),则z=()A.-1-i B.-1+i C.1+i D.1-i答案 C解析设z=a+b i(a,b∈R),由z·z=2(z+i),有(a+b i)(a-b i)=2(a-b i+i),解得a=b=1,所以z=1+i,故选C.12.在复平面内,复数z对应的点是Z(1,-2),则复数z的共轭复数z=________.答案1+2i解析由复数z在复平面内的坐标有z=1-2i,所以共轭复数z=1+2i.二、高考小题13.(2017·全国卷Ⅲ)设复数z满足(1+i)z=2i,则|z|=()1 2A. B. C. 2 D.22 2答案 C2i2i1-i21+i 解析解法一:∵(1+i)z=2i,∴z====1+i.∴|z|=1+i1+i1-i 212+12= 2.解法二:∵(1+i)z=2i,∴|1+i|·|z|=|2i|,即12+12·|z|=2,∴|z|= 2.1-i14.(2018·全国卷Ⅰ)设z=+2i,则|z|=()1+i12A.0 B. C.1 D.2答案C1-i -2i1-i2解析因为z=+2i=+2i=+2i=i,所以|z|=0+12=1,故1+i 1+i1-i 2选C.1+2i15.(2018·全国卷Ⅱ) =()1-2i4 3 4 3A.--i B.-+i5 5 5 53 4 3 4C.--i D.-+i5 5 5 5答案 D1+2i1+2i 2 -3+4i 解析∵==,∴选D.1-2i 5516.(2018·全国卷Ⅲ)(1+i)(2-i)=()A.-3-i B.-3+iC.3-i D.3+i答案 D解析(1+i)(2-i)=2-i+2i-i2=3+i,故选D.217.(2018·浙江高考)复数(i为虚数单位)的共轭复数是()1-iA.1+i B.1-i C.-1+i D.-1-i答案 B2 21+i 2解析∵==1+i,∴的共轭复数为1-i.1-i 1-i1+i1-i118.(2018·北京高考)在复平面内,复数的共轭复数对应的点位于()1-iA.第一象限B.第二象限C.第三象限D.第四象限答案 D1 1+i 1 1 1 1 1 1解析∵==+i,∴其共轭复数为-i,又-i在复平面内对1-i 1-i1+i 2 2 2 2 2 21 1应的点,-在第四象限,故选D.2 219.(2017·北京高考)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a 的取值范围是()A.(-∞,1) B.(-∞,-1)C.(1,+∞)D.(-1,+∞)答案 B解析∵复数(1-i)(a+i)=a+1+(1-a)i在复平面内对应的点在第二象限,∴Error!∴a<-1.故选B.20.(2017·山东高考)已知a∈R,i是虚数单位.若z=a+3i,z·z=4,则a=() A.1或-1 B. 7或-7C.- 3 D. 3答案 A解析∵z=a+3i,∴z=a-3i.又∵z·z=4,∴(a+3i)(a-3i)=4,∴a2+3=4,∴a2=1,∴a=±1.故选A.21.(2017·全国卷Ⅰ)设有下面四个命题:1p1:若复数z满足∈R,则z∈R;zp2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=z2;p4:若复数z∈R,则z∈R.其中的真命题为()A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4答案 B1 1 a-b i解析对于命题p1,设z=a+b i(a,b∈R),由==∈R,得b=0,则z∈z a+b i a2+b2R成立,故正确;对于命题p2,设z=a+b i(a,b∈R),由z2=(a2-b2)+2ab i∈R,得a·b=0,则a=0或b=0,复数z为实数或纯虚数,故错误;对于命题p3,设z1=a+b i(a,b∈R),z2=c+d i(c,d∈R),由z1·z2=(ac-bd)+(ad+bc)i∈R,得ad+bc=0,不一定有z1=z2,故错误;对于命题p4,设z=a+b i(a,b∈R),则由z∈R,得b=0,所以z=a∈R成立,故正确.故选B.6+7i22.(2018·天津高考)i是虚数单位,复数=________.1+2i答案4-i6+7i6+7i1-2i20-5i解析===4-i.1+2i 51+2i1-2ia 23.(2016·天津高考)已知a,b∈R,i是虚数单位.若(1+i)·(1-b i)=a,则的值b为________.答案 2a 解析由(1+i)(1-b i)=a,得1+b+(1-b)i=a,则Error!解得Error!所以=2.b 24.(2017·浙江高考)已知a,b∈R,(a+b i)2=3+4i(i是虚数单位),则a2+b2=________,ab=________.解析解法一:∵(a+b i)2=a2-b2+2ab i,a,b∈R,∴Error!⇒Error!⇒Error!∴a2+b2=2a2-3=5,ab=2.解法二:由解法一知ab=2,又|(a+b i)2|=|3+4i|=5,∴a2+b2=5.三、模拟小题3-i25.(2018·郑州质检一)复数(i为虚数单位)的值为()iA.-1-3i B.-1+3iC.1+3i D.1-3i答案 A3-i 3i-i2解析==-1-3i,故选A.i i23+i26.(2018·唐山模拟)复数z=的共轭复数为()1-iA.1+2i B.1-2i C.2-2i D.-1+2i答案 B3+i 3+i1+i解析因为z===1+2i,所以z=1-2i.1-i1-i1+i1-i27.(2018·沈阳质检一)已知i为虚数单位,复数的共轭复数在复平面内对应的1+2i点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案 B1-i 1 31-i1-2i 1 3 解析因为==--i,所以其共轭复数为-+i,在复平面内1+2i 5 5 5 5 51 3所对应的点为-,,在第二象限,故选B.5 528.(2018·长春质检二)已知复数z=1+i(i是虚数单位),则z2+z=()A.1-2i B.1+3i C.1-3i D.1+2i答案 B解析z2+z=(1+i)2+1+i=1+2i+i2+1+i=1+3i.故选B.229.(2018·湖北八市联考)设复数z=(i为虚数单位),则下列命题错误的是()1-iA.|z|=2C.z的虚部为iD.z在复平面内对应的点位于第一象限答案 C21+i解析依题意,有z==1+i,则其虚部为1,故选C.1-i1+i30.(2018·石家庄质检二)已知复数z满足z i=i+m(i为虚数单位,m∈R),若z的虚部为1,则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限答案 A解析依题意,设z=a+i(a∈R),则由z i=i+m,得a i-1=i+m,从而Error!故z=1+i,在复平面内对应的点为(1,1),在第一象限,故选A.1-z31.(2018·太原模拟)设复数z满足=i(i为虚数单位),则z的共轭复数为()1+zA.i B.-i C.2i D.-2i答案 A1-z1-i1-i2解析由=i,整理得(1+i)z=1-i,z===-i,所以z的共1+z1+i1+i1-i轭复数为i.故选A.32.(2018·南昌一模)欧拉公式e i x=cos x+isin x(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在π 复变函数论里非常重要,被誉为“数学中的天桥”,根据欧拉公式可知,e i表示的复数位3于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限答案 Aπππ 1 3 π解析由欧拉公式e i=cos +isin =+i,所以e i表示的复数位于复平面3 3 3 2 2 3内的第一象限.选A.2-i33.(2018·衡阳三模)若复数z满足z+i=(i为虚数单位),则复数z的虚部为1+2i()A.2 B.2i C.-2 D.-2i答案C2-i解析由z+i=,得z+i=-i,z=-2i,故复数z的虚部为-2,故选C.1+2i34.(2018·青岛模拟)在复平面内,设复数z1,z2对应的点关于虚轴对称,z1=1+2i(i 是虚数单位),则z1z2=()A.5 B.-5 C.-1-4i D.-1+4i答案 B解析由题意z2=-1+2i,所以z1z2=(1+2i)(-1+2i)=-1+4i2=-5.故选B.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2018·成都诊断)已知关于t的一元二次方程t2+(2+i)t+2xy+(x-y)i=0(x,y∈R).(1)当方程有实根时,求点(x,y)的轨迹方程;(2)求方程的实根的取值范围.解(1)设实根为m,则m2+(2+i)m+2xy+(x-y)i=0,即(m2+2m+2xy)+(m+x-y)i=0.根据复数相等的充要条件得Error!由②得m=y-x,代入①得(y-x)2+2(y-x)+2xy=0,即(x-1)2+(y+1)2=2③.故点(x,y)的轨迹方程为(x-1)2+(y+1)2=2.(2)由(1)知点(x,y)的轨迹是一个圆,圆心为(1,-1),半径r=2,设方程的实根为m,则直线m+x-y=0与圆(x-1)2+(y+1)2=2有公共点,|1--1+m|所以≤2,即|m+2|≤2,即-4≤m≤0.2故方程的实根的取值范围是[-4,0].2.(2018·九江高二质检)已知M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若M∪P=P,求实数m的值.解∵M∪P=P,∴M⊆P.即(m2-2m)+(m2+m-2)i=-1或(m2-2m)+(m2+m-2)i=4i.当(m2-2m)+(m2+m-2)i=-1时,Earlybird有Error!解得m=1;当(m2-2m)+(m2+m-2)i=4i时,有Error!解得m=2.综上可知m=1或m=2.。

高考数学考点通关练第五章不等式推理与证明算法初步与复数单元质量测试课件理

高考数学考点通关练第五章不等式推理与证明算法初步与复数单元质量测试课件理

12
分)设
a、b、c
都是正数,求证:bc a
+abc+acb≥a+b+c.
证明 ∵a、b、c 都是正数,
∴bc,ca,ab都是正数. abc
∴bac+cba≥2c,当且仅当 a=b 时等号成立,
cba+acb≥2a,当且仅当 b=c 时等号成立,
acb+bac≥2b,当且仅当 a=c 时等号成立. 三式相加,得
17.(本小题满分 10 分)已知复数 z1 满足(z1-2)(1+i)=1 -i (i 为虚数单位),复数 z2 的虚部为 2,且 z1·z2 是实数,求 z2.
解 由(z1-2)(1+i)=1-i,得 z1-2=11- +ii, 即 z1=11+ -ii+2=1+ 1i- 1i- 2 i+2=2-i. 设 z2=a+2i(a∈R), 则 z1·z2=(2-i)(a+2i)=(2a+2)+(4-a)i. 又 z1·z2 是实数, ∴4-a=0,∴a=4.∴z2=4+2i.
10.[2016·湖北黄冈检测]在程序框图中,输入 N=8,按
程序运行后输出的结果是(
)
A.6
B.7
C.10
D.12
解析 由于程序中根据 k 的取值不同,产生的 T 值也 不同,故可将程序中的 k 值从小到大,每四个分为一组,即 (1,2,3,4),(5,6,7,8).∵当 k 为偶数时,T=2k;当k+2 1为偶数, 即 k=4n+3,n∈Z 时,T=k+4 1;否则,即 k=4n+1,n ∈Z 时,T=-k+4 3.故可知:每组的 4 个数中,偶数值乘以 12累加至 S,但两个奇数对应的 T 值相互抵消,即 S=12(2+4 +6+8)=10,故选 C.
18.(本小题满分 12 分)已知 x>0,y>0,且 2x+5y=20. (1)求 u=lg x+lg y 的最大值; (2)求1x+1y的最小值.

高考考点完全题数学(文)考点通关练习题 第五章 不等式、推理与证明、算法初步与复数 34 Word版含答案

高考考点完全题数学(文)考点通关练习题 第五章 不等式、推理与证明、算法初步与复数 34 Word版含答案

考点测试34 二元一次不等式组与简单的线性规划一、基础小题1.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A .32 B .23 C .43 D .34答案 C解析 不等式组表示的平面区域如图阴影部分所示,即△ABC .由⎩⎪⎨⎪⎧x +3y =4,3x +y =4,得交点A 的坐标为(1,1).又B 、C 两点的坐标分别为(0,4),⎝ ⎛⎭⎪⎫0,43,故S △ABC =12·|BC |·|x A |=12×⎝ ⎛⎭⎪⎫4-43×1=43,故选C.2.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x ≤2,x -y ≥0,则x +3y 的最大值是( )A .2B .3C .4D .5答案 D解析 作出不等式组表示的可行域,如图(阴影部分),易知z =x +3y 过点B (2,1)时取得最大值,z max =2+3×1=5.故选D.3.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +3y -7≤0,x ≥1,y ≥1,则|y -x |的最大值是( )A .2 2B .322C .4D .3答案 D解析 画出不等式组表示的平面区域(如图),计算得A (1,2),B (4,1),当直线z =x -y 过点A 时z min =-1,过点B 时z max =3,则-1≤x -y ≤3,则|y -x |≤3.4.若点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,y ≤-x +4,则x 2+y 2的最大值为( )A .10B .8C .16D .10答案 D解析 画出不等式组对应的可行域如图所示,易得A (1,1),|OA |=2,B (2,2),|OB |=22,C (1,3),|OC |=10,故|OP |的最大值为10,即x 2+y 2的最大值等于10.故选D.5.若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则yx的取值范围是( )A .(0,2)B .(0,2]C .(2,+∞)D . B .(22,32] C .(32,25] D .(0,22)∪(25,+∞)答案 D解析 圆C 不经过区域D 有两种情况:①区域D 在圆外;②区域D 在圆内.由于不等式组中的一个不等式对应的直线y =x 正好经过圆的圆心,故利用圆的性质即可求解出r 的取值范围.作出不等式组⎩⎪⎨⎪⎧x +y ≤4,y -x ≥0,x -1≥0表示的平面区域,得到如图所示的△MNP 及其内部,其中M (1,1),N (2,2),P (1,3),且MN ⊥PN .∵圆C :(x +1)2+(y +1)2=r 2(r >0)表示以C (-1,-1)为圆心,r 为半径的圆.∴由图可得,当半径满足r <CM 或r >CP 时,圆C 不经过区域D 上的点.又∵CM =+2++2=22,CP =+2++2=25,∴当0<r <22或r >25时,圆C 不经过区域D 上的点.12.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.答案 92解析 目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.二、高考小题13.若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12答案 C解析 作出不等式组所表示的平面区域,如图(阴影部分)所示,x 2+y 2表示平面区域内的点到原点的距离的平方,由图易知平面区域内的点A (3,-1)到原点的距离最大,所以x 2+y 2的最大值是10,故选C.14.若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A .355B . 2C .322D . 5答案 B解析 作出可行域如图.由⎩⎪⎨⎪⎧ 2x -y -3=0,x +y -3=0,得A (2,1),由⎩⎪⎨⎪⎧x +y -3=0,x -2y +3=0,得B (1,2).斜率为1的平行直线l 1,l 2分别过A ,B 两点时它们之间的距离最小,且最小值为A 、B 两点之间的距离|AB |= 2.故选B.15.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________. 答案 -10解析 可行域如图所示(包括边界),直线2x -y +1=0与x -2y -1=0相交于点(-1,-1),当目标函数线过(-1,-1)时,z 取最小值,z min =-10.16.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z =3x +y 的最大值为________.答案 4解析 由线性约束条件画出可行域,如图.解方程组⎩⎪⎨⎪⎧x +y -2=0,x -2y +1=0,得⎩⎪⎨⎪⎧x =1,y =1,即A 点坐标为(1,1).当动直线3x +y -z =0经过点A (1,1)时,z 取得最大值,z max =3×1+1=4.17.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.答案 216000解析 设生产产品A x 件,产品B y 件,依题意,得⎩⎪⎨⎪⎧x ≥0,y ≥0,1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,设生产产品A ,产品B 的利润之和为E 元,则E =2100x+900y .画出可行域(图略),易知最优解为⎩⎪⎨⎪⎧x =60,y =100,此时E max =216000.18.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤1,32解析 作出题中线性规划条件满足的可行域如图阴影部分所示,令z =ax +y ,即y =-ax +z .作直线l 0:y =-ax ,平移l 0,最优解可在A (1,0),B (2,1),C ⎝⎛⎭⎪⎫1,32处取得.故由1≤z ≤4恒成立,可得⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.三、模拟小题19.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1C .32D .2答案 B解析 约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m表示的可行域如图中阴影部分所示.当直线x =m 从如图所示的实线位置运动到过A 点的虚线位置时,m 取最大值.解方程组⎩⎪⎨⎪⎧x +y -3=0,y =2x得A 点坐标为(1,2),∴m 的最大值是1,故选B.20.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0.则z =2x -2y -1的取值范围是( )A .⎣⎢⎡⎦⎥⎤53,5B .C .⎣⎢⎡⎭⎪⎫53,5 D .⎣⎢⎡⎭⎪⎫-53,5 答案 D解析 画出不等式组所表示的区域,如图阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎡⎭⎪⎫-53,5.21.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43答案D解析 作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域(如图中阴影部分).由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1、l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3).故选D.22.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(1,1)处取得最大值,则a 的取值范围为( )A .(0,2)B .⎝ ⎛⎭⎪⎫0,12C .⎝ ⎛⎭⎪⎫0,13 D .⎝ ⎛⎭⎪⎫13,12 答案 B解析 约束条件表示的可行域如图中阴影部分所示,作直线l :ax +y =0,过点(1,1)作l 的平行线l ′,要满足题意,则直线l ′的斜率介于直线x +2y -3=0与直线y =1的斜率之间,因此,-12<-a <0,即0<a <12.故选B.23.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,4x +3y -12≤0,y -2≥0,则z =2x -y +1x +1的最大值为( )A .54 B .45 C .916 D .12答案 B解析 因为z =2x -y +1x +1=2x +2-y -1x +1=2-y +1x +1,所以要求z 的最大值,只需求u =y +1x +1的最小值,画出可行域(图略)可知,使u =y +1x +1取得最小值的最优解为⎝ ⎛⎭⎪⎫32,2,代入z=2x -y +1x +1,可求得z 的最大值为45,故选B.24.一个平行四边形的三个顶点的坐标为(-1,2),(3,4),(4,-2),点(x ,y )在这个平行四边形的内部或边上,则z =2x -5y 的最大值是( )A .16B .18C .20D .36答案 C解析 平行四边形的对角线互相平分,如图,当以AC 为对角线时,由中点坐标公式得AC 的中点为⎝⎛⎭⎪⎫32,0,也是BD 的中点,可知顶点D 1的坐标为(0,-4).同理,当以BC 为对角线时,得D 2的坐标为(8,0),当以AB 为对角线时,得D 3的坐标为(-2,8),由此作出(x ,y )所在的平面区域,如图阴影部分所示,由图可知当目标函数z =2x -5y 经过点D 1(0,-4)时,取得最大值,最大值为2×0-5×(-4)=20,故选C.一、高考大题1.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润. 解 (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.该二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3,这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24).所以z max =2×20+3×24=112.所以生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元. 二、模拟大题2.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解 (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y =0,过A (3,4)取最小值-2,过C (1,0)取最大值1.∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值范围是(-4,2).3.为保增长、促发展,某地计划投资甲、乙两项目,市场调研得知:甲项目每投资百万元需要配套电能2万千瓦,可提供就业岗位24个,增加GDP 260万元;乙项目每投资百万元需要配套电能4万千瓦,可提供就业岗位32个,增加GDP 200万元.已知该地为甲、乙两项目最多可投资3000万元,配套电能100万千瓦,并要求它们提供的就业岗位不少于800个,如何安排甲、乙两项目的投资额,增加的GDP 最大?解 设甲项目投资x (单位:百万元), 乙项目投资y (单位:百万元), 两项目增加的GDP 为z =260x +200y ,依题意,x 、y 满足⎩⎪⎨⎪⎧x +y ≤30,2x +4y ≤100,24x +32y ≥800,x ≥0,y ≥0,所确定的平面区域如图中阴影部分.解⎩⎪⎨⎪⎧x +y =30,2x +4y =100,得⎩⎪⎨⎪⎧x =10,y =20,即A (10,20);解⎩⎪⎨⎪⎧x +y =30,24x +32y =800,得⎩⎪⎨⎪⎧x =20,y =10,即B (20,10).设z =0,得y =-1.3x ,将直线y =-1.3x 平移至经过点B (20,10),即甲项目投资2000万元,乙项目投资1000万元,两项目增加的GDP最大.。

高考考点完全题数学(文)考点通关练习题 第五章 不等式、推理与证明、算法初步与复数 33 word版含答案

高考考点完全题数学(文)考点通关练习题 第五章 不等式、推理与证明、算法初步与复数 33 word版含答案

考点测试33 一元二次不等式及其解法一、基础小题1.不等式(x -1)(3-x )<0的解集是( ) A .(1,3)B .C .(-∞,1)∪(3,+∞)D .{x |x ≠1且x ≠3}答案 C解析 根据题意,(x -1)(3-x )<0⇔(x -1)(x -3)>0,所以其解集为(-∞,1)∪(3,+∞).故选C.2.若不等式ax 2+bx -2<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2<x <14,则ab =( ) A .-28 B .-26 C .28 D .26答案 C解析 ∵-2,14是方程ax 2+bx -2=0的两根,∴⎩⎪⎨⎪⎧-2a =-2×14=-12,-b a =-74,∴⎩⎪⎨⎪⎧a =4,b =7,∴ab =28.3.已知f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2+3x ,x <0,则不等式f (x )<f (4)的解集为( )A .{x |x ≥4}B .{x |x <4}C .{x |-3<x <0}D .{x |x <-3}答案 B解析 f (4)=42=2,不等式即为f (x )<2.当x ≥0时,由x2<2,得0≤x <4;当x <0时,由-x 2+3x <2,得x <1或x >2,因此x <0.综上,x <4.故f (x )<f (4)的解集为{x |x <4}.4.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是( ) A .B .(-4,4)C .(-∞,-4]∪∪ C .∪(0,+∞)D .∪(0,+∞).6.不等式|x 2-x |<2的解集为( ) A .(-1,2) B .(-1,1) C .(-2,1) D .(-2,2)答案 A解析 由|x 2-x |<2,得-2<x 2-x <2,即⎩⎪⎨⎪⎧x 2-x <2, ①x 2-x >-2. ②由①,得-1<x <2.由②,得x ∈R .所以解集为(-1,2),故选A.7.抛物线y =ax 2+bx +c 与x 轴的两个交点分别为(-2,0),(2,0),则ax 2+bx +c >0的解的情况是( )A .{x |-2<x <2}B .{x |x >2或x <-2}C .{x |x ≠±2}D .不确定,与a 的符号有关答案 D解析 当a >0时,解集为{x |x >2或x <-2};当a <0时,解集为{x |-2<x <2},故选D.8.如果二次函数y =3x 2+2(a -1)x +b 在区间(-∞,1]上是减函数,那么a 的取值范围是( )A .(-∞,-2)B .(2,+∞)C .(-∞,-2]D .上是减函数,∴-2a -12×3≥1,解得a ≤-2.故选C.9.设a ∈R ,关于x 的不等式ax 2+(1-2a )x -2>0的解集有下列四个命题:①原不等式的解集不可能为∅;②若a =0,则原不等式的解集为(2,+∞);③若a <-12,则原不等式的解集为⎝ ⎛⎭⎪⎫-1a ,2;④若a >0,则原不等式的解集为⎝ ⎛⎭⎪⎫-∞,-1a ∪(2,+∞).其中正确命题的个数为( ) A .1 B .2 C .3 D .4答案 C解析 原不等式等价于(ax +1)(x -2)>0.当a =0时,不等式化为x -2>0,得x >2.当a ≠0时,方程(ax +1)(x -2)=0的两根分别是2和-1a ,若a <-12,解不等式得-1a<x <2;若a =-12,不等式的解集为∅;若-12<a <0,解不等式得2<x <-1a ;若a >0,解不等式得x <-1a或x >2.故①为假命题,②③④为真命题.10.若函数f (x )=x 2+ax +1的定义域为R ,则实数a 的取值范围是( ) A .(-2,2) B .(-∞,-2)∪(2,+∞)C .(-∞,-2]∪ 解析 由题意知,对于任意x ∈R ,x 2+ax +1≥0恒成立,则Δ=a 2-4×1×1=a 2-4≤0,解得-2≤a ≤2,故选D.11.设函数f (x )=x 2-ax +a +3,g (x )=ax -2a ,若存在x 0∈R ,使得f (x 0)<0和g (x 0)<0同时成立,则实数a 的取值范围为( )A .(7,+∞)B .(-∞,-2)∪(6,+∞)C .(-∞,-2)D .(-∞,-2)∪(7,+∞)答案 A解析 由f (x )=x 2-ax +a +3知f (0)=a +3,f (1)=4,又存在x 0∈R ,使得f (x 0)<0,知Δ=a 2-4(a +3)>0,即a <-2或a >6.又g (x )=ax -2a 的图象恒过(2,0),故当a >6时,作出函数f (x )和g (x )的图象如图1所示,当a <-2时,作出函数f (x )和g (x )的图象如图2所示.由函数的图象知,当a >6时,g (x 0)<0⇔x 0<2,∴⎩⎪⎨⎪⎧a >6,f2<0,∴a >7.当a <-2时,g (x 0)<0⇔x 0>2,此时函数f (x )=x 2-ax +a +3的图象的对称轴x =a2<0,故函数f (x )在区间⎝ ⎛⎭⎪⎫a2,+∞上为增函数,又f (1)=4,∴f (x 0)<0不成立.综上,实数a 的取值范围为a >7,故选A.12.已知函数f (x )对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间内的所有零点之和等于________.答案 4解析 因为函数f (x +1)是奇函数,所以函数f (x +1)的图象关于点(0,0)对称,把函数f (x +1)的图象向右平移1个单位可得函数f (x )的图象,所以函数f (x )的图象关于点(1,0)对称,可得-f ⎝ ⎛⎭⎪⎫32+x =f ⎝ ⎛⎭⎪⎫12-x ,又因为f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,所以-f ⎝ ⎛⎭⎪⎫32+x =f ⎝ ⎛⎭⎪⎫12+x ,再令x 取x +1可得-f ⎝ ⎛⎭⎪⎫52+x =f ⎝ ⎛⎭⎪⎫32+x ,所以有f ⎝ ⎛⎭⎪⎫52+x =f ⎝ ⎛⎭⎪⎫12+x ,可得f (x )=f (x +2),所以函数f (x )的周期为2,图象如图所示,故方程f (x )=-12在区间内的所有零点之和为12×2×4=4.二、高考小题13.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9 D .c >9答案 C解析 由⎩⎪⎨⎪⎧f-1=f -2,f -1=f -3,得⎩⎪⎨⎪⎧3a -b =7,4a -b =13,解得⎩⎪⎨⎪⎧a =6,b =11.则有f (-1)=c -6,由0<f (-1)≤3,得6<c ≤9.14.设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ) A .(0,4] B .答案 B解析 由题意可得M ={x |-1<x <4},所以M ∩N ={x |0≤x <4}.15.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A .5B .7C .154D .152答案 A解析 解法一:∵由x 2-2ax -8a 2<0(a >0), 得(x -4a )(x +2a )<0,即-2a <x <4a , ∴x 1=-2a ,x 2=4a .∵x 2-x 1=4a -(-2a )=6a =15, ∴a =52.故选A.解法二:由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2, 故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52,故选A.16.不等式-x 2-3x +4>0的解集为________(用区间表示).答案 (-4,1)解析 不等式-x 2-3x +4>0等价于x 2+3x -4<0,解得-4<x <1.17.已知函数f (x )=x 2+mx -1,若对于任意x ∈,都有f (x )<0,则实数m 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-22,0 解析 由题可得f (x )<0对于x ∈恒成立,即⎩⎪⎨⎪⎧f m =2m 2-1<0,fm +1=2m 2+3m <0,解得-22<m <0.18.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.答案 (-7,3)解析 当x ≥0时,f (x )=x 2-4x <5的解集为x <2是x 2-3x +2<0成立的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由x 2-3x +2<0,解得1<x <2,再根据已知条件易知选A. 20.关于x 的不等式x -a x -bx -c≥0的解为-1≤x <2或x ≥3,则点P (a +b ,c )位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 由不等式的解集可知-1,3是方程(x -a )(x -b )=0的两个根,且c =2,不妨设a =-1,b =3,∴a +b =2,即点P (a +b ,c )的坐标为(2,2),位于第一象限.21.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,2]C .(-2,2)D .(-2,2]答案 D解析 当a -2=0,即a =2时,-4<0,恒成立;当a -2≠0时,则⎩⎪⎨⎪⎧a -2<0,4a -22+16a -2<0,解得-2<a <2,∴-2<a ≤2.故选D.22.“已知关于x 的不等式ax 2+bx +c >0的解集为(1,2),解关于x 的不等式cx 2+bx+a >0.”给出如下的一种解法:解:由ax 2+bx +c >0的解集为(1,2),得a ⎝ ⎛⎭⎪⎫1x 2+b ⎝ ⎛⎭⎪⎫1x +c >0的解集为⎝⎛⎭⎪⎫12,1,即关于x的不等式cx 2+bx +a >0的解集为⎝ ⎛⎭⎪⎫12,1.参考上述解法:若关于x 的不等式bx +a +x +b x +c <0的解集为⎝⎛⎭⎪⎫-1,-13∪⎝ ⎛⎭⎪⎫12,1,则关于x 的不等式b x -a -x -bx -c>0的解集为( )A .(-1,1)B .⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫13,1C .⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫13,1D . ⎛⎪⎫-∞,-12∪ ⎛⎪⎫13,+∞( )A .(-3,-3)B .(-3,1)C .(-∞,2-3)∪(2+3,+∞)D .(-3,1)∪(2+3,+∞) 答案 D解析 画出函数f (x )的图象如图所示,可知函数f (x )在(-∞,3)上是减函数,在(3,+∞)上是增函数.∵3-x 2≤3,故分以下几种情形:(1)若3-x 2≤0且2x ≤0,即x ≤-3,则2-(3-x 2)<2-2x .解得-3<x <1,∴-3<x ≤- 3.(2)若-3<x ≤0,则0<3-x 2≤3,2x ≤0,观察图象知f (3-x 2)<f (2x )恒成立. (3)若0<x ≤3,则2x <3-x 2或3-(3-x 2)<2x -3(3-x 2离对称轴直线x =3比2x 离对称轴近),解得0<x <1.(4)若x >3,则3-x 2<0,2x >0,要求2-(3-x 2)<(2x )2-6×2x +2,解得x >2+ 3. 综上,得关于x 的不等式f (3-x 2)<f (2x )的解集为(-3,1)∪(2+3,+∞). 24.已知函数f (x )=2x 2+bx +c (b ,c ∈R )的值域为已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a 、b 的值. 解 (1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3,∴原不等式可化为a 2-6a -3<0,解得3-23<a <3+2 3. ∴原不等式的解集为{a |3-23<a <3+23}.(2)f (x )>b 的解集为(-1,3)等价于方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, 等价于⎩⎪⎨⎪⎧-1+3=a 6-a3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.2.已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈,f (x )<5-m 恒成立,求实数m 的取值范围.解 (1)由题意可得m =0或⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇒m =0或-4<m <0⇒-4<m ≤0.故m 的取值范围是(-4,0]. (2)∵f (x )<-m +5⇒m (x 2-x +1)<6, ∵x 2-x +1>0, ∴m <6x 2-x +1对于x ∈恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈,记h (x )=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈上为增函数.则g (x )在上为减函数, ∴min =g (3)=67,∴m <67.∴m 的取值范围是⎝⎛⎭⎪⎫-∞,67.3.已知抛物线y =(m -1)x 2+(m -2)x -1(x ∈R ). (1)当m 为何值时,抛物线与x 轴有两个交点?(2)若关于x 的方程(m -1)x 2+(m -2)x -1=0的两个不等实根的倒数平方和不大于2,求m 的取值范围.解 (1)根据题意,m ≠1且Δ>0,即Δ=(m -2)2-4(m -1)(-1)>0,得m 2>0, 所以m ≠1且m ≠0.(2)在m ≠0且m ≠1的条件下,⎩⎪⎨⎪⎧x 1+x 2=m -21-m,x 1·x 2=11-m,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=⎝ ⎛⎭⎪⎫1x 1+1x 22-2x 1x 2=(m -2)2+2(m -1)≤2. 得m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}. 4.已知函数f (x )=ax 2+x -a ,a ∈R . (1)若函数f (x )有最大值178,求实数a 的值;(2)解不等式f (x )>1(a ∈R ).解 (1)当a ≥0时不合题意,f (x )=a ⎝ ⎛⎭⎪⎫x +12a 2-1+4a 24a ,当a <0时,f (x )有最大值,且-1+4a 24a =178,解得a =-2或-18.(2)f (x )>1,即ax 2+x -a >1,(x -1)(ax +a +1)>0, ①当a =0时,{x |x >1};②当a >0时,(x -1)⎝ ⎛⎭⎪⎫x +1+1a >0,即⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >1或x <-1-1a ;③当a =-12时,(x -1)2<0,解集为∅;④当-12<a <0时,(x -1)·⎝⎛⎭⎪⎫x +1+1a <0,。

高考考点完全题数学(文)考点通关练习题 第五章 不等式、推理与证明、算法初步与复数 33 Word版含答案

高考考点完全题数学(文)考点通关练习题 第五章 不等式、推理与证明、算法初步与复数 33 Word版含答案

考点测试33 一元二次不等式及其解法一、基础小题1.不等式(x -1)(3-x )<0的解集是( ) A .(1,3)B .C .(-∞,1)∪(3,+∞)D .{x |x ≠1且x ≠3}答案 C解析 根据题意,(x -1)(3-x )<0⇔(x -1)(x -3)>0,所以其解集为(-∞,1)∪(3,+∞).故选C.2.若不等式ax 2+bx -2<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2<x <14,则ab =( ) A .-28 B .-26 C .28 D .26答案 C解析 ∵-2,14是方程ax 2+bx -2=0的两根,∴⎩⎪⎨⎪⎧-2a =-2×14=-12,-b a =-74,∴⎩⎪⎨⎪⎧a =4,b =7,∴ab =28.3.已知f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2+3x ,x <0,则不等式f (x )<f (4)的解集为( )A .{x |x ≥4}B .{x |x <4}C .{x |-3<x <0}D .{x |x <-3}答案 B解析 f (4)=42=2,不等式即为f (x )<2.当x ≥0时,由x2<2,得0≤x <4;当x <0时,由-x 2+3x <2,得x <1或x >2,因此x <0.综上,x <4.故f (x )<f (4)的解集为{x |x <4}.4.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是( ) A .B .(-4,4)C .(-∞,-4]∪∪ C .∪(0,+∞)D .∪(0,+∞).6.不等式|x 2-x |<2的解集为( ) A .(-1,2) B .(-1,1) C .(-2,1) D .(-2,2)答案 A解析 由|x 2-x |<2,得-2<x 2-x <2,即⎩⎪⎨⎪⎧x 2-x <2, ①x 2-x >-2. ②由①,得-1<x <2.由②,得x ∈R .所以解集为(-1,2),故选A.7.抛物线y =ax 2+bx +c 与x 轴的两个交点分别为(-2,0),(2,0),则ax 2+bx +c >0的解的情况是( )A .{x |-2<x <2}B .{x |x >2或x <-2}C .{x |x ≠±2}D .不确定,与a 的符号有关答案 D解析 当a >0时,解集为{x |x >2或x <-2};当a <0时,解集为{x |-2<x <2},故选D.8.如果二次函数y =3x 2+2(a -1)x +b 在区间(-∞,1]上是减函数,那么a 的取值范围是( )A .(-∞,-2)B .(2,+∞)C .(-∞,-2]D .上是减函数,∴-a -2×3≥1,解得a ≤-2.故选C.9.设a ∈R ,关于x 的不等式ax 2+(1-2a )x -2>0的解集有下列四个命题:①原不等式的解集不可能为∅;②若a =0,则原不等式的解集为(2,+∞);③若a <-12,则原不等式的解集为⎝ ⎛⎭⎪⎫-1a ,2;④若a >0,则原不等式的解集为⎝ ⎛⎭⎪⎫-∞,-1a ∪(2,+∞).其中正确命题的个数为( ) A .1 B .2 C .3 D .4答案 C解析 原不等式等价于(ax +1)(x -2)>0.当a =0时,不等式化为x -2>0,得x >2.当a ≠0时,方程(ax +1)(x -2)=0的两根分别是2和-1a ,若a <-12,解不等式得-1a<x <2;若a =-12,不等式的解集为∅;若-12<a <0,解不等式得2<x <-1a ;若a >0,解不等式得x <-1a或x >2.故①为假命题,②③④为真命题.10.若函数f (x )=x 2+ax +1的定义域为R ,则实数a 的取值范围是( ) A .(-2,2) B .(-∞,-2)∪(2,+∞)C .(-∞,-2]∪ 答案 D解析 由题意知,对于任意x ∈R ,x 2+ax +1≥0恒成立,则Δ=a 2-4×1×1=a 2-4≤0,解得-2≤a ≤2,故选D.11.设函数f (x )=x 2-ax +a +3,g (x )=ax -2a ,若存在x 0∈R ,使得f (x 0)<0和g (x 0)<0同时成立,则实数a 的取值范围为( )A .(7,+∞)B .(-∞,-2)∪(6,+∞)C .(-∞,-2)D .(-∞,-2)∪(7,+∞)答案 A解析 由f (x )=x 2-ax +a +3知f (0)=a +3,f (1)=4,又存在x 0∈R ,使得f (x 0)<0,知Δ=a 2-4(a +3)>0,即a <-2或a >6.又g (x )=ax -2a 的图象恒过(2,0),故当a >6时,作出函数f (x )和g (x )的图象如图1所示,当a <-2时,作出函数f (x )和g (x )的图象如图2所示.由函数的图象知,当a >6时,g (x 0)<0⇔x 0<2,∴⎩⎪⎨⎪⎧a >6,f,∴a >7.当a <-2时,g (x 0)<0⇔x 0>2,此时函数f (x )=x 2-ax +a +3的图象的对称轴x =a2<0,故函数f (x )在区间⎝ ⎛⎭⎪⎫a2,+∞上为增函数,又f (1)=4,∴f (x 0)<0不成立.综上,实数a 的取值范围为a >7,故选A.12.已知函数f (x )对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间内的所有零点之和等于________.答案 4解析 因为函数f (x +1)是奇函数,所以函数f (x +1)的图象关于点(0,0)对称,把函数f (x +1)的图象向右平移1个单位可得函数f (x )的图象,所以函数f (x )的图象关于点(1,0)对称,可得-f ⎝ ⎛⎭⎪⎫32+x =f ⎝ ⎛⎭⎪⎫12-x ,又因为f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,所以-f ⎝ ⎛⎭⎪⎫32+x =f ⎝ ⎛⎭⎪⎫12+x ,再令x 取x +1可得-f ⎝ ⎛⎭⎪⎫52+x =f ⎝ ⎛⎭⎪⎫32+x ,所以有f ⎝ ⎛⎭⎪⎫52+x =f ⎝ ⎛⎭⎪⎫12+x ,可得f (x )=f (x +2),所以函数f (x )的周期为2,图象如图所示,故方程f (x )=-12在区间内的所有零点之和为12×2×4=4.二、高考小题13.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9 D .c >9答案 C解析 由⎩⎪⎨⎪⎧f-=f -,f -=f -,得⎩⎪⎨⎪⎧3a -b =7,4a -b =13,解得⎩⎪⎨⎪⎧a =6,b =11.则有f (-1)=c -6,由0<f (-1)≤3,得6<c ≤9.14.设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ) A .(0,4] B .答案 B解析 由题意可得M ={x |-1<x <4},所以M ∩N ={x |0≤x <4}.15.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A .52 B .72 C .154D .152答案 A解析 解法一:∵由x 2-2ax -8a 2<0(a >0), 得(x -4a )(x +2a )<0,即-2a <x <4a , ∴x 1=-2a ,x 2=4a .∵x 2-x 1=4a -(-2a )=6a =15, ∴a =52.故选A.解法二:由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2, 故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52,故选A.16.不等式-x 2-3x +4>0的解集为________(用区间表示).答案 (-4,1)解析 不等式-x 2-3x +4>0等价于x 2+3x -4<0,解得-4<x <1.17.已知函数f (x )=x 2+mx -1,若对于任意x ∈,都有f (x )<0,则实数m 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-22,0 解析 由题可得f (x )<0对于x ∈恒成立,即⎩⎪⎨⎪⎧f m =2m 2-1<0,fm +=2m 2+3m <0,解得-22<m <0.18.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.答案 (-7,3)解析 当x ≥0时,f (x )=x 2-4x <5的解集为x <2是x 2-3x +2<0成立的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由x 2-3x +2<0,解得1<x <2,再根据已知条件易知选A. 20.关于x 的不等式x -a x -bx -c≥0的解为-1≤x <2或x ≥3,则点P (a +b ,c )位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 由不等式的解集可知-1,3是方程(x -a )(x -b )=0的两个根,且c =2,不妨设a =-1,b =3,∴a +b =2,即点P (a +b ,c )的坐标为(2,2),位于第一象限.21.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,2]C .(-2,2)D .(-2,2]答案 D解析 当a -2=0,即a =2时,-4<0,恒成立;当a -2≠0时,则⎩⎪⎨⎪⎧a -2<0,a -2+a -,解得-2<a <2,∴-2<a ≤2.故选D.22.“已知关于x 的不等式ax 2+bx +c >0的解集为(1,2),解关于x 的不等式cx 2+bx+a >0.”给出如下的一种解法:解:由ax 2+bx +c >0的解集为(1,2),得a ⎝ ⎛⎭⎪⎫1x 2+b ⎝ ⎛⎭⎪⎫1x +c >0的解集为⎝⎛⎭⎪⎫12,1,即关于x的不等式cx 2+bx +a >0的解集为⎝ ⎛⎭⎪⎫12,1.参考上述解法:若关于x 的不等式bx +a +x +b x +c <0的解集为⎝⎛⎭⎪⎫-1,-13∪⎝ ⎛⎭⎪⎫12,1,则关于x 的不等式b x -a -x -bx -c>0的解集为( )A .(-1,1)B .⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫13,1C .⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫13,1D .⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫13,+∞ 答案 B 解析 由bx +a +x +b x +c <0的解集为⎝⎛⎭⎪⎫-1,-13∪⎝ ⎛⎭⎪⎫12,1,得b -x +a +-x +b -x +c <0的解集为⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫13,1,即b x -a -x -b x -c >0的解集为⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫13,1.故选B.23.已知f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,x 2-6x +2,x >0,则关于x 的不等式f (3-x 2)<f (2x )的解集为( )A .(-3,-3)B .(-3,1)C .(-∞,2-3)∪(2+3,+∞)D .(-3,1)∪(2+3,+∞) 答案 D解析 画出函数f (x )的图象如图所示,可知函数f (x )在(-∞,3)上是减函数,在(3,+∞)上是增函数.∵3-x 2≤3,故分以下几种情形:(1)若3-x 2≤0且2x ≤0,即x ≤-3,则2-(3-x 2)<2-2x .解得-3<x <1,∴-3<x ≤- 3.(2)若-3<x ≤0,则0<3-x 2≤3,2x ≤0,观察图象知f (3-x 2)<f (2x )恒成立. (3)若0<x ≤3,则2x <3-x 2或3-(3-x 2)<2x -3(3-x 2离对称轴直线x =3比2x 离对称轴近),解得0<x <1.(4)若x >3,则3-x 2<0,2x >0,要求2-(3-x 2)<(2x )2-6×2x +2,解得x >2+ 3. 综上,得关于x 的不等式f (3-x 2)<f (2x )的解集为(-3,1)∪(2+3,+∞). 24.已知函数f (x )=2x 2+bx +c (b ,c ∈R )的值域为已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a 、b 的值. 解 (1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3,∴原不等式可化为a 2-6a -3<0,解得3-23<a <3+2 3. ∴原不等式的解集为{a |3-23<a <3+23}.(2)f (x )>b 的解集为(-1,3)等价于方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, 等价于⎩⎪⎨⎪⎧-1+3=a-a3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.2.已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈,f (x )<5-m 恒成立,求实数m 的取值范围.解 (1)由题意可得m =0或⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇒m =0或-4<m <0⇒-4<m ≤0.故m 的取值范围是(-4,0]. (2)∵f (x )<-m +5⇒m (x 2-x +1)<6, ∵x 2-x +1>0, ∴m <6x 2-x +1对于x ∈恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈,记h (x )=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈上为增函数.则g (x )在上为减函数, ∴min =g (3)=67,∴m <67.∴m 的取值范围是⎝⎛⎭⎪⎫-∞,67.3.已知抛物线y =(m -1)x 2+(m -2)x -1(x ∈R ). (1)当m 为何值时,抛物线与x 轴有两个交点?(2)若关于x 的方程(m -1)x 2+(m -2)x -1=0的两个不等实根的倒数平方和不大于2,求m 的取值范围.解 (1)根据题意,m ≠1且Δ>0,即Δ=(m -2)2-4(m -1)(-1)>0,得m 2>0, 所以m ≠1且m ≠0.(2)在m ≠0且m ≠1的条件下,⎩⎪⎨⎪⎧x 1+x 2=m -21-m,x 1·x 2=11-m,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=⎝ ⎛⎭⎪⎫1x 1+1x 22-2x 1x 2=(m -2)2+2(m -1)≤2. 得m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}. 4.已知函数f (x )=ax 2+x -a ,a ∈R . (1)若函数f (x )有最大值178,求实数a 的值;(2)解不等式f (x )>1(a ∈R ).解 (1)当a ≥0时不合题意,f (x )=a ⎝ ⎛⎭⎪⎫x +12a 2-1+4a 24a ,当a <0时,f (x )有最大值,且-1+4a 24a =178,解得a =-2或-18.(2)f (x )>1,即ax 2+x -a >1,(x -1)(ax +a +1)>0, ①当a =0时,{x |x >1};②当a >0时,(x -1)⎝ ⎛⎭⎪⎫x +1+1a >0,即⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >1或x <-1-1a ;③当a =-12时,(x -1)2<0,解集为∅;④当-12<a <0时,(x -1)·⎝⎛⎭⎪⎫x +1+1a <0, 即⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫1<x <-1-1a ;⑤当a <-12时,(x -1)·⎝⎛⎭⎪⎫x +1+1a <0, 即⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1-1a<x <1.。

高考考点完全题数学(理)考点通关练习题 第五章 不等式、推理与证明、算法初步与复数 35 Word版含答案

高考考点完全题数学(理)考点通关练习题 第五章 不等式、推理与证明、算法初步与复数 35 Word版含答案

考点测试35 二元一次不等式组与简单的线性规划一、基础小题1.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32 B.23 C.43 D.34答案 C解析 不等式组表示的平面区域如图阴影部分所示,即△ABC . 由⎩⎪⎨⎪⎧x +3y =4,3x +y =4,得交点A 的坐标为(1,1).又B 、C 两点的坐标分别为(0,4),⎝ ⎛⎭⎪⎫0,43,故S △ABC =12·|BC |·|x A |=12×⎝ ⎛⎭⎪⎫4-43×1=43,故选C.2.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x ≤2,x -y ≥0,则x +3y 的最大值是( )A .2B .3C .4D .5答案 D解析 作出不等式组表示的可行域,如图(阴影部分),易知z =x +3y 过点B (2,1)时取得最大值,z max =2+3×1=5.故选D.3.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +3y -7≤0,x ≥1,y ≥1,则|y -x |的最大值是( )A .2 2 B.322C .4D .3答案 D解析 画出不等式组表示的平面区域(如图),计算得A (1,2),B (4,1),当直线z =x -y 过点A 时z min =-1,过点B 时z max =3,则-1≤x -y ≤3,则|y -x |≤3.4.若点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,y ≤-x +4,则x 2+y 2的最大值为( )A.10 B .8 C .16 D .10答案 D解析 画出不等式组对应的可行域如图所示,易得A (1,1),|OA |=2,B (2,2),|OB |=22,C (1,3),|OC |=10,故|OP |的最大值为10,即x 2+y 2的最大值等于10.故选D.5.若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则yx的取值范围是( )A .(0,2)B .(0,2]C .(2,+∞)D . B .(22,32] C .(32,25] D .(0,22)∪(25,+∞)答案 D解析 圆C 不经过区域D 有两种情况:①区域D 在圆外;②区域D 在圆内.由于不等式组中的一个不等式对应的直线y =x 正好经过圆的圆心,故利用圆的性质即可求解出r 的取值范围.作出不等式组⎩⎪⎨⎪⎧x +y ≤4,y -x ≥0,x -1≥0表示的平面区域,得到如图所示的△MNP 及其内部,其中M (1,1),N (2,2),P (1,3),且MN ⊥PN .∵圆C :(x +1)2+(y +1)2=r 2(r >0)表示以C (-1,-1)为圆心,r 为半径的圆.∴由图可得,当半径满足r <CM 或r >CP 时,圆C 不经过区域D 上的点.又∵CM =+2++2=22,CP =+2++2=25,∴当0<r <22或r >25时,圆C 不经过区域D 上的点.12.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.答案 92解析 目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.二、高考小题13.若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12答案 C解析 作出不等式组所表示的平面区域,如图(阴影部分)所示,x 2+y 2表示平面区域内的点到原点的距离的平方,由图易知平面区域内的点A (3,-1)到原点的距离最大,所以x 2+y 2的最大值是10,故选C.14.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( )A .2 2B .4C .3 2D .6答案 C解析 由不等式组画出可行域,如图中的阴影部分所示.因为直线x +y -2=0与直线x +y =0平行,所以可行域内的点在直线x +y -2=0上的投影构成的线段的长|AB |即为|CD |.易得C (2,-2),D (-1,1),所以|AB |=|CD |=+2+-2-2=3 2.故选C.15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.答案 32解析 由题意画出可行域(如图所示),其中A (-2,-1),B ⎝ ⎛⎭⎪⎫1,12, C (0,1),由z =x +y 知y =-x +z ,当直线y =-x +z 过点B ⎝⎛⎭⎪⎫1,12时,z 取最大值32.16.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.答案 3解析 作出可行域如图中阴影部分所示,由可行域知,在点A (1,3)处,yx取得最大值3.17.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.答案 216000解析 设生产产品A x 件,产品B y 件,依题意,得⎩⎪⎨⎪⎧x ≥0,y ≥0,1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,设生产产品A ,产品B 的利润之和为E 元,则E =2100x+900y .画出可行域(图略),易知最优解为⎩⎪⎨⎪⎧x =60,y =100,此时E max =216000.18.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤1,32解析 作出题中线性规划条件满足的可行域如图阴影部分所示,令z =ax +y ,即y =-ax +z .作直线l 0:y =-ax ,平移l 0,最优解可在A (1,0),B (2,1),C ⎝⎛⎭⎪⎫1,32处取得.故由1≤z ≤4恒成立,可得⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.三、模拟小题19.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32 D .2答案 B解析 约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m表示的可行域如图中阴影部分所示.当直线x =m 从如图所示的实线位置运动到过A 点的虚线位置时,m 取最大值.解方程组⎩⎪⎨⎪⎧x +y -3=0,y =2x得A 点坐标为(1,2),∴m 的最大值是1,故选B.20.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A.⎣⎢⎡⎦⎥⎤53,5B .C.⎣⎢⎡⎭⎪⎫53,5 D.⎣⎢⎡⎭⎪⎫-53,5 答案 D解析 画出不等式组所表示的区域,如图阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎡⎭⎪⎫-53,5.21.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43答案 D解析 作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y≥0表示的平面区域(如图中阴影部分).由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1、l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3).故选D.22.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(1,1)处取得最大值,则a 的取值范围为( )A .(0,2)B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫0,13 D.⎝ ⎛⎭⎪⎫13,12 答案 B解析 约束条件表示的可行域如图中阴影部分所示,作直线l :ax +y =0,过点(1,1)作l 的平行线l ′,要满足题意,则直线l ′的斜率介于直线x +2y -3=0与直线y =1的斜率之间,因此,-12<-a <0,即0<a <12.故选B.23.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,4x +3y -12≤0,y -2≥0,则z =2x -y +1x +1的最大值为( )A.54 B.45 C.916D.12答案 B解析 因为z =2x -y +1x +1=2x +2-y -1x +1=2-y +1x +1,所以要求z 的最大值,只需求u =y +1x +1的最小值,画出可行域(图略)可知,使u =y +1x +1取得最小值的最优解为⎝ ⎛⎭⎪⎫32,2,代入z=2x -y +1x +1,可求得z 的最大值为45,故选B.24.一个平行四边形的三个顶点的坐标为(-1,2),(3,4),(4,-2),点(x ,y )在这个平行四边形的内部或边上,则z =2x -5y 的最大值是( )A .16B .18C .20D .36答案 C解析 平行四边形的对角线互相平分,如图,当以AC 为对角线时,由中点坐标公式得AC 的中点为⎝ ⎛⎭⎪⎫32,0,也是BD 的中点,可知顶点D 1的坐标为(0,-4).同理,当以BC 为对角线时,得D 2的坐标为(8,0),当以AB 为对角线时,得D 3的坐标为(-2,8),由此作出(x ,y )所在的平面区域,如图阴影部分所示,由图可知当目标函数z =2x -5y 经过点D 1(0,-4)时,取得最大值,最大值为2×0-5×(-4)=20,故选C.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解 (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y =0,过A (3,4)取最小值-2,过C (1,0)取最大值1.∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值范围是(-4,2).2.画出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,并回答下列问题:(1)指出x ,y 的取值范围; (2)平面区域内有多少个整点?解 (1)不等式x -y +5≥0表示直线x -y +5=0上及右下方的点的集合.x +y ≥0表示直线x +y =0上及右上方的点的集合,x ≤3表示直线x =3上及左方的点的集合.所以,不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域如图所示. 结合图中可行域得x ∈⎣⎢⎡⎦⎥⎤-52,3,y ∈.(2)由图形及不等式组知⎩⎪⎨⎪⎧-x ≤y ≤x +5,-2≤x ≤3,且x ∈Z .当x =3时,-3≤y ≤8,有12个整点; 当x =2时,-2≤y ≤7,有10个整点; 当x =1时,-1≤y ≤6,有8个整点; 当x =0时,0≤y ≤5,有6个整点; 当x =-1时,1≤y ≤4,有4个整点; 当x =-2时,2≤y ≤3,有2个整点.所以平面区域内的整点共有2+4+6+8+10+12=42(个).3.为保增长、促发展,某地计划投资甲、乙两项目,市场调研得知:甲项目每投资百万元需要配套电能2万千瓦,可提供就业岗位24个,增加GDP 260万元;乙项目每投资百万元需要配套电能4万千瓦,可提供就业岗位32个,增加GDP 200万元.已知该地为甲、乙两项目最多可投资3000万元,配套电能100万千瓦,并要求它们提供的就业岗位不少于800个,如何安排甲、乙两项目的投资额,增加的GDP 最大?解 设甲项目投资x (单位:百万元), 乙项目投资y (单位:百万元), 两项目增加的GDP 为z =260x +200y ,依题意,x 、y 满足⎩⎪⎨⎪⎧x +y ≤30,2x +4y ≤100,24x +32y ≥800,x ≥0,y ≥0,所确定的平面区域如图中阴影部分.解⎩⎪⎨⎪⎧x +y =30,2x +4y =100,得⎩⎪⎨⎪⎧ x =10,y =20,即A (10,20);解⎩⎪⎨⎪⎧x +y =30,24x +32y =800,得⎩⎪⎨⎪⎧x =20,y =10,即B (20,10).设z =0,得y =-1.3x ,将直线y =-1.3x 平移至经过点B (20,10),即甲项目投资2000万元,乙项目投资1000万元,两项目增加的GDP 最大.。

高考数学考点练习第五章不等式推理与证明算法初步与复数35基本不等式试题文

考点测试35 基本不等式一、基础小题 1.“a >0且b >0”是“a +b2≥ab ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 a >0且b >0⇒a +b2≥ab ,但a +b2≥ab ⇒/ a >0且b >0,只能推出a ≥0且b ≥0.2.函数f (x )=x +1x(x <0)的值域为( )A .(-∞,0)B .(-∞,-2]C .[2,+∞)D .(-∞,+∞)答案 B解析 f (x )=-⎝ ⎛⎭⎪⎫-x -1x ≤-2-x ·1-x=-2.3.设0<x <2,则函数y =x 4-2x 的最大值为( )A .2B .22C . 3D . 2答案 D解析 ∵0<x <2,∴2-x >0,∴y =x 4-2x =2·x 2-x ≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号.4.函数y =x 2+2x +2x +1(x >-1)的图象的最低点的坐标是( )A .(1,2)B .(1,-2)C .(1,1)D .(0,2)答案 D解析 y =x +12+1x +1=(x +1)+1x +1≥2,当x =0时取最小值.5.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<b C .a <ab <b <a +b 2D .ab <a <a +b2<b答案 B解析 ∵0<a <b ,∴a <a +b2<b ,A 、C 错误;ab -a =a (b -a )>0,即ab >a ,D 错误,故选B.6.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D .1x 2+1>1(x ∈R ) 答案 C解析 取x =12,则lg ⎝ ⎛⎭⎪⎫x 2+14=lg x ,故排除A ;取x =32π,则sin x =-1,故排除B ;取x =0,则1x 2+1=1,故排除D.应选C. 7.若正实数x ,y 满足x +y +1x +1y=5,则x +y 的最大值是( )A .2B .3C .4D .5答案 C 解析 ∵xy ≤x +y24,x >0,y >0,∴1xy≥4x +y2,x +y xy ≥4x +y ,∴x +y +4x +y≤5. 设x +y =t ,即t +4t≤5,得到t 2-5t +4≤0,解得1≤t ≤4,∴x +y 的最大值是4.8.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <abB .v =abC .ab <v <a +b2D .v =a +b2答案 A解析 设甲乙两地相距为s , 则v =2ss a +s b =21a +1b. 由于a <b ,∴1a +1b <2a,∴v >a .又1a +1b >21ab,∴v <ab .故a <v <ab ,故选A.9.已知x >0,y >0,且4x +y =1,则1x +1y的最小值为( )A .3B .6C .9D .12答案 C解析 1x +1y =(4x +y )⎝ ⎛⎭⎪⎫1x +1y =5+y x +4x y ≥9,当且仅当y x =4x y ,即x =16,y =13时等号成立,此时x ,y 值存在,所以1x +1y的最小值为9,故选C.10.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均存储时间为x8天,且每件产品每天的存储费用为1元.为使平均到每件产品的生产准备费用与存储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件答案 B解析 若每批生产x 件产品, 则每件产品的生产准备费用是800x元,存储费用是x8元,总的费用y =800x +x8≥2800x ·x8=20, 当且仅当800x =x8时取等号,得x =80(件),故选B.11.设a >b >c >0,则2a 2+1ab +1aa -b-10ac +25c 2的最小值是( ) A .2 B .4 C .2 5D .5答案 B 解析 2a 2+1ab +1aa -b-10ac +25c 2=2a 2+a -b +b ab a -b -10ac +25c 2=2a 2+1ba -b-10ac +25c 2≥2a 2+1⎝ ⎛⎭⎪⎫b +a -b 22-10ac +25c 2(b =a -b 时取“=”)=2a 2+4a2-10ac +25c 2=⎝⎛⎭⎪⎫a 2+4a 2+(a -5c )2≥4 ⎝ ⎛⎭⎪⎫当且仅当a =2,b =22,c =25时取“=”,故选B.12.设M =⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1,且a +b +c =1,a ,b ,c ∈(0,+∞),则M 的取值范围是________.答案 [8,+∞) 解析 M =b +c a ·a +c b ·a +b c ≥2bc ·2ac ·2ab abc =8,当且仅当a =b =c =13时取等号.二、高考小题13.[2015·福建高考]若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( ) A .2 B .3 C .4 D .5答案 C解析 因为直线x a+y b=1(a >0,b >0)过点(1,1),所以1a+1b=1.所以a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a ≥2+2 a b ·ba=4,当且仅当a =b =2时取“=”,故选C. 14.[2015·湖南高考]若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( ) A . 2 B .2 C .2 2 D .4答案 C解析 依题意知a >0,b >0,则1a +2b ≥22ab=22ab,当且仅当1a =2b,即b =2a 时,“=”成立.因为1a +2b=ab ,所以ab ≥22ab,即ab ≥22,所以ab 的最小值为22,故选C.15.[2014·重庆高考]若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 3答案 D解析 由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,且a >0,b >0,∴a =4bb -3,由a >0,得b >3.∴a +b =b +4b b -3=b +4b -3+12b -3=(b -3)+12b -3+7≥212+7=43+7,即a+b 的最小值为7+4 3.16.[2014·福建高考]要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).答案 160解析 设底面的边长分别为x m ,y m ,总造价为T 元,则V =xy ·1=4⇒xy =4.T =4×20+(2x +2y )×1×10=80+20(x +y )≥80+20×2xy =80+20×4=160.(当且仅当x =y 时取等号) 故该容器的最低总造价是160元.17.[2015·重庆高考]设a ,b >0,a +b =5,则a +1+b +3的最大值为________. 答案 3 2解析 令t =a +1+b +3, 则t 2=(a +1+b +3)2=a +1+b +3+2a +1·b +3 ≤9+a +1+b +3=18, 当且仅当a +1=b +3时, 即a =72,b =32时,等号成立.即t 的最大值为3 2.18.[2015·山东高考]定义运算“⊗”:x ⊗y =x 2-y 2xy (x ,y ∈R ,xy ≠0).当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.答案2解析 由x ⊗y =x 2-y 2xy ,得x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy =x 2+2y 22xy .因为x >0,y >0,所以x 2+2y 22xy ≥2x 2·2y 22xy=2,当且仅当x =2y 时,等号成立. 三、模拟小题19.[2016·兰州一模]在下列各函数中,最小值等于2的函数是( )A .y =x +1xB .y =cos x +1cos x ⎝⎛⎭⎪⎫0<x <π2C .y =x 2+3x 2+2D .y =e x+4e x -2答案 D解析 当x <0时,y =x +1x ≤-2,故A 错误;因为0<x <π2,所以0<cos x <1,所以y =cos x+1cos x >2,故B 错误;因为x 2+2≥2,所以y =x 2+2+1x 2+2≥2中等号取不到,故C 错误;因为e x >0,所以y =e x+4e x -2≥2e x ·4e x -2=2,当且仅当e x =4ex ,即e x=2时等号成立,故选D.20.[2017·长春质检]设正实数a ,b 满足a +b =1,则( ) A .1a +1b有最大值4B .ab 有最小值12C .a +b 有最大值 2D .a 2+b 2有最小值22答案 C解析 由于a >0,b >0,由基本不等式得1=a +b ≥2ab ,当且仅当a =b 时,等号成立,∴ab ≤12,∴ab ≤14,1a +1b =a +b ab =1ab ≥4,因此1a +1b 的最小值为4,a 2+b 2=(a +b )2-2ab=1-2ab ≥1-12=12,(a +b )2=a +b +2ab =1+2ab ≤1+1=2,所以a +b 有最大值2,故选C.21.[2017·浙江金丽衢联考]若函数f (x )=2x 2-ax -1(a <2)在区间(1,+∞)上的最小值为6,则实数a 的值为( )A .0B .32C .1D .12答案 B解析 由题意得f (x )=2x 2-a x -1=2x -12+4x -1+2-ax -1=2(x -1)+2-ax -1+4≥22x -1·2-ax -1+4=24-2a +4,当且仅当2(x -1)=2-ax -1,即x =1+2-a 2时,等号成立,所以24-2a +4=6,即a =32,故选B. 22.[2016·广州一模]设a =x 2-xy +y 2,b =p xy ,c =x +y ,若对任意的正实数x ,y ,都存在以a ,b ,c 为三边长的三角形,则实数p 的取值范围是( )A .(1,3)B .(1,2]C .⎝ ⎛⎭⎪⎫12,72D .⎝ ⎛⎭⎪⎫12,3 答案 A解析 对任意的正实数x ,y ,由于a =x 2-xy +y 2≥2xy -xy =xy ,当且仅当x =y 时等号成立,b =p xy ,c =x +y ≥2xy ,当且仅当x =y 时等号成立,且三角形的任意两边之和大于第三边,所以xy +2xy >p xy ,且p xy +xy >2xy ,且p xy +2xy >xy ,解得1<p <3,故实数p 的取值范围是(1,3),故选A.23.[2017·江苏调研]已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________.答案 3解析 令log a b =t ,由a >b >1,得0<t <1,2log a b +3log b a =2t +3t =7,得t =12,即log a b=12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2 a -1·1a -1+1=3,当且仅当a =2时取等号.24.[2016·杭州一模]设x >0,y >0,且⎝ ⎛⎭⎪⎫x -1y 2=16y x ,则当x +1y 取最小值时,x 2+1y2=________.答案 12解析 ∵x >0,y >0,∴当x +1y取最小值时,⎝ ⎛⎭⎪⎫x +1y 2取得最小值,∵⎝ ⎛⎭⎪⎫x +1y 2=x 2+1y 2+2xy,⎝ ⎛⎭⎪⎫x -1y 2=16y x ,∴x 2+1y 2=2x y +16y x ,⎝ ⎛⎭⎪⎫x +1y 2=4x y +16y x ≥24x y ·16y x =16,∴x +1y≥4,当且仅当4x y=16y x,即x =2y 时取等号,∴当x +1y取最小值时,x =2y ,x 2+1y 2+2x y =16,即x 2+1y2+2×2y y =16,∴x 2+1y2=16-4=12.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.[2016·湖南浏阳月考]已知lg (3x )+lg y =lg (x +y +1). (1)求xy 的最小值; (2)求x +y 的最小值.解 由lg (3x )+lg y =lg (x +y +1),得⎩⎪⎨⎪⎧x >0,y >0,3xy =x +y +1.(1)∵x >0,y >0,∴3xy =x +y +1≥2xy +1. ∴3xy -2xy -1≥0, 即3(xy )2-2xy -1≥0. ∴(3xy +1)(xy -1)≥0.∴xy ≥1,∴xy ≥1.当且仅当x =y =1时,等号成立. ∴xy 的最小值为1.(2)∵x >0,y >0,∴x +y +1=3xy ≤3·⎝ ⎛⎭⎪⎫x +y 22. ∴3(x +y )2-4(x +y )-4≥0.∴[3(x +y )+2][(x +y )-2]≥0.∴x +y ≥2. 当且仅当x =y =1时取等号,∴x +y 的最小值为2.2.[2017·河南驻马店月考]某地需要修建一条大型输油管道通过240 km 宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的费用为400万元,铺设距离为x km 的相邻两增压站之间的输油管道的费用为x 2+x 万元.设余下工程的总费用为y 万元.(1)试将y 表示成x 的函数;(2)需要修建多少个增压站才能使y 最小,其最小值为多少? 解 (1)设需要修建k 个增压站, 则(k +1)x =240,即k =240x-1.所以y =400k +(k +1)(x 2+x ) =400⎝ ⎛⎭⎪⎫240x -1+240x()x 2+x=96000x+240x -160.因为x 表示相邻两增压站之间的距离,则0<x <240. 故y 与x 的函数关系是y =96000x+240x -160(0<x <240).(2)y =96000x+240x -160≥296000x·240x -160=2×4800-160=9440,当且仅当96000x=240x ,即x =20时等号成立,此时k =240x -1=24020-1=11.故需要修建11个增压站才能使y 最小,其最小值为9440万元.3.[2017·保定月考]某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:①年平均利润最大时,以46万元出售该工作室;②纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案?解 (1)设第n 年获取利润为y 万元.n 年付出的装修费构成一个首项为1,公差为2的等差数列,n 年付出的装修费之和为n ×1+n n -12×2=n 2,又投资81万元,n 年共收入租金30n 万元,∴利润y =30n -n 2-81(n ∈N *).令y >0,即30n -n 2-81>0,∴n 2-30n +81<0, 解得3<n <27(n ∈N *),∴从第4年开始获取纯利润. (2)方案①:年平均利润t =30n -81+n2n=30-81n-n =30-⎝⎛⎭⎪⎫81n+n ≤30-281n ·n =12(当且仅当81n=n ,即n =9时取等号),∴年平均利润最大时,以46万元出售该工作室共获利润12×9+46=154(万元). 方案②:纯利润总和y =30n -n 2-81=-(n -15)2+144(n ∈N *), 当n =15时,纯利润总和最大,为144万元,∴纯利润总和最大时,以10万元出售该工作室共获利润144+10=154(万元), 两种方案盈利相同,但方案①时间比较短,所以选择方案①.4.[2016·南京质检]为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为y =⎩⎪⎨⎪⎧168-x -1,0≤x ≤4,5-12x ,4<x ≤10.若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (1≤a ≤4)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.1,参考数据:2取1.4).解 (1)因为一次喷洒4个单位的净化剂,所以浓度f (x )=4y =⎩⎪⎨⎪⎧648-x-4,0≤x ≤4,20-2x ,4<x ≤10.则当0≤x ≤4时,由648-x-4≥4,解得x ≥0,所以此时0≤x ≤4. 当4<x ≤10时,由20-2x ≥4,解得x ≤8,所以此时4<x ≤8.综合得0≤x ≤8,若一次投放4个单位的净化剂,则有效净化时间可达8天. (2)设从第一次喷洒起,经x (6≤x ≤10)天,浓度g (x )=2⎝ ⎛⎭⎪⎫5-12x +a ⎣⎢⎡⎦⎥⎤168-x -6-1=10-x +16a 14-x -a =(14-x )+16a14-x-a -4≥214-x ·16a14-x-a -4=8a -a -4.因为14-x ∈[4,8],而1≤a ≤4,所以4a ∈[4,8],故当且仅当14-x =4a 时,y 有最小值为8a -a -4. 令8a -a -4≥4,解得24-162≤a ≤4,所以a 的最小值为24-162≈1.6.。

2019年高考数学(理)考点通关训练第五章不等式、推理与证明、算法初步与复数 41及答案

考点测试41 复一、基础小题1.若复z 满足z (2-i)=11+7i(i 为虚单位),则z 为( ) A .3+5i B .3-5i C .-3+5i D .-3-5i答案 A解析 z =11+7i2-i=11+7i 2+i 2-i2+i =15+25i5=3+5i.2.如图,在复平面内,点A 表示复z ,由图中表示z 的共轭复的点是( )A .AB .BC .CD .D答案 B解析 表示复z 的点A 与表示z 的共轭复的点关于x 轴对称,∴B 点表示z .选B.3.若i(x +y i)=3+4i ,x ,y ∈R ,则复x +y i 的模是( ) A .2 B .3 C .4 D .5答案 D解析 由题意知x +y i =3+4i i =4-3i ,所以|x +y i|=|4-3i|=42+-2=5.4.若复z 满足1+2iz=i(i 为虚单位),则z 的虚部为( )A .-2B .2C .1D .-1答案 D解析 由1+2i z =i ,可得z =1+2i i =i +2i 2i 2=-2+i -1=2-i ,所以z 的虚部为-1,故选D.5.复z =i1+i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 因为z =i 1+i =1+i2,所以对应点⎝ ⎛⎭⎪⎫12,12,故在第一象限,选A.6.复i 2+i 3+i 41-i =( )A .-12-12iB .-12+12iC.12-12iD.12+12i 答案 C解析 i 2+i 3+i 41-i =-+-+11-i=-i 1-i =-+-+=1-i 2=12-12i.7.设i 是虚单位,复1+a i2-i 为纯虚,则实a 为( )A .2B .-2C .-12D.12答案 A解析 解法一:因为1+a i2-i =+a +-+=2-a +a +5为纯虚,所以2-a =0,a =2.解法二:令1+a i2-i =m i(m ≠0),∴1+a i =(2-i)m i =m +2m i.∴⎩⎪⎨⎪⎧m =1,a =2m ,∴a =2.8.在复平面内,向量AB →对应的复是2+i ,向量CB →对应的复是-1-3i ,则向量CA →对应的复为( )A .1-2iB .-1+2iC .3+4iD .-3-4i答案 D解析 CA →=CB →-AB →=-1-3i -2-i =-3-4i ,故选D. 9.设z 是复,则下列命题中的假命题是( ) A .若z 2≥0,则z 是实 B .若z 2<0,则z 是虚 C .若z 是虚,则z 2≥0 D .若z 是纯虚,则z 2<0答案 C解析 设z =a +b i(a ,b ∈R ),z 2=a 2-b 2+2ab i ,由z 2≥0,得⎩⎪⎨⎪⎧ab =0,a 2≥b 2,即⎩⎪⎨⎪⎧a =0,|a |≥|b |或⎩⎪⎨⎪⎧b =0,|a |≥|b |.所以a =0时b =0,b =0时a ∈R .故z 是实,所以A 为真命题;由于实的平方不小于0,所以当z 2<0时,z 一定是虚,故B 为真命题;由于i 2=-1<0,故C 为假命题,D 为真命题.10.关于复z =+21-i,下列说法中正确的是( )A .在复平面内复z 对应的点在第一象限B .复z 的共轭复z =1-iC .若复z 1=z +b (b ∈R )为纯虚,则b =1D .设a ,b 为复z 的实部和虚部,则点(a ,b )在以原点为圆心,半径为1的圆上答案 C解析 由题可知z =+21-i=2i 1-i=-1+i ,若z +b (b ∈R )为纯虚,则b =1,故选C.11.如图,在复平面内,已知复z 1,z 2,z 3对应的向量分别是OA →,OB →,OC →,i 是虚单位,若复z =z 1·z 2z 3,则|z +112i|=( )A .3 B.10+11 C.6+11 D.32答案 A解析 由题图可知,z 1=3+i ,z 2=1-2i ,z 3=-2+2i ,则z =z 1·z 2z 3=+--2+2i =-52,∴z +112i =-52+112i ,|z+112i|=⎝⎛⎭⎪⎫-522+⎝⎛⎭⎪⎪⎫1122=3,故选A.12.已知复z=x+y i,且|z-2|=3,则yx的最大值为________.答案 3解析|z-2|=x-2+y2=3,∴(x-2)2+y2=3,⎝⎛⎭⎪⎫yx max=31= 3.二、高考小题13.若z=1+2i,则4iz z-1=( )A.1 B.-1C.i D.-i答案 C解析∵z z=(1+2i)(1-2i)=5,∴4iz z-1=4i4=i.故选C. 14.设(1+i)x=1+y i,其中x,y是实,则|x+y i|=( ) A.1 B. 2C. 3 D.2答案 B解析 ∵x ,y ∈R ,(1+i)x =1+y i ,∴x +x i =1+y i ,∴⎩⎪⎨⎪⎧x =1,y =1,∴|x +y i|=|1+i|=12+12= 2.故选B.15.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)答案 A解析 由已知可得⎩⎪⎨⎪⎧m +3>0,m -1<0⇒⎩⎪⎨⎪⎧m >-3,m <1⇒-3<m <1.故选A.16.若复z 满足2z +z =3-2i ,其中i 为虚单位,则z =( ) A .1+2i B .1-2i C .-1+2i D .-1-2i答案 B解析 设z =a +b i(a 、b ∈R ),则2z +z =2(a +b i)+a -b i =3a +b i =3-2i ,∴a =1,b =-2,∴z =1-2i ,故选B.17.设i 为虚单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 4答案 A解析 T 3=C 26x 4i 2=-15x 4,故选A.18.设复z 满足1+z 1-z =i ,则|z |=( )A .1B. 2C. 3 D .2答案 A解析 由已知1+z 1-z =i ,可得z =i -1i +1=-2+-=-2i-2=i ,∴|z |=|i|=1,故选A.19.i 为虚单位,i 607的共轭复为( ) A .i B .-i C .1 D .-1答案 A解析 ∵i 607=i 4×151+3=(i 4)151·i 3=-i , ∴i 607的共轭复为i.20.已知a ,b ∈R ,i 是虚单位.若(1+i)·(1-b i)=a ,则ab的值为________.答案 2解析 由(1+i)(1-b i)=a ,得1+b +(1-b )i =a ,则⎩⎪⎨⎪⎧b +1=a ,1-b =0,解得⎩⎪⎨⎪⎧a =2,b =1,所以ab=2.21.设a ∈R .若复(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________.答案 -1解析 (1+i)(a +i)=(a -1)+(a +1)i , ∵a ∈R ,该复在复平面内对应的点位于实轴上, ∴a +1=0,∴a =-1.22.复z =(1+2i)(3-i),其中i 为虚单位,则z 的实部是________.答案 5解析 (1+2i)(3-i)=3+5i -2i 2=5+5i ,所以z 的实部为5. 23.i 是虚单位,若复(1-2i)(a +i)是纯虚,则实a 的值为________.答案 -2解析 ∵(1-2i)(a +i)=2+a +(1-2a )i 为纯虚,∴⎩⎪⎨⎪⎧1-2a ≠0,2+a =0,解得a =-2.三、模拟小题24.已知i 是虚单位,则i 20151+i =( )A.1-i 2B.1+i 2C.-1-i 2D.-1+i 2答案 C解析 i 20151+i =-i 1+i=--2=-1-i 2,故选C.25.在复平面内,复3-i1-i 对应的点的坐标为( )A .(2,1)B .(1,-2)C .(1,2)D .(2,-1)答案 A 解析 z =3-i1-i=-+-+=4+2i 2=2+i ,所对应的点的坐标是(2,1),故选A.26.复z 满足:(3-4i)z =1+2i ,则z =( )A .-15+25iB.15-25i C .-15-25iD.15+25i 答案 A解析 由(3-4i)z =1+2i ,得z =1+2i3-4i =++-+=3+4i +6i -825=-5+10i 25=-15+25i ,故选A.27.已知复z 满足z i =2i +x (x ∈R ),若z 的虚部为2,则|z |=( )A .2B .2 2 C. 5 D. 3答案 B解析 由z i =2i +x ,得z =2i +xi=+x i×i=-2+x i-1=2-x i ,又z 的虚部为2,得x =-2,得z =2+2i ,所以|z |=22+22=22,故选B.28.已知a ,b ∈R ,i 是虚单位,若a -i 与2+b i 互为共轭复,则(a +b i)2=( )A .5-4iB .5+4iC .3-4iD .3+4i答案 D解析 依题意得⎩⎪⎨⎪⎧a =2,b =1,所以(a +b i)2=(2+i)2=3+4i.故选D.29.设复z 1=3+2i ,z 2=1-i ,则⎪⎪⎪⎪⎪⎪z 1+2z 2=( )A .2B .3C .4D .5答案 D解析 ⎪⎪⎪⎪⎪⎪z 1+2z 2=⎪⎪⎪⎪⎪⎪3+2i +21-i =|3+2i +(1+i)|=|4+3i|=5.30.已知z 为复,(1-i)2z =(1+i)3(i 为虚单位),则z =( ) A .1+i B .-1+i C .1-i D .-1-i答案 B解析 由题意,得z =+3-2=+-2i=-1-i ,则z =-1+i.31.设i 为虚单位,已知z 1=1-i 1+i ,z 2=-12+32i ,则|z 1|,|z 2|的大小关系是( )A .|z 1|<|z 2|B .|z 1|=|z 2|C .|z 1|>|z 2|D .无法比较答案 B解析 ∵|z 1|=|1-i||1+i|=22=1,|z 2|=⎪⎪⎪⎪⎪⎪⎪⎪-12+32i =1,∴|z 1|=|z 2|.32.已知a ,b ∈R ,i 是虚单位,若a +i =3-b i ,则a +b i1-i=( )A .2-iB .2+iC.1-2i D.1+i 答案 B解析∵a+i=3-b i,∴a=3,b=-1,则a+b i1-i=3-i1-i=2+i,故选B.33.复z=a+b i(a,b∈R),i是虚单位,z是z的共轭复,则下列判断正确的是( )A.z+z是纯虚B.z2≥0C.z的虚部为-b i D.若z2=-1,则z=±i答案 D解析z+z=2a是实,排除A;z的平方不一定是实,则z2≥0错误,排除B;z的虚部为-b,排除C;若z2=-1,则z=±i,D 正确,故选D.34.若复(2+a i)2(a∈R)是实,则a=________.答案0解析因为(2+a i)2(a∈R)=4+4a i+a2i2=4-a2+4a i为实,∴a=0,故答案为0.本考点在近三年高考中未涉及此题型.。

第五章不定积分习题课参考答案


① f ( x, n ax b ) dx ,令 t n ax b ;② f ( x, a 2 x 2 )dx ,令 x a sin t ; ③ f ( x, a 2 x 2 )dx ,令 x a tan t ;④ f ( x, x 2 a 2 )dx ,令 x a sect ;
例6 求下列不定积分:
108896097.doc
-2-

xdx ; 1 x2

1 1 sin dx ; 2 x x

dx x 1 ln 2 x

凑微分求不定积分,必须牢记基本积分公式类型,这样就不会被复杂的式子所迷 惑,同时为提高凑微分技巧,应熟悉常见的微分公式. 常用的凑微分积分类型: 1 f (ax n b)d (ax n b) ; ① f (ax n b) x n 1 dx an ② f (sin x) cos xdx f (sin x)d sin x ; ③ f (tan x) sec 2 xdx f (tan x)d tan x ;
0 1
解: 由已知 x 2 x 为 f ( x) 的导函数,即 x2 x f ( x) 所以, xf ( x)dx x( x 2 x)dx ( x 3 x 2 )dx
0 0 0 1 1 1
1 4 1 3 x x C 4 3
例3 求下列不定积分: ①

x 2 x sin 2 x sin 2 x x 2 x sin 2 x cos 2 x dx C 4 4 4 4 4 8
例14 求下列不定积分:
xdx ① 3 ; x 3x 2 2x 3 dx ; ② 2 x x5
x4 1 dx . ③ 6 x 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题5
5.1不确定推理的概念是什么?为什么要采用不确定推理?
解:略。

5.2 不确定推理中需要解决的基本问题是什么?
解:略。

5.3 主观Bayes 方法的优点是什么?有什么问题?试说明LS 和LN 的意义。

解:略。

5.4 为什么要在MYCIN 中提出可信度方法?可信度方法还有什么问题?
解:略。

5.5 何谓可信度?说明规则强度CF (H ,E )的含义。

解:略。

5.6 设有三个独立的结论H1, H2, H3及两个独立的证据E1, E2,它们的先验概率和条件概率分别为:
P(H1)=0.4, P(H2)=0.3, P(H3)=0.3
P(E1 | H1)=0.5, P(E1 | H2)=0.3, P(E1 | H3)=0.5
P(E2 | H1)=0.7, P(E2 | H2)=0.9, P(E2 | H3)=0.1
利用概率方法求出:
当只有证据E1出现时,P(H1 | E1)、P(H2 | E1)及P(H3 | E1)的值;并说明E1的出现对H1,H2, H3的影响。

当E1和E2同时出现时,P(H1 | E1, E2)、P(H2 | E1, E2)及P(H3 | E1, E2)的值;并说明E1和E2同时出现对H1,H2, H3的影响。

解: (1)P (H 1|E 1)=0.45
P (H 2|E 1)=0.20
P (H 3|E 1)=0.34
经比较可知,E1的出现,H1和H3成立的可能性略有增加,H2成立的可能性略有降。

(2)P (H 1|E 1,E 2)=0.5932
212(|,)=0.3432P H E E
312(|,)=0.0636P H E E
经比较可知,E 1和E 2同时出现,H 1成立的可能性显著增加,H 2成立的可能性略有增加,H 3成立的可能性显著下降。

5.7设有如下知识:
111222333: (201)(0.06): (101)(0.05): (10.08)(0.4)
R IF
E THEN H R IF
E THEN
H R IF E THEN H ,,,
求:当证据321E E E ,,存在时,)|(i i E H P 的值各是多少?
解:P (H 1|E 1)=0.5607
P (H 2|E 2)=0.3448
3.0)|(33=E H P 。

5.8设有规则:
1122: (4001): (601)R IF
E THEN H R I
F E THEN H ,

已知证据21E E 和必然发生,并且04.0)(=H P ,求H 的后验概率。

解: 121212(|)1000.8(|)0.99901(|)11000.8
O H E E P H E E O H E E =
==++ 5.9设有规则: 1122:IF THEN (650.01):IF THEN (3000.0001)R E H
R E H ,,
已知:112212(|)0.5,(|)0.2,()0.1,()0.03,()0.01P E S P E S P E P E P H ===== 求:12(|,)P H S S
解:P (H |S 1,S 2)=0.784
5.10 设有如下规则:
11
22
3344561578
3:IF THEN (0.8):IF THEN (0.6):IF THEN (0.5)
:IF AND ( OR
)THEN (0.7)
:IF AND THEN (0.9)R E H R E H R E H R E E E E R E E E - 且已知
9.0)(,6.0)(,7.0)(,6.0)(,5.0)(,8.0)(876542======E CF E CF E CF E CF E CF E CF 求H 的综合可信度CF (H )。

解: 53.0)(=H CF
5.11 请说明证据理论中概率分配函数、信任函数、似然函数及类概率函数的含义。

解:略。

5.12 设Ω={红,黄,绿},有如下概率分配函数
({},{},{},{},{,,})(0,0.6,0.2,0.1,0.1)m φ=红黄绿红黄绿
设A ={红,黄},求()m Ω、)(A Bel 、)(A Pl 和)(A f 的值。

解: ()0.1m Ω=
()({,})({})({})({,})0.60.200.8Bel A Bel m m m ==++=++=红黄红黄红黄 ()=({})1({})1({})10.10.9Pl A Pl Bel m =-⌝=-=-=红,黄红,黄绿 2()()(()())=0.8(0.90.8)0.8673A
f A Bel A Pl A Bel A Ω=+-+-= 5.13已知8.0)(,6.0)(21==E f E f ,20Ω=,H E E →∧21,},{21h h H =,)3.0,5.0(),(21=c c ,计算)(H f 。

解:f (H )==Bel (H)+H W (Pl (H )-Bel (H ))=0.532
5.14 设有如下规则: {}{}{}{}{}
{}{}
{}112122345131234123: AND THEN ,0.3,0.5: AND ( OR )THEN 0.7:THEN ,,0.1,0.5,0.3:THEN ,,0.4,0.2,0.1R IF
E E A a a C
F R IF
E E E B b C
F R IF
A H h h h CF R IF
B H h h h CF ======== 已知用户对初始证据给出的确定性为:
7.0)(,5.0)(,9.0)(,6.0)(,8.0)(54321=====E f E f E f E f E f
并假定Ω中的元素个数|Ω|=10。

求:)(H f 。

解: 3()()(()())0.6552+(10.6552)0.758710
H
f H Bel H Pl H Bel H Ω=+⨯-=⨯-= 5.15 设有如下两个模糊关系:
120.50.60.30.210.70.41 0.80.400.800.50.31
0.20.9⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
R R 求12R R 。

解:令12T =R R ,则
0.60.50.50.70.80.40.51⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦
T
5.16 设U =V ={1,2,3,4}
A =0.8/1+0.5/2+0.2/3
B =0.3/2+0.7/3+0.9/4
模糊规则为;IF x is A THEN y is B (λ) 证据为x is A '
且有(A ,A ')> λ,求m
B '、a B '。

解:0.20.30.70.80.50.50.50.5={0.8,0.5,0.2,0}{0.5,0.5,0.7,0.8}0.80.80.80.81111m m B A ⎡⎤⎢⎥⎢⎥''==⎢⎥⎢⎥⎣⎦
R 0.20.50.910.50.811={0,0.3,0.7,0.9}{0.9,0.9,0.9,0.9}0.81111111a a B A ⎡⎤⎢⎥⎢⎥''==⎢⎥⎢⎥⎣⎦R。

相关文档
最新文档