空间几何中的平行四面体

合集下载

立体几何中的平行四面体

立体几何中的平行四面体

立体几何中的平行四面体平行四面体是立体几何中的一种特殊形状,由四个平行的三角形构成,具有一些独特的性质和特点。

在本文中,我们将探讨平行四面体的定义、性质以及与其他形状的关系。

一、定义与性质平行四面体是由四个平行的三角形所围成的立体。

它具有以下性质:1. 四个面都是平行的:平行四面体的四个面平行于另一个面,且互相平行。

2. 所有边的长度相等:平行四面体的四条边长度相等,因此它是一个等边四面体。

3. 所有角度相等:平行四面体的四个顶点所形成的内角都是相等的。

4. 对角平分:平行四面体的对角线相交于一个点,并且这个点所在的直线平分对角线。

二、与其他形状的关系1. 与立方体的关系:平行四面体可以被看作是一个正立方体的一半。

当一个正立方体沿着一条对角线剖分时,剩余的两个部分就构成了一个平行四面体。

2. 与正四面体的关系:平行四面体与正四面体是两个不同的立体形状。

平行四面体具有平行的底面和顶面,而正四面体的四个面是等边的三角形。

3. 与长方体的关系:平行四面体可以被视为一个长方体的一部分。

当一个长方体沿着一条对角线剖分时,剩余的两个部分就构成了一个平行四面体。

三、实际应用与意义平行四面体在实际生活中有着广泛的应用和意义。

以下是一些例子:1. 建筑设计:平行四面体的形状常被用于建筑设计中,用于创造独特的外观和视觉效果。

2. 晶体结构:某些晶体的结构可以被近似地看作是平行四面体的形状,这对于研究材料的物理和化学性质非常重要。

3. 几何学教育:平行四面体是几何学教育中重要的概念之一,通过学习和理解平行四面体的性质,可以提高学生的空间想象力和几何思维能力。

结论平行四面体是立体几何中的一种特殊形状,由四个平行的三角形组成。

它具有独特的定义和性质,与其他形状如立方体、正四面体和长方体有一些关联和区别。

在实际应用中,平行四面体在建筑设计、晶体结构研究以及几何学教育等领域发挥着重要的作用。

通过深入理解和学习平行四面体,我们能够更好地探索立体几何的奥秘。

(完整版)四面体的性质

(完整版)四面体的性质

1四面体的性质不在一直线上的三点可以连成一个三角形,不共面的四点可以连成四个三角形,这四个三角形围成的几何体叫做四面体(如图1).它有四个顶点,六条棱,四个面.研究四面体的有关性质可以加深对四面体,空间四边形的知识的理解,有利于提高熟练运用知识的能力。

性质1:四面体中相对的棱所在的直线是异面直线。

如图1中AB 和CD ,BC 和AD ,AC 和BD 都是异面直线。

性质2:四面体中,若一个顶点在对面内射影是这个三角形的垂心,则四面体的三组对棱分别互相垂直.证明:如图2的四面体中,设顶点A 在面BCD 内的射影H 是BCD △的垂心。

AH BCD ⊥平面。

连结BH ,CH ,DH,则BH CD ⊥,CH BD ⊥,DH BC ⊥.根据三垂线定理得AB CD ⊥,AC BD ⊥,AD BC ⊥.性质3:四面体中,若有两组对棱互相垂直,则第三组对棱也互相垂直。

证明:设四面体ABCD 中,AB CD ⊥,AC BD ⊥,过A作AH BCD ⊥平面,H 为垂足(如图2).连结BH ,CH ,则BH 为AB 在平面BCD内的射影,根据三垂线定理的逆定理,BH CD ⊥;同理CH BD ⊥,所以H 是BCD △的垂心。

由性质2知AD BC ⊥.根据性质2,3立即可以得到:性质4:四面体中,若一个顶点在它对面内的射影是这个面的中心,则其余各顶点在其对面内的射影也分别是这些面的中心。

利用全等三角形的判定和性质,可以证明下面两条性质:性质5:四面体中,若交于同一顶点的三条棱相等,则这个顶点在对面内的射影是这个三角形的外心,且这三条棱和顶点所对面所成的角相等。

反之也真。

特别地,若这个顶点所对的面是一个直角三角形,则这顶点的射影是直角三角形斜边的中点。

性质6:四面体中,若一个顶点在对面内的射影是这个三角形的内心,则顶点到对面三角形三条边的距离相等,且以这三角形三角形三条边为棱的三个二面角相等.性质7:四面体中,若交于同一点的三条棱两两互相垂直,则这个顶点所对面是一个锐角三角形。

空间几何中的平行四面体的性质

空间几何中的平行四面体的性质

空间几何中的平行四面体的性质平行四面体是一种常见的几何体,具有一些特殊的性质。

本文将介绍平行四面体的定义、特征、性质和应用。

一、定义平行四面体是一个具有四个面,并且每两个面都平行的多面体。

它是空间中的一个四面体,其中相邻的面是平行的。

二、特征1. 面的性质:平行四面体的四个面都是平行的,其中相邻的面是平行的,而且任意两个非相邻的面之间也是平行的。

2. 边的性质:平行四面体有六条边,每条边和另外三条边都平行。

3. 顶点的性质:平行四面体有四个顶点,并且每个顶点都连接着三条边。

4. 高度的性质:平行四面体有四条高,每条高是从一个顶点垂直地下垂到另一个面上。

5. 体积的性质:平行四面体的体积可以通过计算底面积与高度的乘积来得到。

三、性质1. 平行四面体的对角线相交于一个点,该点被称为中心。

2. 平行四面体的每个角都是锐角或钝角,不存在直角和平角。

3. 平行四面体的底面积相等的两个平行四面体,它们的体积相等。

4. 平行四面体的两条对边相等的两个平行四面体,它们的体积相等。

5. 平行四面体的每个侧面都是一个平行四边形。

6. 平行四面体的平面对角面积比等于它们的底面积比。

四、应用1. 建筑工程:平行四面体可以用于建筑物的结构设计,例如某些立柱或桥梁的设计中。

2. 几何分析:平行四面体的性质在几何分析中具有重要意义,可以用于计算面积、体积等参数。

3. 空间定位:平行四面体可以用于空间定位和坐标系统的建立,有助于测量和定位目标位置。

总结:平行四面体是一个具有四个平行的面的几何体,具有特殊的性质。

它在建筑工程、几何分析和空间定位等领域都有着广泛的应用。

通过了解平行四面体的定义、特征、性质和应用,我们可以更好地理解和应用这一几何形体。

考点22 空间几何平行问题(练习)(解析版)

考点22 空间几何平行问题(练习)(解析版)

考点22 空间几何平行问题【题组一 三角形中位线】1.如图,点E 和点F 分别是BC ,1A C 的中点,求证://EF 平面11A B BA【答案】见解析【解析】证明如图,连接1A B .在1A BC 中,因为E 和F 分别是BC ,1A C 的中点,所以1//EF BA .又因为EF ⊄11A B BA ,1BA ⊂平面1AB BA ,所以//EF 平面11A B BA .2.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点,证明://PB 平面AEC ;【答案】证明见解析【解析】设BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB又EO 平面AEC ,PB 平面AEC 所以PB ∥平面AEC .3.如图所示,在三棱锥P ABC -中,F 为BC 的中点,DE 垂直平分PC ,且DE 分别交AC PC ,于点,D E ,证明://EF ABP 平面【答案】见解析【解析】证明:DE 垂直平分PC E ∴为PC 的中点 又F 为BC 的中点 EF ∴为BCP 的中位线 //EF BP ∴ 又,EF ABP BP ABP ⊄⊂平面平面 //EF ABP ∴平面4.如图,12AB AD CD ==,若M 为EA 中点,求证:AC ∥平面MDF【答案】证明见解析【解析】设EC 与DF 交于点N ,连结MN ,在矩形CDEF 中,点N 为EC 中点,如图:M 为EA 中点,∴MN ∥AC 又AC ⊄平面MDF ,MN ⊂平面MDF ∴AC ∥平面MDF .5.已知四棱锥P ABCD -中,侧面PAD ABCD ⊥底面,PB AD ⊥,PAD △是边长为2的正三角形,底面ABCD 是菱形,点M 为PC 的中点,求证:PA MDB ∥平面【答案】证明见解析【解析】连结AC ,交BD 于O ,由于底面ABCD 为菱形,∴O 为AC 中点又M 为PC 的中点,//MO PA ,又MO MDB PA MDB ⊂⊄平面,平面//PA MDB ∴平面6.如图所示,在三棱柱ABC -A 1B 1C 1中,AC =BC ,点D 是AB 的中点,求证:BC 1∥平面CA 1D .【答案】略【解析】证明:如图所示,连接AC 1交A 1C 于点O ,连接OD ,则O 是AC 1的中点.∵点D 是AB 的中点, ∴OD ∥BC 1.又∵OD ⊂平面CA 1D ,BC 1⊄平面CA 1D ,∴BC 1∥平面CA 1D.【题组二 构造平行四边形证线面平行】1.如图,四棱锥P ABCD -中侧面P AB 为等边三角形且垂直于底面ABCD ,12AB BC AD ==, E 是PD 的中点,证明:直线CE ∥平面PAB【答案】见解析【解析】取PA 的中点F ,连FE FB 、, E 是PD 的中点, ∴FE //=12AD , 又BC //=12AD ∴FE //=BC ∴四边形EFBC 是平行四边形 CE ∴∥BF 又CE ⊄平面PAB ,BF ⊂平面PAB CE ∥平面PAB2.如图,菱形ABCD ,,E F 分别是,AB PD 的中点,求证://EF 平面PBC ;【答案】证明见解析【解析】解法一:(1)取PC 中点H ,连接FH ,BH .因为,E F 分别是,AB PD 的中点,所以////FH DC BE ,且12FH DC BE ==, 所以四边形EFHB 为平行四边形,所以//EF BH ,因为BH ⊂平面PBC ,EF ⊄平面PBC ,所以//EF 平面PBC .3.由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -,后得到的几何体如图所示.四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,证明:1//AO 平面11B CD【答案】证明见解析【解析】如图②所示,取11B D 的中点1O ,连接111CO ,AO 由于多面体1111ABCD A B C D -是四棱柱,所以11//A O OC ,11A O OC =, 因此四边形11AOCO 为平行四边形,所以11//A O O C .又1O C ⊂平面11B CD ,1AO ⊄平面11B CD ,所以1//AO 平面11B CD . 4.在如图所示的五面体ABCDEF 中,四边形ABCD 为菱形,且60,22,//,DAB EA ED AB EF EF AB M ∠=︒====为BC 中点,求证:FM ∕∕平面BDE【答案】见解析【解析】取BD 中点O ,连接,OM OE ,因为,O M 分别为,BD BC 的中点,所以//OM CD ,且12OM CD =, 因为四边形ABCD 为菱形,所以//,CD AB CD ⊄又平面,ABFE AB ⊂平面ABFE ,所以//CD 平面ABFE .因为平面ABFE平面,CDEF EF CD =⊂平面CDEF ,所以CD EF ∕∕.又2AB CD ==,所以12EF CD =. 所以四边形OMFE 为平行四边形,所以//MF OE .又OE ⊂平面BDE ,且MF ⊄平面BDE ,所以//MF 平面BDE .【题组三 线面垂直证线面平行】1.如图所示,在正方体1111ABCD A B C D -中,M 是AB 上一点,N 是1A C 的中点,MN ⊥平面1A DC .求证:1//MN AD .【答案】证明见解析【解析】因为四边形11ADD A 为正方形,所以11AD A D ⊥.又CD ⊥平面11ADD A ,1AD ⊂平面11ADD A ,所以1CD AD ⊥.因为1A D CD D =,所以1AD ⊥平面1A DC .又MN ⊥平面1A DC ,所以1∥MN AD .2.已知正方体1111ABCD A B C D -,,E F 分别为AC 和1A D 上的点,且EF AC ⊥,1EF A D ⊥.(1)求证:1//EF BD ;(2)求证:1,,BE D F DA 三条直线交于一点.【答案】(1)详见解析;(2)详见解析【解析】证明:(1)如图,连结1AB 和1B C ,在正方体1111ABCD A B C D -中,11//A D B C ,∵1EF A D ⊥,∴1EF B C ⊥,又EF AC ⊥,1AC B C C ⋂=,∴1EF AB C ⊥平面.又在正方体1111ABCD A B C D -中,11B C BC ⊥,111B C D C ⊥,1111BC D C C ⋂=∴111B C BC D ⊥平面,又111BD BC D ⊂平面,∴11B C BD ⊥.同理可得11B A BD ⊥,又111B A B C B ⋂=,∴11BD AB C ⊥平面.∴EF ∥1BD .(2)由题意可得1EF BD <(或者1D F 和BE 不平行),又由(1)知EF ∥1BD ,所以直线1D F 和BE 必相交,不妨设1BE D F G ⋂=,则1G D F ∈,又111D F AA D D 平面⊂,所以11G AA D D ∈平面,同理G ABCD ∈平面.因为11AA D D ABCD AD ⋂=平面平面,所以G AD ∈,所以BE 、1D F 、DA 三条直线交于一点.【题组四 三角形相似比证线线平行】1.如图,在四面体A BCD -中,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =求证://PQ 平面BCD .【答案】证明见解析【解析】如下图所示,取BD 的中点O ,在线段CD 上取点F ,使得3DF FC =,连接OP 、OF 、FQ .3AQ QC =,3AQ DF QC FC ∴==,//QF AD ∴,且14QF AD =.O 、P 分别为BD 、BM 的中点,//OP AD ∴,且12OP DM =. M 为AD 的中点,14OP AD ∴=. //OP QF ∴且OP QF =,四边形OPQF 是平行四边形,//PQ OF ∴.PQ ⊄平面BCD ,OF ⊂平面BCD ,//PQ ∴平面BCD .2.如图,三棱锥P ABC -中,PA ⊥底面ABC ,PA AB =,点E 、F 分别为P A 、AB 的中点,点D 在PC 上,且2PD DC =,明://CF 平面BDE ;【答案】见解析【解析】设AE 中点为G ,连结GF ,GC ,则//GF EB ,//GF 平面EBD .32PG PC PE PD ==,∴//ED GC ,//GC 平面EBD , ∴平面//GFC 平面EBD ,∴//FC 平面1EBD ;【题组五 线面平行性质证线线平行】1.如图,在三棱柱111ABC A B C -中,D 是BC 的中点,E 是11A C 上一点,但1//A B 平面1B DE ,则11A E EC 的值为_______. 【答案】12【解析】如下图所示,连接1BC 交1B D 于点F ,连接EF .在三棱柱111ABC A B C -中,11//BC B C ,11BDF C B F ∴∆∆, D 为BC 的中点,111122BD BC B C ∴==,11112BF BD FC B C ∴==. 1//A B 平面1B DE ,1A B ⊂平面11A BC ,平面11A BC ⋂平面1B DE EF =,1//A B EF ∴,11112A E BF EC FC ∴==,故答案为12. 2.如图,在多面体ABCDEF 中,DE ⊥平面ABCD ,AD ∥BC ,平面BCEF ⋂平面ADEF EF =,60BAD ︒∠=,2AB =,1DE EF ==,求证:BC ∥EF;【答案】证明见解析【解析】证明:∵AD ∥BC ,AD ⊂平面ADEF ,BC ⊄平面ADEF ,∴BC ∥平面ADEF .又BC ⊂平面BCEF ,平面BCEF 平面ADEF EF =,∴BC ∥EF .3.如图所示,三棱柱111ABC A B C -中,点M ,N 分别是线段11A C ,1A B 的中点,设平面1MNB 与平面11BCC B 的交线为l ,求证://MN l .【答案】证明见解析【解析】证明:如图所示,连接1C B ,在11A BC 中,点M ,N 分别为11A C ,1A B 的中点,所以1MN //C B . 又MN ⊄平面11BCC B ,1BC ⊂平面11BCC B ,所以//MN 平面11BCC B .又MN ⊂平面1MNB ,平面1MNB ⋂平面11BCC B l =,所以//MN l .4.如图所示,已知三棱锥A BCD -中,E ,F 分别是边AB ,AD 的中点,过EF 的平面截三棱锥得到的截面为EFHG ,求证://EF GH .【答案】证明见解析【解析】证明:在ABD △中,因为E ,F 分别是边AB ,AD 的中点,所以由三角形的中位线定理可知//EF BD .又因为EF ⊄面BCD ,BD ⊂面BCD ,所以由线面平行的判定定理可知//EF 面BCD .又因为EF ⊂面EFHG ,面EFHG ⋂面BCD GH =,所以由线面平行的性质定理可知//EF GH .【题组六 面面平行性质证线线平行】1.在如图所示的五面体 ABCDEF 中,四边形ABCD 为平行四边形,//EF 平面ABCD ,2EA ED AB EF ===,M 为BC 的中点.求证://FM 平面BDE .【答案】证明见解析【解析】取CD 的中点N ,连接MN 、FN .因为N 、M 分别为CD 、BC 的中点,所以//MN BD .又BD ⊂平面BDE ,且MN ⊄平面BDE ,所以//MN 平面BDE ,因为//EF 平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =,所以//EF AB .又22AB CD DN EF ===,//AB CD ,所以//EF DN ,EF DN =,所以四边形EFND 为平行四边形,所以//FN ED .又ED ⊂平面BDE ,且FN ⊄平面BDE ,以//FN 平面BDE .又FN MN N ⋂=,所以平面//MNF 平面BDE .又FM ⊂平面MFN ,所以//FM 平面BDE .2.如图,在正四棱锥P ABCD -中,点F 在棱PA 上,且2PF FA =,点E 为棱PD 的中点,求证:CE //平面BDF【答案】见详解【解析】如图取PF 的中点M ,又2PF FA =,所以F 为MA 的中点,连接AC 交BD 于点O因为四边形ABCD 正方形,所以O 为AC 的中点又点E 为棱PD 的中点,所以ME //DF OF //MC ,又,OF FD F MC ME M ⋂=⋂=且,OF FD ⊂平面BDF ,,MC ME ⊂平面MCE所以平面BDF //平面MCE ,又CE ⊂平面MCE所以CE //平面BDF .3.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AD BC ,平面1A DCE 与1B B 交于点E .求证:1//EC A D .【答案】证明见解析【解析】因为BE ∥AA 1,AA 1⊂平面AA 1D ,BE ⊄平面AA 1D ,所以BE ∥平面AA 1D .因为BC ∥AD ,AD ⊂平面AA 1D ,BC ⊄平面AA 1D ,所以BC ∥平面AA 1D .又BE ∩BC =B ,BE ⊂平面BCE ,BC ⊂平面BCE ,所以平面BCE ∥平面AA 1D .又平面A 1DCE ∩平面BCE =EC ,平面A 1DCE ∩平面AA 1D =A 1D ,所以EC ∥A 1D .4.如图,已知四棱锥P ABCD -的底面为直角梯形,//AB CD ,90DAB ︒∠=,PA ⊥底面ABCD ,且112PA AD DC AB ====,M ,N 分别是PB ,PC 的中点.求证://DN 平面AMC .【答案】证明见解析【解析】如图,连接DB 交AC 于点F . ∵12DC AB =,//DC AB ,∴12DF FB =. 取PM 的中点G ,连接DG ,FM ,则1122GM PM BM ==,GM DF BM BF ∴=, //DG FM ∴.又DG ⊄平面AMC ,FM ⊂平面AMC ,∴//DG 平面AMC .连接GN ,则//GN MC .又GN 平面AMC ,MC ⊂平面AMC ,∴//GN 平面AMC .又GN DG G ⋂=,∴平面//DNG 平面AMC .又DN ⊂平面DNG ,∴//DN 平面AMC .5.如图,在四棱柱''''ABCD A B C D -中,点M 和N 分别为1B C 和1D D 的中点、求证://MN 平面ABCD .【答案】证明见解析.【解析】证明:如图, 设E 为棱1CC 的中点,连接NE ME ,.M N ,分别为1B C ,1DD 的中点,11////ME C B CB ∴,//NE CD .又ME NE ,在平面ABCD 的外部,//ME ∴平面ABCD ,NE ∥平面ABCD .又ME NE E ⋂=, ∴平面//MNE 平面ABCD .又MN ⊂平面MNE ,//MN ∴平面ABCD .【题组七 面面平行】1.如图,在正方体1111ABCD A B C D -中,,,M N P 分别是1AD ,1BD B C ,的中点. 求证:(1)MN ∥平面11CC D D ;(2)平面MNP 平面11CC D D .【答案】证明见解析【解析】(1)如图,连接1,AC CD .∵四边形ABCD 是正方形,N 是BD 的中点,∴N 是AC 的中点. 又∵M 是1AD 的中点,∴1//MN CD .∵MN ⊄平面11CC D D ,1CD ⊂平面11CC D D ,∴//MN 平面11CC D D .(2)连接1BC ,1C D ,∵四边形11B BCC 是正方形,P 是1B C 的中点,∴P 是1BC 的中点.又∵N 是BD 中点,∴1PN C D .∵PN ⊄平面111,CC D D C D ⊂平面11CC D D ,∴PN 平面11CC D D .由(1)知MN ∥平面11CC D D ,且MN PN N ⋂=, ∴平面//MNP 平面11CC D D .2.如图,在三棱柱111ABC A B C -中,E ,F ,G 分别为11B C ,11A B ,AB 的中点. ()1求证:平面11//A C G 平面BEF ;()2若平面11AC G BC H ⋂=,求证:H 为BC 的中点.【答案】(1)见解析(2)见解析【解析】 () 1如图, E ,F 分别为11B C ,11A B 的中点,11//EF A C ∴, 11A C ⊂平面11AC G ,EF ⊄平面11AC G ,//EF ∴平面11AC G , 又F ,G 分别为11A B ,AB 的中点,1A F BG ∴=, 又1//A F BG ,∴四边形1A GBF 为平行四边形,则1//BF A G , 1A G ⊂平面11AC G ,BF ⊄平面11AC G ,//BF ∴平面11AC G , 又EF BF F ⋂=,∴平面11//A C G 平面BEF ; ()2平面//ABC 平面111A B C ,平面11A C G ⋂平面11111A B C A C =, 平面11AC G 与平面ABC 有公共点G ,则有经过G 的直线,设交BC H =, 则11//AC GH ,得//GH AC , G 为AB 的中点,H ∴为BC 的中点.。

2023年高考数学考点复习——空间几何中的平行证明(解析版)

2023年高考数学考点复习——空间几何中的平行证明(解析版)

2023年高考数学考点复习——空间几何中的平行证明考点一、线线平行例1、如图,在四面体ABCD 中,E ,F 分别为DC ,AC 的中点,过EF 的平面与BD ,AB 分别交于点G ,H .求证://EF GH证明:因为E ,F 分别为DC ,AC 的中点,所以//AD EF ,因为AD ⊄平面EFHG ,EF ⊂平面EFHG所以//AD 平面EFHG又平面EFHG ⋂平面ABD HG =,AD ⊂平面ABD所以//AD GH ,所以//EF GH .例2、如图,在四棱锥S -ABCD 中,底面ABCD 是菱形,60BAD ∠=︒,SAB ∆为等边三角形,G 是线段SB 上的一点,且SD //平面GAC .求证:G 为SB 的中点证明:证明:如图,连接BD 交AC 于点E ,则E 为BD 的中点,连接GE ,∵//SD 平面GAC ,平面SDB 平面=GAC GE ,SD ⊂平面SBD ,∵//SD GE ,而E 为BD 的中点,∵G 为SB 的中点.例3、在正四棱锥P ABCD -中,,E F 分别是,AB AD 的中点,过直线EF 的平面α分别与侧棱,PB PD 交于点,M N ,求证://MN BD证明:证明:在ABD △中,因为E ,F 分别是,AB AD 的中点,所以EF BD ∕∕且12EF BD =, 又因为EF ⊄平面PBD ,BD ⊂平面PBD ,所以//EF 平面PBD因为EF ⊂平面,αα⋂平面PBD MN =,所以//EF MN ,所以//MN BD .跟踪练习 1、如图,四边形ABCD 和三角形ADE 所在平面互相垂直,//AB CD ,AB BC ⊥,60DAB ∠=︒,4AB AD ==,AE DE ⊥,AE DE =,平面ABE 与平面CDE 交于EF ,求证://CD EF证明:证明:因为//AB CD ,AB平面ABE ,CD ⊄平面ABE ,所以//CD 平面ABE , 因为平面ABE 平面CDE EF =,CD ⊂平面CDE ,所以//CD EF .2、在四棱锥P ﹣ABCD 中,底面ABCD 为平行四边形E ,F 分别为BC ,AD 的中点,过EF 的平面与平面PCD 交于M ,N 两点,求证://AB MN答案:证明见解析证明:∵底面ABCD 为平行四边形,E ,F 分别为BC ,AD 的中点,∵EF //CD ,∵EF //AB .EF ⊄平面PCD ,CD ⊂平面PCD ,所以//EF 平面PCD ,过EF 的平面与平面PCD 交于M ,N 两点,∵MN //EF ,∵AB //MN .3、如图,三棱锥P ABC -中,∵ABC 为正三角形,点1A 在棱PA 上,1B 、1C 分别是棱PB 、PC 的中点,直线11A B 与直线AB 交于点D ,直线11A C 与直线AC 交于点E ,求证://DE BC证明:∵1B 、1C 分别是棱PB 、PC 的中点,∵11//B C BC ,∵11B C ⊄平面BCDE ,BC ⊂平面BCDE ,∵11//B C 平面BCDE ,∵11B C ⊂平面11B C DE ,平面BCDE ⋂平面11B C DE DE =,∵11//B C DE ,则//DE BC ;4、如图,四棱锥P ABCD -的底面是边长为8的正方形,点G.E.F .H 分别是棱PB .AB .DC .PC 上共面的四点,//BC 平面GEFH.证明://GH EF证明:∵//BC 平面GEFH ,又∵BC ⊂平面PBC 且平面PBC平面GEFH GH =,∵//BC GH .又∵//BC 平面GEFH ,又∵BC ⊂平面ABCD 且平面ABCD平面GEFH EF =,∵//BC EF ,∵//EF GH .5、如图,AE ⊥平面ABCD ,//BF 平面ADE ,//CF AE ,求证://AD BC证明:依题意//CF AE ,CF ⊄平面ADE ,AE ⊂平面ADE ,∵//CF 平面ADE ,又//BF 平面ADE ,BF CF F ⋂=,∵平面//BCF 平面ADE ,∵平面BCF ⋂平面ABCD AD =,平面ADE平面ABCD BC =,∵//AD BC ;考点二、 线面平行例1、如图,正三棱柱ABC ﹣A 1B 1C 1中D 是AC 的中点,求证:B 1C ∵平面A 1BD证明:设AB 1与A 1B 相交于点P ,连接PD ,则P 为AB 1中点,∵D 为AC 中点,∵PD ∵B 1C ,又∵PD ∵平面A 1BD ,B 1C ⊄平面A 1BD ,∵B 1C ∵平面A 1BD例2、如图,在四棱锥A BCDE -中,底面BCDE 为矩形,M 为CD 中点,连接,BM CE 交于点,F G 为ABE △的重心,证明://GF 平面ABC证明:延长EG 交AB 于N ,连接CN ,因为G 为ABE △的重心,则N 为AB 的中点,且2EG GN =, 因为//CM BE ,所以2EF BE FC CM ==,所以2EF EG FC GN==,因此//GF NC , 又因为GF ⊄平面ABC ,NC ⊂平面ABC ,所以//GF 平面ABC ;例3、如图,四棱锥C ABED -中,四边形ABED 是正方形,若G ,F 分别是线段EC ,BD 的中点.(1)求证://GF 平面ABC .证明:由四边形ABED 为正方形可知,连接AE 必与BD 相交于中点F ,又G 是线段EC 的中点,故//GF AC ,GF ⊄面ABC ,AC ⊂面ABC ,//GF ∴面ABC ;跟踪练习1、如图,在直三棱柱111ABC A B C -中,底面ABC 是等边三角形,D 是AC 的中点,证明:1//AB 平面1BC D证明:直三棱柱111ABC A B C -中,设1B C 与1BC 交于点E ,连接DE ,四边形11BCC B 是矩形,则E 为1B C 的中点,因D 是AC 的中点,所以1//DE AB ,又1AB ⊄平面1BC D ,DE ⊂平面1BC D ,所以1//AB 平面1BC D . 2、《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵111ABC A B C -中,,11AA AB AC ===,M ,N 分别是1CC ,BC 的中点,点P 在线段11A B 上,若P 为11A B 的中点,求证://PN 平面11AAC C证明:证明:取11A C 的中点H ,连接PH ,HC .在堑堵111ABC A B C -中,四边形11BCC B 为平行四边形,所以11//B C BC 且11B C BC =.在111A B C △中,P ,H 分别为11A B ,11A C 的中点,所以11//PH B C 且1112PH B C =.因为N 为BC 的中点,所以12NC BC =, 从而NC PH =且//NC PH , 所以四边形PHCN 为平行四边形,于是//PN CH .因为CH ⊂平面11AC CA ,PN ⊄平面11AC CA ,所以//PN 平面11AACC .3、如图,直四棱柱1111ABCD A B C D -的底面是菱形,12AA =,1AB =,E ,M ,N 分别是BC ,1BB ,1A D 的中点,证明://MN 平面ABCD证明:连接1,ME B C ,,E M 分别为1,BC BB 中点,11//2ME B C ∴; 由直四棱柱特点知:11//A D B C ,11//2ME A D ∴,又N 为1A D 中点,//ME ND ∴, ∴四边形MNDE 为平行四边形,//MN DE ∴,又DE ⊂平面ABCD ,MN ⊄平面ABCD ,//MN ∴平面ABCD ;4、如图,在四棱锥P ABCD -中,四边形ABCD 是边长为2的菱形,M 是AB 的中点,N 是PD 的中点,PA AB =,求证://MN 平面PBC证明:如图∵,取PC 的中点Q ,连接BQ ,NQ ,因为N 是PD 的中点,所以//NQ CD 且12NQ CD =.因为四边形ABCD 是菱形,M 是AB 的中点,所以//BM CD 且12BM CD =, 从而//BM NQ 且BM NQ =,所以四边形BMNQ 是平行四边形,从而//MN BQ .又MN ⊄平面PBC ,BQ ⊂平面PBC ,所以//MN 平面PBC . 5、如图,已知四边形ABCD 和BCEG 均为直角梯形,//AD BC ,//CE BG ,且2BCD BCE π∠=∠=,222BC CD CE AD BG =====,)求证://AG 平面BDE答案:证明见解析证明:证明:过G 作GN CE ⊥于N ,交BE 于M ,连接DM ,如图所示:因为BC CE ⊥,且2CE BG =,所以N 为CE 中点,所以MG MN =,MNBC DA ,12MN AD BC ==, 所以MG AD ,MG AD =,所以四边形ADMG 为平行四边形,所以AG DM ,又DM ⊂平面BDE ,AG ⊄平面BDE ,所以AG 平面BDE .6、在四棱锥P —ABCD 中,AB //CD ,过CD 的平面分别交线段P A ,PB 于M ,N ,E 在线段DP 上(M ,N ,E 不同于端点)求证:CD //平面MNE证明:证明:∵//AB CD ,AB ⊂平面ABP ,CD ⊄平面ABP ∵//CD 平面ABP又∵CD ⊂平面CDMN ,平面CDMN 平面ABP MN =∵//CD MN又∵MN ⊂平面MNE ,CD ⊄平面MNE ∵//CD 平面MNE7、如图,在多面体ABCDEF 中,矩形BDEF 所在平面与正方形ABCD 所在平面垂直,1AB =,点M 为AE 的中点,求证://BM 平面EFC证明:连接AC 交BD 于点N .连接MN .因为四边形ABCD 是正方形,所以N 为AC 的中点,由于M 为AE 的中点,所以//MN CE , 又因为MN ⊄平面CEF ,CE ⊂平面CEF ,所以//MN 平面CEF ,易知//BN EF ,BN ⊄平面CEF ,EF ⊂平面CEF ,所以//BN 平面CEF ,因为MN BN N ⋂=,BN ⊂平面BMN ,MN ⊂平面BMN ,所以平面//BMN 平面CEF .又因为BM ⊂平面BMN ,所以//BM平面EFC ;8、在四棱锥P ABCD -中,底面ABCD 为梯形,//AB CD ,22AB CD ==,若Q 为AB 的中点,求证://DQ 平面PBC证明:∵在梯形ABCD 中,//AB CD ,22AB CD ==,Q 为AB 的中点,所以//BQ CD 且BQ CD =,∵四边形BCDQ 为平行四边形,所以//DQ BC ,∵BC ⊂平面PBC ,DQ ⊄平面PBC ,所以//DQ 平面PBC .9、如图所示,四面体P ABC 中,E ,F 分别为AB ,AC 的中点,过EF 作四面体的截面EFGH 交PC 于点G ,交PB 于点H ,证明:GH /平面ABC证明:∵E ,F 分别为AB ,AC 的中点,∵EF ∵BC ,又∵EF ∵平面PBC ,BC ∵平面PBC ,∵EF ∵平面PBC ,∵EF ∵平面EFGH ,平面EFGH ∩平面PBC =GH ,∵EF ∵GH ,又∵GH ∵平面ABC ,EF ∵平面ABC ,∵GH ∵平面ABC ;10、如图所示,在三棱柱111ABC A B C -中,D 为AC 的中点,求证:1//AB 平面1BC D证明:证明:如图,连接1B C 交1BC 于O ,连接OD ,∵四边形11BCC B 是平行四边形.∵点O 为1B C 的中点.∵D 为AC 的中点,∵OD 为1AB C 的中位线,∵1//OD AB .∵OD ⊂平面1BC D ,1AB ⊄平面1BC D ,∵1//AB 平面1BC D .11、如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,PAB △为正三角形,且侧面PAB ⊥底面ABCD ,M 为PD 的中点,求证://PB 平面ACM答案:证明见解析证明:证明:连接BD ,与AC 交于O ,在PBD △中,,O M 分别为,BD PD 的中点,//BP OM ∴,BP ⊄平面,ADE OM ⊂平面CAM ,//BP ∴平面CAM ;12、如图,在三棱柱111ABC A B C -中,侧面11ABB A 是菱形,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =,证明:1//CB 平面1A EF答案:证明见解析证明:连接1AB 交1A E 于点G ,连接FG ,因为四边形11ABB A 为菱形,则11//AA BB 且11AA BB =, E 为1BB 的中点,则11//B E AA 且1112B E AA =,故11112B G B E AG AA ==, 所以,1B G CF AG AF=,1//CB FG ∴, 1CB ⊄平面1A EF ,FG ⊂平面1A EF ,因此,1//CB 平面1A EF ;考点三、 面面平行例1、如图所示,四棱柱1111ABCD A B C D -的侧棱与底面垂直,12,,AC AA AD DC AC BD ====交于点E ,且,E F 分别为1,AC CC的中点,2BE =,求证:平面11//B CD 平面1A BD证明:如图,连接1AD ,设11AD A D H ⋂=,则H 为1AD 的中点,而E 为AC 的中点,连接EH ,则EH为1ACD △的中位线,所以1//EH CD ,又EH ⊄平面11B CD ,1CD ⊂平面11B CD ,所以//EH 平面11B CD ,又因为侧棱与底面垂直,所以1111//,=BB DD BB DD ,所以四边形11BB D D 为平行四边形,所以11//B D BD ,BD ⊄平面11B CD ,11B D ⊂平面11B CD ,所以//BD 平面11B CD ,又BD EH E ⋂=,,BD EH ⊂平面1A BD ,所以平面11//B CD 平面1A BD .例2、如图,在三棱锥P ABC -中,PAB △是正三角形,G 是PAB △的重心,D ,E ,H 分别是PA ,BC ,PC 的中点,点F 在BC 上,且3BF FC =,求证:平面//DFH 平面PGE证明:连结BG ,因为PAB △是正三角形,G 是PAB △的重心,D 为PA 的中点,所以BG 与GD 共线,且2BG GD =,因为E 为BC 的中点,3BF FC =,所以F 是CE 的中点, 所以2BG BE CD EF==,所以//GE DF , 又GE平面PGE ,DF ⊄平面PGE ,所以//DF 平面PGE , 因为H 是PC 的中点,所以FH //PE ,因为FH ⊄平面PGE ,PE ⊂平面PGE ,所以//FH 平面PGE ,因为FH DF F ⋂=,,FH DF ⊂平面DFH ,所以平面//DFH 平面PGE ;例3、如图,在多面体ABCDEF 中,ABCD 是正方形,2//AB DE BF BF DE ==,,,M 为棱AE 的中点,求证:平面//BMD 平面EFC证明:如图,连接AC ,交BD 于点N ,∵N 为AC 的中点,连接MN ,由M 为棱AE 的中点,则//MN EC .∵MN ⊄面EFC ,EC ⊂面EFC ,∵//MN 平面EFC .∵//BF DE BF DE =,,∵四边形BDEF 为平行四边形,∵//BD EF .又BD ⊄平面EFC ,EF ⊂平面EFC ,∵//BD 平面EFC ,又MNBD N =, ∵平面//BMD 平面EFC .跟踪练习1、如图,在几何体ABCDE 中,四边形ABCD 是矩形,2AB BE EC ===,G ,F ,M 分别是线段BE ,DC ,AB 的中点,求证:平面//GMF 平面ADE证明:如图,因为AB中点为M,连接MG,∥,又G是BE的中点,可知GM AE又AE⊆平面ADE,GM⊄平面ADE,所以GM平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF AD.又AD⊆平面ADE,MF⊄平面ADE,所以MF平面ADE.⋂=,GM⊆平面GMF,MF⊆平面GMF,又因为GM MF M所以平面GMF平面ADE2、如图,四边形ABCD是边长为BB1=DD1=2,E,F分别是AD1,AB1的中点,证明:平面BDEF∵平面CB1D1证明:证明:连接AC ,交BD 于点O ,连接OE ,则O 为AC 的中点,∵E 是1AD 的中点,1//OE CD ∴OE ⊂平面BDEF ,1CD ⊄平面BDEF ,所以1//CD 平面BDEF又F 是1AB 的中点11//EF B D ∴EF ⊂平面BDEF ,11B D ⊄平面BDEF ,所以11//B D 平面BDEF又111,CD B D ⊂平面11CB D ,1111B D CD D ⋂=, 所以平面//BDEF 平面11CB D .3、如图,已知矩形ABCD 所在的平面垂直于直角梯形ABPE 所在的平面,且EP =2BP =,1AD AE ==,AE EP ⊥,//AE BP ,F ,G 分别是BC ,BP 的中点,求证:平面//AFG 平面PEC证明:∵F ,G 分别是BC ,BP 的中点,∵FG CP ,且FG ⊄平面CPE ,则FG ∥平面CPE ,1BG PG AE ===,且//AE BP ,AE EP ⊥∵四边形AEPG 是矩形,则EP AG ∥,且AG ⊄平面CPE ,则AG平面CPE又GA GF G ⋂=,故平面//AFG 平面PEC4、如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,AD //BC ,P ,Q 是AB ,CD 的中,点M ,N 分别是SB ,CB 的中点,求证∵平面AMN //平面SCD答案:证明见解析证明:因为M 、N 分别是SB ,CB 的中点,所以//MN SC ,MN ⊄面SCD ,SC ⊂面SCD ,所以//MN 面SCD ,又//AD CN 且AD CN =,所以ADCN 为平行四边形,所以//AN DC ,AN ⊄面SCD ,DC ⊂面SCD ,所以//AN 面SCD ,又AN MN N =,,AN MN ⊂面AMN ,所以面//AMN 面SCD ;5、如图,在三棱锥P ABC -中,PAB △是正三角形,G 是PAB △的重心,,,D E H 分别是,,PA BC PC 的中点,点F 在BC 上,且3BF FC =,求证:平面//DFH 平面PGE证明:证明:连结BG ,由题意可得BG 与GD 共线,且2BG GD =,∵E 是BC 的中点,3BF FC =,∵F 是CE 的中点,∵2BG BE GD EF==,∵//GE DF ,GE 平面PGE ;DF ⊄平面PGE ;∵//DF 平面PGE , ∵H 是PC 的中点,∵//FH PE ,PE ⊂平面PGE ,FH ⊄平面PGE ;∵//FH 平面PGE , ∵DF FH F =,DF ⊂平面DEF ,FH ⊂平面DEF ,∵平面//DFH 平面PGE ; 考点四 平行中的动点例1、直三棱柱111ABC A B C -所有棱长都为2,在AB 边上是否存在一点E ,使1//AC 平面1CEB ,若存在给出证明,若不存在,说明理由证明:存在,E 是AB 的中点,直三棱柱111ABC A B C -中,连接1BC 交1B C 于点O ,如图:则O 为1BC 中点,连接OE ,而E 为AB 的中点,则1//OE AC ,又1AC ⊄平面1CEB ,OE ⊂平面1CEB ,所以1//AC 平面1CEB ;例2、如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90ACB ∠=︒,CA CB ==,1AA =D 是棱11A B 的中点,E 在棱1BB 上,且1AD EC ⊥,在棱BC 上是否存在点F ,满足//EF 平面1ADC ,若存在,求出BF 的值答案:存在,BF =证明:因为1AA ⊥面ABC ,故三棱柱111ABC A B C -为直三棱柱.故1AA ⊥面111A B C ,而1C D ⊂面111A B C ,故11AA C D ⊥,因为CA CB ==,故1111C A C B ==112B A =,因为D 是棱11A B 的中点,故111C D A B ⊥,因为1111AA A B A =, ∵直线1C D ⊥平面ADE ,而AD ⊂平面ADE , ∵1C D AD ⊥,又1AD EC ⊥,111C D C E C ⋂=,∵AD ⊥平面1DEC ,而DE ⊂平面1DEC ,∵AD DE ⊥,在矩形11ABB A 中,11ADA DEB ∠=∠,11AA D DB E ∠=∠,故11ADA DEB ∠,故1111AA A D DB EB =11EB =即1=3EB ,故12BE EB =. 过E 作EG DE ⊥,交AB 于G ,取AB 的中点为L ,连接,DL CL ,则1DEB EGB ∠=∠,而190DB E EBG ∠=∠=︒,故1EBG DB E , 所以11BG EB B E B D =31=,所以23BG =.在矩形11ABB A 中,因为11ADA DEB ∠=∠,故1ADA EGB ∠=∠,而1ADA DAL ∠=∠,所以EGB DAL ∠=∠,所以//AD EG ,而AD ⊂平面1ADC ,EG ⊄平面1ADC ,所以//EG 平面1ADC .在BC 上取点F ,使233BF BC ==,连GF , 因为1BL =,故23BG BL =,故//GF CL . 在矩形11ABB A 中,因为,D L 为所在棱的中点,故11//,,DL AA DL AA =而1111//,,CC AA CC AA =故11//,CC DL CC DL =,故四边形1C DLC 为平行四边形,故1//DC CL ,故1//GF DC ,而1C D ⊂平面1ADC ,FG ⊄平面1ADC ,所以//FG 平面1ADC .因为GF EG G ⋂=,故平面以//EGF 平面1ADC ,因为EF ⊂平面EGF ,故//EF 平面1ADC .例3、如图,已知AD ⊥平面ABC ,EC ⊥平面ABC ,12AB AC AD BC ===,设P 是直线BE 上的点,当点P 在何位置时,直线//DP 平面ABC ?请说明理由证明:当点P 是BE 的中点时,//DP 平面ABC .理由如下:如下图,取BC 的中点O ,连接AO 、OP 、PD ,则//OP EC 且12OP EC =,因为AD ⊥平面ABC ,EC ⊥平面ABC ,所以//AD EC . 又12AD EC =,所以//OP AD 且OP AD =, 所以四边形AOPD 是平行四边形,所以//DP AO .因为AO ⊂平面ABC ,DP ⊄平面ABC ,所以//DP 平面ABC ;跟踪练习1、在三棱锥S ABC -中,AB ⊥平面SAC ,AS SC ⊥,1AB =,AC =,E 为AB 的中点,M 为CE 的中点,在线段SB 上是否存在一点N ,使//MN 平面SAC ?若存在,指出点N 的位置并给出证明,若不存在,说明理由证明:存在点N 为SB 上的靠近S 的四等分点即14SN SB =,//MN 平面SAC , 证明如下:取AE 的中点F ,连接FN ,FM ,则//MF AC ,因为AC ⊂平面SAC ,MF ⊄平面SAC ,所以//MF 平面SAC , 因为1124AF AE AB ==,14SN SB =, 所以FN //SA ,又SA ⊂平面SAC ,FN ⊄平面SAC ,所以//FN 平面SAC ,又MF FN F =,,MF FN ⊂平面MNF ,所以平面//MNF 平面SAC ,又MN ⊂平面MNF ,所以//MN 平面SAC .2、在如图所示的五面体ABCDEF 中,∵ADF 是正三角形,四边形ABCD 为菱形,23ABC π∠=,EF //平面ABCD ,AB =2EF =2,点M 为BC 中点,在直线CD 上是否存在一点G ,使得平面EMG //平面BDF ,请说明理由证明:连接AC 交BD 于点O ,连接OM ,OF ,取CD 的中点G ,连接GM ,GE因为EF //平面ABCD ,EF ⊂平面ABEF ,平面ABEF ∩平面ABCD =AB ,所以EF //AB因为OM //AB //EF ,12OM AB EF ==,所以四边形OMEF 是平行四边形,所以OF //EM 因为EM ⊄平面BDF ,OF ⊂平面BDF ,所以EM //平面BDF因为点G 与点M 分别为CD 与BC 的中点,所以GM //BD因为GM ⊄平面BDF ,BD ⊂平面BDF ,所以GM //平面BDF而GM ∩EM =M ,平面EMG //平面BDF3、在长方体1111ABCD A B C D -中,已知AB AD =,E 为AD 的中点,)在线段11B C 上是否存在点F ,使得平面1//A AF 平面1ECC ?若存在,请加以证明,若不存在,请说明理由证明:存在,当点F 为线段11B C 的中点时,平面1//A AF 平面1ECC .证明:在长方体1111ABCD A B C D -中,11//AA CC ,11//AD B C .又因为1CC ⊂平面1ECC ,1AA ⊄平面1ECC ,所以1//AA 平面1ECC .又E 为AD 的中点,F 为11B C 的中点,所以1//AE FC ,且1AE FC =.故四边形1AEC F 为平行四边形,所以1//AF EC ,又因为1EC ⊂平面1ECC ,AF ⊄平面1ECC ,所以//AF 平面1ECC .又因为1AF AA A =,1AA ⊂平面1A AF ,AF ⊂平面1A AF ,所以平面1//A AF 平面1ECC .4、如图所示,在三棱柱ABC ﹣A 1B 1C 1中,平面ACC 1A 1∵平面ABC ,AA 1∵AC ,D ,D 1分别为AC ,A 1C 1的中点且AD =AA 1,在棱AA 1上找一点M ,使得1//D M 平面1DBC ,并说明理由答案:M 与A 重合时,1//D M 面1DBC ,理由见解析证明:当M 与A 重合时,D 1M ∵面DBC 1,理由如下:∵D 1C 1∵AD ,且D 1C 1=AD ,∵四边形D 1C 1DA 为平行四边形,∵D 1A ∵C 1D ,因为C 1D ∵面BDC 1,∵D 1M ∵面DBC 1.5、如图,在三棱锥P ABC -中,PA ⊥底面ABC ,ABC 是正三角形,E 是棱AB 的中点,如1AE =,在平面PAC 内寻找一点F 使得//BF 平面PEC ,并说明理由答案:答案见解析.证明:延长AC 至点G ,使得AC CG =,延长AP 至点H ,使得AP PH =,连接GH ,在直线GH 上任取一点F ,则点F 满足BF ∥平面PEC .理由如下: E 是线段AB 的中点,C 是线段AG 的中点,CE ∴是ABG 的中位线,∴BG CE ∥,BG ∴∥平面PEC .同理HG平面PEC , 又BG HG G =,∴平面BHG平面PEC , BF ⊂平面BHG ,BF ∴∥平面PEC .(注:若此题点F 直接取H 或G ,理由充分,给6分)6、已知四棱柱1111ABCD A B C D -的底面是边长为2的菱形,且BC BD =,1DD ⊥平面ABCD ,11AA =,BE CD ⊥于点E ,试问在线段11A B 上是否存在一点F ,使得//AF 平面1BEC ?若存在,求出点F 的位置;若不存在,请说明理由;证明:当F 为线段11A B 的中点时,//AF 平面1BEC .下面给出证明:取AB 的中点G ,连接EG ,1B G ,则1//FB AG ,且1FB AG =,所以四边形1AGB F 为平行四边形,所以1//AF B G .因为BC BD =,BE CD ⊥,所以E 为CD 的中点,又G 为AB 的中点,//AB CD ,AB CD =,所以//BG CE ,且BG CE =, 所以四边形BCEG 为平行四边形,所以//EG BC ,且EG BC =,又11//BC B C ,11BC B C =, 所以11//EG B C ,且11EG B C =,所以四边形11EGB C 为平行四边形, 所以11//B G C E ,所以1//AF C E ,又AF ⊄平面1BEC ,1C E ⊂平面1BEC ,所以//AF 平面1BEC ,7、在正三棱柱111ABC A B C -中,已知12,3AB AA ==,M ,N 分别为AB ,BC 的中点,P 为线段1CC 上一点.平面1ABC 与平面ANP 的交线为l ,是否存在点P 使得1//C M 平面ANP ?若存在,请指出点P 的位置并证明;若不存在,请说明理由证明:当2CP =时,1//C P 平面ANP证明如下:连接CM 交AN 于点G ,连接GP ,因为12CG CP GM PC ==,所以1//C M GP 又∵GP ⊂平面ANP ,1C M ⊄平面ANP ∵1C M 平面ANP。

空间几何中的平行四面体与正四面体知识点

空间几何中的平行四面体与正四面体知识点

空间几何中的平行四面体与正四面体知识点在空间几何学中,平行四面体和正四面体是两种常见的多面体。

它们具有不同的特点和性质,下面将详细介绍这两种多面体的知识点。

一、平行四面体平行四面体是指四个面中的任意两个面平行的四面体。

它具有以下几个重要的性质:1. 对角线平行性质:平行四面体的任意两条对角线都是平行的。

这是因为平行四面体的两个相对面平行,因此连接相对顶点的对角线也是平行的。

2. 面积比例性质:平行四面体的相邻两个面之间的面积比等于相邻两个对角面的面积比。

具体而言,如果平行四面体的两个相邻面的面积分别为S1和S2,而另外两个对角面的面积分别为S3和S4,则有S1/S2 = S3/S4。

3. 体积计算公式:平行四面体的体积可以通过以下公式计算:V = (1/3) * S * h,其中V表示体积,S表示底面积,h表示底面到顶点的距离。

4. 平行四面体的类型:根据底面形状的不同,平行四面体可以分为正方形底面四面体、长方形底面四面体和菱形底面四面体等多种类型。

二、正四面体正四面体是指四个等边等角的三角形构成的四面体。

它具有以下几个重要的性质:1. 边长和面积:正四面体的边长相等,每个面都是等边三角形。

正四面体的面积可以通过以下公式计算:S = (sqrt(3) * a2) / 4,其中S表示面积,a表示边长。

2. 高度和体积:正四面体的高度可以通过以下公式计算:h = (sqrt(6) * a) / 3,其中h表示高度,a表示边长。

正四面体的体积可以通过以下公式计算:V = (sqrt(2) * a3) / 12,其中V表示体积,a表示边长。

3. 正四面体的特殊点:正四面体有四个特殊的点,分别为顶点、底心、重心和垂心。

顶点是四个面的交点,底心是底面三角形三个高线的交点,重心是四个面重心连线的交点,垂心是底面三角形三条垂线的交点。

4. 对称性:正四面体具有四个三角对称面和六个对称轴。

四个三角对称面将正四面体分为等价的四个部分,而六个对称轴则是通过连接各个面的中点和顶点形成的。

空间几何中的平行四面体与棱锥

空间几何中的平行四面体与棱锥

空间几何中的平行四面体与棱锥平行四面体是一种特殊的多面体,它具有四个面,并且每个面都平行于与其相邻的面。

而棱锥是一种由一个多边形底面与一个点(顶点)连接而成的多面体。

在空间几何中,平行四面体和棱锥是两个重要的概念,在数学中有着广泛的应用。

一、平行四面体平行四面体是一个有四个面的多面体,它的四个面都是平行的。

平行四面体的边沿着四条平行线,而且四面体的对边相互平行且相等长。

四面体的对角线相交于一点,这个点被称为四面体的重心。

平行四面体的底面是一个平行四边形,而顶面则是底面平移得到的平行四边形。

平行四面体的体积可以通过底面积和高来计算。

如果底面的面积为S,高为h,则平行四面体的体积为V=1/3×S×h。

此外,平行四面体的表面积也可以通过底面积和侧面积来计算,其中侧面积为底面积的两倍。

二、棱锥棱锥是由一个多边形底面和一个顶点连接而成的多面体。

棱锥的侧面是由顶点和底面上的各个顶点连接而成的三角形。

顶点到底面的距离被称为棱锥的高,而底面的周长被称为棱锥的底面周长。

如同平行四面体一样,棱锥的体积可以通过底面积和高来计算,即V=1/3×底面积×高。

棱锥的种类较多,根据底面的形状可以分为三角棱锥、四边形棱锥、五边形棱锥等。

而根据棱锥的高与侧棱的关系,可以将其进一步分为直棱锥和斜棱锥。

直棱锥是棱锥的高与底面平行的,而斜棱锥则是两者不平行。

三、应用与性质平行四面体和棱锥在几何学中有着广泛的应用。

在计算几何中,平行四面体和棱锥的性质被用来推导和证明各种定理。

此外,在物理学和工程学中,平行四面体和棱锥被用来描述和求解各种物理和工程问题,比如计算体积和表面积,求解质心和重心位置等。

平行四面体和棱锥的性质也非常重要。

例如,平行四面体的中线是通过四面体的两个底面中心且平行于顶面的线段,它们相交于一个点。

而棱锥的高可以通过使用勾股定理和正弦定理计算得到。

这些性质的理解和应用对于解决各种几何问题至关重要。

空间几何中的平行四面体

空间几何中的平行四面体

空间几何中的平行四面体在空间几何学中,平行四面体是一个非常重要的概念。

它是由四个平行的且不在同一平面的三角形构成的多面体。

本文将介绍平行四面体的定义及性质,并给出一些相关的例子和应用。

一、平行四面体的定义平行四面体是由四个平行的且不在同一平面的三角形所组成的多面体。

它具有以下特点:1. 四个面都是三角形。

2. 相邻两个面之间的边都是平行的。

3. 任意两个不相邻的面之间的距离是相等的。

二、平行四面体的性质1. 平行四面体的对棱平行且相等。

对任意的棱AB和CD,若AB ∥ CD,则有AB=CD。

2. 平行四面体的对顶角平等。

对任意的顶点O和底面P,若∠AOC=∠BOD,则有∠DOP=∠COP。

3. 平行四面体的任意两个面之间的距离相等。

对于任意的两个面ACDF和BCEF,有AC=BD。

4. 平行四面体的四条棱构成的四面体是平行四面体,且与原平行四面体全等。

5. 平行四面体的底面积乘以高等于体积。

设底面为底的面积为S,其高为H,则平行四面体的体积V=SH/3。

三、平行四面体的例子1. 双峰山:双峰山位于中国的广东省韶关市。

它的山势独特,由四个平行的山脊组成,形成了一个平行四面体的形状。

2. 锡尔河四面体:位于俄罗斯的锡尔河口以北,是一个由四条平行的山脉组成的地貌景观。

3. 钻石:钻石的晶体结构可以看作是一个平行四面体的形状,钻石的每个面都是一个等边三角形。

四、平行四面体的应用1. 三维建模:在计算机图形学和三维建模领域,平行四面体常被用于表示物体的三维空间结构。

2. 计算几何:平行四面体是计算几何中的重要概念,可以用来求解空间中的各种几何问题。

3. 数学教学:在数学教学中,通过平行四面体的例子可以引导学生理解三维空间的概念,并进行相关的几何推理。

总结:平行四面体是空间几何学中的一个重要概念,它由四个平行的且不在同一平面的三角形组成。

它具有一系列独特的性质,如对棱平行且相等、对顶角平等等。

平行四面体在实际生活中也有很多应用,如三维建模、计算几何等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何中的平行四面体
平行四面体是空间几何中一种重要的多面体,它由四个平行的三角
形面构成。

在本文中,我将介绍平行四面体的基本定义、性质和一些
相关的应用。

一、基本定义
平行四面体的定义是:如果一个四面体的四个面都是平行的,则称
其为平行四面体。

平行四面体的四条棱相应地也是平行的,并且任意
两个相对面之间的平行距离是相等的。

二、性质
1. 对角线与体积
平行四面体的对角线有两种情况:一种是连接非共面的两个顶点,
另一种是连接共面的两个顶点。

对于前一种情况,对角线的长度等于
棱长的平方根乘以2;对于后一种情况,对角线的长度等于棱长的平方根。

平行四面体的体积可以通过任意三条棱和它们所对的面的面积计
算得到。

2. 高度和底面积
平行四面体的高度是从顶点到底面所在平面的垂直距离。

底面积是
底面的面积。

平行四面体的体积等于底面积与高度的乘积的三分之一。

3. 平行四面体的中位线
平行四面体的中位线是连接相邻棱中点的线段。

对于任意两个相邻的面,它们所在棱的中点和平行四面体的中位线构成一个四面体,该四面体与原平行四面体相似。

4. 平行四面体的重心
平行四面体的重心是连接相邻面中心的线段交点。

平行四面体的重心将中位线分成1:3的比例。

三、应用
1. 空间定位
平行四面体可以用于空间定位。

通过已知条件,如四个点的坐标或者两组平行面的方程,可以确定平行四面体的位置。

2. 物体分析
在物体分析中,平行四面体可以用来判断物体是否倾斜或平衡。

通过测量平行四面体的各边长和角度,可以分析物体的形态和稳定性。

3. 包装设计
平行四面体在包装设计中有广泛应用。

由于平行四面体具有稳定性和体积较大的特点,可以用来设计包装盒和容器,以最大限度地利用空间并保护物品。

4. 三维建模
在计算机图形学和三维建模中,平行四面体是一种重要的基本几何
元素。

通过组合平行四面体,可以构建复杂的三维模型,如建筑物、
汽车和动画人物等。

总结:
平行四面体是空间几何中的重要概念,具有许多有用的性质和应用。

在研究几何形状、物体分析和三维建模时,平行四面体都发挥着重要
作用。

通过深入理解平行四面体的定义、性质和应用,我们可以更好
地应用它们于实际问题并推动科学技术的发展。

相关文档
最新文档