有理数域的认识

有理数域的认识
有理数域的认识

楚雄师范学院

《现代数学观点下的中学数学》研究论文

学校:楚雄师范学院

系院:数学系

班级: 08 级(2)班

姓名:郭仓云

学号: 20081021206

2011年12月7日

摘要:

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。有理数可分为整数和分数也可分为三种,一;正数,二;0,三;负数。除了无限不循环小数以外的实数统称有理数。整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。任何一个有理数都可以在数轴上表示。其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。数学上,有理数是一个整数a和一个非零整数b的比(ratio),通常写作a/b,故又称作分数。希腊文称为λογο,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。无限不循环小数称之为无理数(例如:圆周率π)有理数和无理数统称为实数。所有有理数的集合表示为Q。

关键词:

有理数;整数;分数;运算律.

有理数域的认识

1. 有理数域的范围:

有理数包括:(1)整数包含了:正整数、0、负整数统称为整数。(2)分数包含了:正分数、负分数统称为分数。(3)小数包含了:有限小数、无限循环小数。而且分数也统称小数,因为分小互化。如3,-98.11,5.72727272……,7/22都是有理数。全体有理数构成一个集合,即有理数集合,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。有理数集是实数集的子集,即Q?R。相关的内容见数系的扩张。有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):①加法的交换律a+b=b+a;②加法的结合律a+(b+c)=(a+b)+c;③存在数0,使0+a=a+0=a;④乘法的交换律ab=ba;⑤乘法的结合律a(bc)=(ab)c;⑥乘法的分配律a(b+c)=ab+ac。0a=0 文字解释:一个数乘0还等于0。此外,有理数是一个序域,即在其上存在一个次序关系≤。0的绝对值还是0.有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。由此不难推知,不存在最大的有理数。值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是(rational number),而(rational)通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为(ratio),就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,而“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理(无理数就是无限不循环小数,π也是其中一个无理数)。

2. 有理数的运算:

加法:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加,仍得这个数。

减法:减去一个数等于加上这个数的相反数。

乘法:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得零。几个不为零的有理数相乘,负因数有偶数个时积为正,负因数有奇数个时积为负,如果有一个因数为零,积就为零。

除法:除以一个不为零的数,等于乘以这个数的倒数;两数相除,同号得正,异号为负;零除以任意非零的数都得零。

有理数的巧算:

有理数加减统一成加法的意义:对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的算式是几个正数或负数的和的形式,我们把这样的式子叫做代数和。有理数加减混合运算的方法和步骤:(1)运用减法法则将有理数混合运算中的减法转化为加法。(2)运用加法法则,加法交换律,加法结合律简便运算。一般情况下,有理数是这样分类的:整数、分数;正数、负数和零;负有理数,正有理数。

初中数学书中介绍的用计算器做有理数运算

整数和分数统称有理数,有理数可以用a/b的形式表达,其中a、b都是整数,且互质。我们日常经常使用有理数的。比如多少钱,多少斤等。凡是不能用a/b 形式表达的实数就是无理数,又叫无限不循环小数。在有理数中,不是无限不循环小数的小数就是分数。

3. 有理数的由来:

古埃及人约于公元前17世纪初已使用分数,中国《九章算术》中也载有分数的各种运算。分数的使用是由于除法运算的需要。除法运算可以看作求解方程px=q(p≠0),如果p,q是整数,则方程不一定有整数解。为了使它恒有解,就必须把整数系扩大成为有理系。关于有理数系的严格理论,可用如下方法建立。在Z×(Z -{0})即整数有序对(但第二元不等于零)的集上定义的如下等价关系:设p1,p2Z,q1,q2Z-{0},如果p1q2=p2q1。则称(p1,q2)~(p2,q1)。Z×(Z -{0})关于这个等价关系的等价类,称为有理数。(p,q)所在的有理数,记为。一切有理数所成之集记为Q。令整数p对应一于,即(p,1)所在的等价类,就把整数集嵌入到有理数的集中。因此,有理数系可说是由整数系扩大后的数系。有理数集合是一个数域。任何数域必然包含有理数域。即有理数集合是最小的数域。有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。采用度量,有理数构成一个度量空间,这是上的第三个拓扑。幸运的是,所有三个拓扑一致并将有理数转化到一个拓扑域。有理数是非局部紧致空间的一个重要的实例。这个空间也是完全不连通的。有理数不构成完备的度量空间;实数是的完备集。

4. p进数

除了上述的绝对值度量,还有其他的度量将转化到拓扑域:设p是素数,对任何非零整数a设|a|p= p-n,这里pn是p的最高次幂除a另外|0|p=0。对任何有理数,设。则在上定义了一个度量。度量空间不完备,它的完备集是p进数域。一个困难的问题:有理数的边界在哪里?根据定义,无限循环小数和有限小数(整数可认为是小数点后是0的小数),统称为有理数,无限不循环小数是无理数。但人类不可能写出一个位数最多的有理数,对全地球人类,或比地球人更智慧的生物来说是有理数的数,对每个地球人来说,可能是无法知道它是有理数还是无理数了。因此有理数和无理数的边界,竟然紧靠无理数,任何两个十分接近的无理数中间,都可以加入无穷多的有理数,反之也成立。竟然没有人知道有理数的边界,或者说有理数的边界是无限接近无理数的。定理:位数最多的非无限循环有理数是不可能被写出的,尽管它的定义是有有限位,但它是无限趋近于无理数的,以致于没有手段进行判断。证明:假设位数最多的非无限循环有理数被写出,我们在这个数的最后再加一位,这个数还是有限位有理数,但位数比已写出有理数多一位,证明原来写出的不是位数最多的非无限循环有理数。所以位数最多的非无限循环有理数是不可能被写出的。

参考文献:

[1] 《现代数学观点下的中学数学》, 高等教育出版社, 胡炳生,吴俊编;

[2]《数学基础知识及其教学的再认识》,人民教育出版社,章建跃;

[3]《教师职业素养考查设计与研究》,华东师范大学出版社,朱建明;

[4]《数学“分层自学辅导”教学实验与思考》,北京师范大学出版社,王力;

[5]《课改实验状况与思考史青山》,人民教育出版社,王从珍;

[6]《关于教育观念的几个案例分析》,华东师范大学出版社,黄秦安;

[7]《数学课程标准》,北京师范大学出版社;

[8]《普通高中数学课程标准》,人民教育出版社。

附录:

0的绝对值为0,负数的绝对值是它的相反数,正整数的绝对值是它本身。整数还包括正数、负数和0。

正数和负数相加:同号相加,取相同的符号,把两数相加并加上符号。异号相加,取绝对值较大数的符号,用较大绝对值减去较小绝对值。正数和负数是两种意义相反的量。对一些具有相反意义的量可人为规定其正负。0既不是正数也不是负数,它是正负数的分界。整数可以看做分母为1的分数。整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为“有理数”。(Rational number)实数=整数+分数=正数+零+负数=有理数+无理数有理数。

有理数的认识

第二讲 有理数的认识 【知识要点】 一、正数、负数和零: 1、概念:象1、2.5、133、48等大于零的数叫正数;象-1、-2.5、13 3-、-48等小于零的数叫负数;0叫做零,0既不是正数也不是负数。 2、负数的表示方法:数字前带一个负号。如:-1、-2.5等。 注意:①正数,负数的“+”、“-”的符号是表示性质相反的量,符号写在数字前面,这种符号 叫做性质符号,负号不是减号。 ②不能简单的理解为:带“+”号的数是正数,带“-”的数是负数。例如:a -,当a 表示正数时,a -是负数;当a 表示负数时,a -是正数;当a 表示0时,a -仍是0,既不是正数也不是负数。 3、负数的重要意义: ①使数字系统得到扩充:3、2、1、0、-1、-2、-3等; ②使表示起来更方便: 例1:温度比0℃低2度记为:-2℃ 例2:山峰高于海面300m 叫海拔300m ,记为:+300m ,盆地低于海面50m 记为:-50m ; ③使计算起来更容易:3-4=-1等。 4、正数、负数与0: ①0是表示正与负的分界,表示数值上既不是正也不是负,表示比任何正数小,比任何负数大。 ②正数:表示在数值上不等于0,且总比0大。 ③负数:表示在数值上不等于0,且总比0小。 例:A 、B 、C 三个商店,A 店在今年8月份赢利,B 店在今年8月份亏损,C 店在该月上正好不赢利也不亏本。则从利润上看:A P >0,B P <0,C P =0 ;A P :正数,B P :负数,0C P =; 负数<0<正数 二、有理数: 1、有理数的概念: ①从小数的角度看: 整数、有限小数(有限位小数)、无限循环小数叫有理数;而无限不循环小数叫无理数。如:??321.0, 3.14159是有理数;???=1415926.3π是无理数。 ②从分数角度看: 整数和分数总称为有理数。 若m 和n 为整数(n ≠0),无理数不能表示为n m 的形式;有理数总能表示为n m 的形式。

第1讲:认识有理数

第一讲:认识有理数 模块一 正数与负数 在小学时我们学过像1、9、3.81、12.56、 32、4 36这样的数,在小学时,老师给我们说,它们分别是整数、小数、分数,进入初中以后,我们把像1、9、3.81、12.56、32、436这样的数叫 ;如果我们把在小学学过的整数、小数、分数前面加一个“—”,比如像这些数,-3,-2,-1,-0.58,41- ......,我们把它们叫 。 把下列具有相反意义的量有用线边起来: (1)收入20元 前进100米 后退100米 支出20元 高于海平面155米 亏损6万元 盈余6万元 低于海平面155米 (2)零上10C ? 运出50筐梨 高于海平面8848米 低于海平面392米 运进80筐梨 零下5C ? 学习与归纳: ①为了表示具有相反意义的量,我们通常把其中一个数前面加上 号,把另一 个数前面加上 号来进行区分;前面带 号的数叫做正数,前面 的 号经常可以省略不写,前面带 号的数叫做负数,前 面的 号不可以省略; ② 既不是正数也不是负数,是正数和负数的分界点; ③ 大于零, 小于零,正数 一切负数。 现在我们就把正数与负数的概念总结如下: 像5,2.1,2 1,???这样的数叫做正数,它们都比0大。 在正数前面加上“—”号的数叫做负数,如:13-,6.1-,32- ,??? 0既不是正数,也不是负数。

典型例题讲解(理解新知识) 例1:填空: (1)如果收入50元记作50+元,那么支出50元,记作 ,80-元表 示 。 (2)手表的指针顺时针旋转?90记作?-90,那么逆时针旋转?60则记作 。 (3)如果比海平面高规定为正,那么珠穆朗玛峰海拨8848米记作 ,吐鲁 番盆地海拨155-米表示 。 变式练习: 判断题:(1)前进100米和前进-30米是两个相反意义的量( ) (2)前进100米和后退-100米是两个相反意义的量( ) (3)零上10C ?和支出20元是两个相的反意义的量( ) 解题方法点拨: (1)用正数和负数表示具有相反意义的量时,可以根据实际,规定哪种意义的量为正 数,那么具有相反意义的量就为负数。 (2)一般情况下,正、负规定如下: 模块二 有理数及其分类 试一试:把下列各数分别填在相应的大括号内 7, 25.9-, 109- , 274, 106, 15-, 15 7, 31.25, 301-, 5.3- 0 , 2.1 , 10% , 314-。 正整数集合{ …}; 负整数集合{ …}; 整数集合{ …}; 正分数集合{ …}; 负分数集合{ …}; 有理数集合{ …}; 学习归纳: ①像1,2,3,4,5,…这样的数叫 ,像5-,4-,3-,2-,1-这样的 数叫 ; 0, 统称为整数; ②像21,0.8,45,327的数叫 ,像21-,—0.8,45-,3 27-的数叫 ; , 统称为分数; ③ 和 统称为有理数;

多项式

第二章 多项式 §2.1一元多项式的定义和运算 1.设),(x f )(x g 和)(x h 是实数域上的多项式.证明:若是 (6) 222)()()(x xh x xg x f +=, 那么.0)()()(===x h x g x f 2.求一组满足(6)式的不全为零的复系数多项式)(),(x g x f 和).(x h 3.证明: ! ) )...(1()1(! ) 1)...(1()1(!2)1(1n n x x n n x x x x x x n n ---=+---+--+ - §2.2 多项式的整除性 1.求)(x f 被)(x g 除所得的商式和余式: ( i ) ;13)(,14)(234--=--=x x x g x x x f (ii) ;23)(,13)(3235+-=-+-=x x x g x x x x f 2.证明:k x f x )(|必要且只要).(|x f x 3.令()()()x g x g x f x f 2121,,),(都是数域F 上的多项式,其中()01≠x f 且 ()()()()()().|,|112121x g x f x f x f x g x g 证明:()().|22x f x g 4.实数q p m ,,满足什么条件时多项式12++mx x 能够整除多项式.4q px x ++ 5.设F 是一个数域,.F a ∈证明:a x -整除.n n a x - 6.考虑有理数域上多项式 ()() ()() ()(),121211 n k n k n k x x x x x x f ++++++=-++ 这里k 和n 都是非负整数.证明: ()()() .11|1 n k 1+++++-x x f x x k

人教版七年级数学第一章有理数教案

第一章有理数 1.1正数和负数(2课时) 第1课时正数和负数的概念 了解正数和负数的产生;知道什么是正数和负数;理解正负数表示的量的意义;知道0既不是正数,也不是负数. 重点 正、负数的意义. 难点 1.负数的意义. 2.具有相反意义的量. 一、新课导入 活动1:创设情境,导入新课 教师投影展示教材第2页图片,让学生体验自然数的产生,分数的产生离不开生产和生活的需要,可以让学生自由发表意见和感想. 二、推进新课 活动2:体验负数的引入的必要性 教师出示温度计: 安排三名同学进行如下活动:研究手中的温度计上刻度的确切含义,一名同学手持温度计,一名同学说出其中三个刻度,一名同学在黑板上速记. 教师根据活动情况,如果学生不能引入符号表示,教师也可参与活动,逐步引入负数.强调:0既不是正数,也不是负数. 活动3:分组活动,感受正负数的意义 各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜. 1.老师说出指令:向前2步,向后3步,向前-2步,向后-3步,学生按老师的指令表演. 2.各小组互相监督,派一名同学汇报完成的情况. 活动4:深入理解正负数的意义,提高分析解决问题的能力

师投影展示问题,讲解课本例题. 例:1.一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值. 2.某年,下列国家的商品进出口总额比上一年的变化情况是: 美国减少6.4%,德国增长1.3%, 法国减少2.4%,英国减少3.5%, 意大利增长0.2%,中国增长7.5%. 写出这些国家这一年商品进出口总额的增长率. 学生讨论后解决. 活动5:练习与小结 练习:教材第3页练习. 小结:这堂课我们学习了哪些知识?你能说一说吗? 活动6:作业 习题1.1第4,5,6,8题 本课是有理数的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理。负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点. 第2课时正数、负数以及0的意义 进一步理解正、负数及0的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量. 重点 进一步理解正、负数及0表示的量的意义. 难点 理解负数及0表示的量的意义.

有理数课标解读与教材分析

《有理数》课标解读与教材分析 113中刘阳平 本章的主要内容是有理数的有关概念及其运算。教材从实例出发,由实际需要引入负数,有理数的一些概念,在此基础上,依次学习有理数的加减法,乘除法和乘方运算,并配合有理数的运算,学习科学记数法、近似数和有效数字的基本知识,以及使用计算器作简单的有理数运算。 一、教学目标 根据《数学课程标准》中的陈述,我们得到本章的教学目标如下: (1).使学生体会具有相反意义的量,并能用有理数表示。 (2).能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义。 (3).会求有理数的相反数和绝对值(绝对值符号内不含字母)。 (4).会比较有理数的大小。 (5).了解乘方的意义,掌握有理数的加、减、乘、除法和乘方的运算法则,能进行有理数的加、减、乘、除法、乘方运算和简单的混合运算。 (6).会用计算器进行有理数的简单运算。 (7).理解有理数的运算律,并能用运算律简化运算。 (8).能运用有理数的运算解决简单的问题。 (9).了解科学记数法、近似数和有效数字的有关概念,能对较大的数字信息作合理的解释和推断。 二、知识结构 本章的知识结构如图 (1)数形结合思想。本章为数与形的转换提供了一个基本支撑点——数轴。有了数轴这个基础,数与形就联系起来了,就可以用数形结合思想解决问题了,,如巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小比较的道理,理解有理数加法,乘法的意义,掌握运算法则等内容都渗透着数形结合的思想。 (2)分类讨论的思想。本章中关于有理数的分类,就利用了这一思想。 (3)初步的算法思想。有理数的运算法则是学生在中学学习的第一个运算法则,也是第一次渗透这种算法思想。所以《标准》的要求为“掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。理解有理数的运算律,并能运用运算律简化运算”。 (4)对立统一思想。由于本章引入了负数、相反数和倒数的概念,使加与减、乘与除统一起来,在小学数学中,加法与减法、乘法与除法都是对立的,现在则不同了,所以,在这一章中,特别有利于对学生进行“对立统一”思想方法的教

特殊数域上的多项式

1.7特殊数域上的多项式 1.分别在R 上与C 上分解因式: (1)4 5x -; (2)3 2 423x x x +-- 在R 上: 42225((x x x x x x -=+=++ 在C 上:425(()()(x x x x x x x x -=++=++ (2) 在R 上与在C 上都有:3 2 4231()(x x x x x x +--=-+ + 2.已知多项式329609232()f x x x x =---有一个二重根,求()f x 的所有根. 2271209294632()()()f x x x x x '=--=-+,易知32x +是()f x 的因式,所以是 ()f x 的二重因式.,所以2328()()()f x x x =+- 3.求下列多项式的有理根. (1)32 61514x x x -+-; (2) 32 4761x x x --- (3) 5432 614113x x x x x +---- 3 2 2 61514247()()x x x x x x -+-=--+,有理根为2 (2) 3 2 2 47614121()()x x x x x x ---=+--,有理根为14 - ; (3) 5 4 3 2 4 61411313()()x x x x x x x +----=+-;有理根为四重根1-,单根3; (4) 4 3243211 65421210822 ()x x x x x x x x + -++=+-++ 3121682()()x x x = +-+,有理根为12 - 5.判断下列多项式在有理数域是否可约. (1)4 3 2 8122x x x +++;

七年级上册有理数教案

第一章有理数 一、全章概况: 本章主要分两部分:有理数的认识,有理数的运算。 二、本章教学目标 1、知识与技能 (1)理解有理数的有关概念及其分类。 (2)能用数轴上的点表示有理数,会比较有理数的大小,会求有理数的相反数与绝对值(绝对值符号内不含字母)。 (3)理解有理数运算的意义和有理数运算律,经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主),并能运用运算律简化运算。 (4)能运用有理数的有关知识解决一些简单的实际问题。 2、过程与方法 (1)通过实例的引入,认识到数学的发展来源于生产和生活,培养学生热爱数学并自学地学习数学的习惯。 (2)通过对有理数的加、减、乘、除、乘方的学习,培养学生独立思考、认真作业的态度,提高运算能力,逐步激发学生的创新意识。 3、情感、态度与价值观 (1)通过对有理数有关概念的理解,使学生了解正与负、加与减、乘与除的辩证关系,初步感受数学的分类思想。 (2)通过师生互动,讨论与交流,培养学生善于观察、抽象、归纳的数学思想品质,提高分析问题和解决问题的能力。 三、本章重点难点: 1、重点:有理数的运算。 2、难点:对有理数运算法则的理解(特别是混合运算中符号的确定)。 四、本章教学要求 认识有理数,首先是引入负数,必须从学生熟知的现实生活中,挖掘具有相反意义的量的资源,让学生有真切的感受,然后才引出用正负数表示这些具有相反意义的量,在理解有理数的意义时,注意运算数轴这个直观模型。 无论是有理数的认识,还是有理数运算的教学,都应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”等数学活动中来,并适时搭建“合作交流”的平台,让学生在学习数学中,动脑想、动手做、动口说,力求让学生自己建立个性化的认识结构。 在有理数的运算教学中,应鼓励学生自己探索运算法则和运算律,并通过适量的练习巩固,提倡算法多样化,反对做繁难的笔算,遇到较为复杂的计算应指导使用计算器。 注意教学反思。关注学生的学习过程,及时调整教学,促进师生共同改进。

毕业设计论文-有理数域上的多项式的因式分解-应用数学论文

嘉应学院 本科毕业论文(设计) (2014届) 题目:有理数域上的多项式的因式分解姓名:江志会 学号:101010100 学院:数学学院 专业:数学与应用数学 指导老师:许鸿儒 申请学位:学士学位 嘉应学院教务处制

摘要 在多项式理论中,对于有理数域上多项式的因式分解的研究有着极其重要的地位。判断一元多项式是否能因式分解是不容易的。本文根据多项式的可约性和有理根的判断与求法的理论,探究多项式的因式分解的方法,并进行了归纳、整理和补充。 关键词:有理数域, 可约, 因式分解

Abstract In polynomial, the research on rational polynomial factorization has an extremely important position. Determine whether a polynomial can be factoring or not is not easy. According to the theory of irreducible polynomials and rational roots, we explore polynomial factorization method, and make some the induction, consolidation and supplements. Key words: rational number field, reducible, factorization

目录 1 有理数域上的多项式基本内容 (i) 1.1 多项式因式分解的基本概念 (1) 1.2 本原多项式 (2) 1.3 不可约多项式的艾森斯坦判别法 (5) 2 多项式的有理根及因式分解 (7) 2.1多项式在有理数域上的性质 (7) 2.2多项式有理根的判定 (8) 2.3多项式有理根的求法及因式分解 (10) 2.4因式分解的特殊解法 (12) 参考文献................................................... 错误!未定义书签。

有理数的认识和数轴练习题

七年级有理数的认识和数轴练习题 一、选择题 1、在0、—0.5、— 2、—8、+10、+1.9、+ 3、—3,4中整数的个数是() A、6 B、5 C、4 D、3 2、下列说法正确的是() A、有理数是指整数,分数,正有理数,零,负有理数这类数 B、一个有理数一定不是正数就是负数 C、一个有理数一定不是整数就是分数 D、以上都不对 3、既不是整数,也不是正数的有理数是() A、0和正分数 B、负整数和负分数 C、正分数和负分数 D、负分数和0 4.下图中正确表示数轴的是( ) 5、在数轴上,原点和原点右边的点所表示的数是() A、正数 B、负数 C、非正数 D、非负数 6、下列结论错误的是() A、最大的负整数是—1 B、在数轴上表示+3和—3的点到原点的距离相等 C、规定了原点,方向和单位长度的直线叫做数轴 D、正有理数,0,负有理数统称为有理数 7.从数轴上看,0是( ) A.最小的整数B.最大的负数C.最小的有理数D.最小的非负数8.如图所示,数轴上所标出的点中,相邻两点间的距离相等,则点A表示的数为( ) A.30 B.50 C.60 D.80 9下列语句:①不带“-”号的数都是正数;②带“-”号的数一定是负数;③不存在既不是正数也不是负数的数;④0℃表示没有温度.其中正确的有().A0个.B1个.C2个.D3个 10.数轴上的点A到原点的距离是6,则点A表示的数为( ) A.6或-6 B.-6 C.-6 D.3或-3 二、填空题 11、设向东走为正,向东30米,记作______,;西走20米记作_______;原地不动记作______;记作—25米表示向______走25米;记作+16米表示向_____走16米。 12、比海平面高200米的地方,它的高度记作海拔______米,比海平面低100

有理数域的认识

对有理数域的认识 1.有理数的认识 数学上,有理数是一个整数a和一个非零整数b的比(ratio),通常写作a/b,故又称作分数。希腊文称为λογο?,原意为“成比例的数”(rational number),但并非中文翻译不恰当。 有理数这一概念最早源自西方《几何原本》,在中国明代,从西方传入中国,而从中国明代传入日本时,出现错误。 明末数学家徐光启和学者利玛窦翻译《几何原本》前6卷时的底本是拉丁文。他们将这个词(即“logos”)译为“理”,这个“理”指的是“比值”。日本在明治维新以前,欧美数学典籍的译本多半采用中国文言文的译本。日本学者将中国文言文中的“理”直接翻译成了理,而不是文言文所解释的“比值”。后来,日本学者直接用错误的理解翻译出了“有理数”和“无理数”。 当有理数从日本传回中国时又延续错误。 清末中国派留学生到日本,将此名词传回中国,以至现在中日两国都用“有理数” 和“无理数”的说法 可见,由于当年日本学者对中国文言文的理解不到位,才出现了今天的误译。 不是有理数的实数遂称为无理数。 所有有理数的集合表示为Q,Q+,或。定义如下: 有理数的小数部分有限或为循环。 定义:有理数是整数和分数的统称,一切有理数都可以化成分数的形式。除了无限不循环小数以外的实数统称有理数(rational number)。整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。 分类:有理数可分为整数和分数。 也可分为三种:一;正数,二;0,三;负数。 以下都是有理数: (1) 整数包含了:正整数、0、负整数统称为整数。 (2)分数包含了:正分数、负分数统称为分数。

趣味探究有理数域(系)构成与扩充

趣味探究小学数学中数域(系)的构成与扩充世界是什么?有人说是水,有人说是气,我记得曾经有一位希腊的数学家毕达哥拉斯认为世界是“数”,虽然这个说法多少有些牵强,但在数学研究中“数系”绝对是基础的基础。作为研究数量关系的起点,我们有责任将它把握清晰,作为一名小学数学教师,我更有责任将它趣味性的呈现给学生。 一、“有理数”名字的由来,有理数集的构成。 小学数学中研究的数指有理数,课本上没有刻意强调它的名字,但是要探究数系的构成和扩充,必须先从名字谈起,这样就可以在茫茫数域中找准它的位置,我们今天要探究的就是有理数集的构成和扩充过程,对了,我们还提到了“趣味”,那就必须从一个真实的故事谈起,有理数的名字其实来自于与它相对的“无理数”,从名字上可以这样说:先有无理数,后有有理数,这个故事是就是有关无理数,无理数顾名思义,无理、蛮横。上文中提到了希腊著名数学家毕达哥拉斯,他有一位学生叫希帕索斯,希帕索斯在研究勾股定理时,发现了一种新的数,而这种数是不符合他老师的宇宙理论的。如果直角三角形两条直角边都为1,那么,它的斜边的长度就不能归结为整数或整数之比(应该等于,是一个无理数)。更令毕达哥拉斯啼笑皆非的,是希伯斯居然用数学方法证实了这种新数存在的合理性,而证明的方法─归谬法,又是毕达哥拉斯学派常用的。因为毕氏已经用有理数解释了天地万物,无理数的存在会引起对他信念的怀疑。毕氏本应接受这新数源。然而,毕氏始终不愿承认自己的错误,却又无法经由逻辑

推理推翻希帕索斯的论证。使他终身蒙羞的是,他竟然判决将希帕索斯淹死。这是希腊数学的最大悲剧,只有在他死后无理数才得以安全的被讨论着。后来,欧几里德以反证法证明根号2是无理数。鲁迅先生说:“悲剧就是将人生极有价值的东西,毁灭给人看”。当人们渐渐明白除了他们所认识的数字0、自然数等有理数之外,还有一些无限的不能循环的小数,这确实是一种新发现的数——应该叫它“无理数”。这个名字反映了数学的本来面貌,但是也真实地记录了毕达哥拉斯学派中的学阀的蛮横无理。表面上枯燥乏味的数学知识,其实背后的故事也是血泪斑斑,可歌可泣,数学绝对不仅仅是一些公式、定理、符号的记录,它还是人与人、人与自然的斗争史。 小学数学范围内主要要研究是的“有理数”,它包括整数和分数,下面是有理数分类的图解: 我们通常说的自然数是正整数和零的统称,即像0、1、2、3、4…的数是自然数。正数前面加上负号就是负数,例如-1、-2、-3、-4…。把单位“1”平均分成若干份,表示其中的一份或几份的数叫分数,例如、、…。小学数学中小数的比例占的也比较多,但是因为分数

有理数认识

有理数 学习目标: 1. 会用正数和负数表示具有相反意义的量; 2. 知道有理数的意义,会对有理数进行分类; 3. 会画数轴,会用数轴上的点表示一个有理数,会在数轴上比较两 个有理数的大小,能归纳出比较两个或几个有理数的大小的方 法; 4. 会求任意有理数的相反数和绝对值,并会在数轴上说出一个数的 绝对值和相反数的几何意义; 5. 经历有理数加法和减法的运算法则的确立过程,理解有理数加法 和减法的运算法则的合理性; 6. 会根据有理数的加法和减法法则,进行有理数的加法和减法运 算; 7. 会运用有理数加法的交换律和结合律,使加法运算合理、简便; 8. 会把有理数的减法转化为加法,会进行有理数的加、减混合运 算; 9. 理解有理数乘法和除法运算法则的合理性,并会根据这些法则, 进行有理数的乘法和除法运算; 10. 会运用有理数乘法的交换律、结合律和分配律,使乘法运算合 理、简便; 11. 会把有理数的除法转化成乘法,会进行有理数的乘、除混合运 算; 12. 会根据有理数的乘方法则,进行有理数的乘方运算; 13. 会用科学记数法来表示整数,或由科学记数法表示的数写出原 数; 14. 会使用计算器,进行有理数的加、减、乘、除、乘方运算; 15. 会按照规定的运算顺序进行有理数的混合运算,并会运用运算律 改变运算顺序,使计算简便. 知识点归纳: 1. 正数、零、负数、非负数 像6,2.5,,1.2%等大于0的数,叫做正数;在正数前加上“”号的数叫做负数,如,,,等.有时为了强调符号,在正数前加上“”号,如,,等. 负数可以表示与正数具有相反意义的量.

“0”是一个很重要又很特殊的数.它既不是正数,也不是负数;它既是整数也是偶数. 区分这里的“”号和“”号和以前学过的加号、减号不同,加号、减号是运算符号,这些写在数字前面的“”号和“”号分别表示这个数是正数还是负数,称为性质符号. 2.

有理数教学设计(新课标人教版)

有理数教学设计(新课标人教版) 海门市海南中学 杨春鸟 教学目标: 1.在正数、负数及对小学里数的认识的基础上,经历探索有理数范围内的整数、分数的意义的过程,学会通过举例理解相关概念,会区分整数(正整数、零和负整数),分数(正分数和负分数). 2.知道整数和分数统称为有理数,初步认识集合. 新知重难点: 重点:探索有理数范围内的整数、分数的意义. 难点:会区分整数(正整数、零和负整数),分数(正分数和负分数). 教学过程: 一、新知生长点(这个环节:新知是建立在哪些已学知识点和相应知识点复习呈现的方法设计) 1.正数与负数 请任意写出3个正数,3个负数,并说明正数、负数的区别与联系. 方式:让学生动手写出后,举手回答. 强调: 0既不是正数,也不是负数. 2.小学学过的数 你知道小学学过哪些数? 方式:让学生独立思考动手写出名称,并举例.1分钟后,小组汇总展示. ★ 讲解:自然数是整数,小数都可以化为分数. 二、新知探究点(这个环节:新知有哪些需要探究的知识点和相应知识点探究的方法设计) 1.整数与分数 由于负数的加入,现在的整数又指哪些数呢?分数又指哪些数呢? (1★ (2)你能给小学里的整数(0除外)与分数取个新名吗? 讲解:事实上小学里的数都是0或正数,为区分我们规定: 正整数: 1,2,3,… 零 : 0. 负整数:-1,-2,… 分数 整数 有理数

正分数:21,31,3.147 22,… 负分数:-7 5,-6.4%,… 强调: 0是整数,不是分数;整数与分数统称为有理数,“统称”是指合起来总的名称的 意思;到现在为止我们学过的数都是有理数(圆周率π除外). 巩固练习: ▲Ⅰ同座两生合作(也可以老师说出一些数,让学生判断):一人说名称,一人写相应的数. ▲Ⅱ判断题: (1)0是整数,不是分数; (2)正数和负数统称为有理数; (3)0是最小的有理数; (4)整数和分数统称为有理数; (5)自然数一定是正整数; (6)正整数和负整数统称为整数. 反思:小学学了0、正整数、正分数;初中学了负整数、负分数; 有理数可分两大类:整数与分数;有理数也可以分三大类正数、0、负数. 2.集合 讲解:把一些数放在一起,就组成了一个数的集合,简称“数集”,……. 注:这里集合概念只作简单描述,学生明白即可,不要加深. 集合一般用圆圈或大括号表示,因为集合中的数是无限的,所以要加上省略号. 巩固练习:教材P10练习. 三、新知检测点(这个环节:新知有哪些需要当堂检测的知识点和相应的题目的设计) 会区分整数(正整数、零和负整数),分数(正分数和负分数). 1.-2006不是( ) A. 有理数 B. 自然数 C. 整数 D. 负有理数 2.分别写出满足下列条件的数: (1)三个负整数: , , ;三个负分数 , , . 3.下列说法中正确的是( ) A . -3.14是负分数,不是有理数 B . 0是有理数,不是整数 C . 0既不是正数,也不是负数 D . 负整数不是整数 4.把下列各数分别填在相应的集合内: 20,-0.08,1,3.14,-2,0,-98,213-, 8 21 正数集合:{ …};负数集合:{ …}; 整数集合:{ …};分数集合:{ …}. 四、新知拓展点(这个环节:新知有哪些需要拓展的知识点和相应题目的设计) 非正数非负数的意义: 1.判断:一个有理数不是正数就是负数( ) 零和负数统称为____ ___,零和正数统称为____ __. 2.已知下列各数:-5,+31,0.62,4,0,-1.1,67,-6.4,-7,7 3-,7. 其中正整数有 ,负数有 ,非负数有 .

七年级上册第1讲有理数的初步认识

第一讲 有理数的初步认识 教学目标 1、认识并理解有理数的概念,掌握有理数的分类。 2、掌握数轴,体会数形结合的数学思想方法。 3、掌握绝对值的几何意义,并能实际运用。 知识点 1、有理数分类:?????????????????负分数正分数分数负整数零正整数整数有理数 也可以这样分类:???? ???????????负分数负整数负有理数零正分数正整数正有理数有理数 2、规定了原点、正方向、单位长度的直线叫做数轴。 3、如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。 4、一个数在数轴上对应点到原点的距离叫做这个数的绝对值,一个数a 的绝对值表示为a ; 一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数。 ?????-≥=0 ;0;<a a a a a 经典例题 例1、(认识有理数)把下列各数分别填入相应的括号内: 14.374 15%203.101.832215.3,,,,,,,,,,--+-- 整数:{ } 分数:{ } 负整数:{ } 正有理数:{ } 举一反三 1、最小正整数是:_______;最小自然数是:_______; 最大负整数是:_______。 2、下列各组量中具有相反意义的是( )

A 、气温升高3°与气温为﹣3° B 、胜二局与负三局 C 、盈利3万元与支出3万元 D 、甲乙两队篮球比赛比分分别为65:60与60:65 3、学校对初一学生进行引体向上测试,以7个为标准,超过的个数用正数表示,不足的个数用负数表示,其中8名男生的成绩如下表: (1)求这8名学生达到标准的百分率; (2)这8名学生共做了多少个引体向上? 例2、(规律题)观察下面一组数,探索其规律。 ,6 1,51,41,31,21,1--- (1) 请问:第9个数是什么?第2016个数是什么? (2) 如果这一列数无限地排列下去,与哪个数越来越近? 举一反三 1、观察下列一组数:23,45,67,89,1011 ,…,它们是按一定规律排列的,那么这一组数的第k 个数是________ 2、先阅读下列材料,然后解答问题: 从A ,B ,C 三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元 素组合,记作, 一般地,从m 个元素中选取n 个元素组合,记作:, 例:从7个元素中选5个元素,共有 种不同的选法, 问题:从某学习小组10人中选取3人参加活动,不同的选法共有多少种?

有限域上的多项式理论

有限域上的多项式理论Polynomial Theory of Finite Fields

摘要 域的概念的提出为代数学中的讨论的方便提供了条件,而作为在域中占有重要地位的有限域而言,更是在组合设计、编码理论、密码学、计算机代数和通信系统等领域发挥着自己的作用。多项式理论又是代数学中的基础,它的应用在其它领域也是常见的,本文的主要思想就是将高等代数中建立在数域中的多项式理论进行推广,将有关的性质、定理在有限域上进行验证,进而形成一套建立在有限域上的多项式理论。 当下,通信技术已经飞速发展,而保证信息在传输过程中的准确性是通信安全的一个重要前提。本文在第三章给出了有限域上的多项式在该领域的一个具体应用——利用本原多项式来进行纠错码的操作。 正文部分的结构组成包括:有限域的基本知识、一元多项式、多项式的整除和带余除法、最大公因式、因式分解定理、重因式、多元多项式及本原多项式在纠错码中的应用。 本文通过大量理论证明,验证了关于多项式的定理,性质,将数域上的多项式理论建立在有限域上。从结果中可以看出,对于建立在一般数域的多项式理论,大部分的结果在有限域上也是普遍成立的,但是不排除一些特殊的情况。同时,在部分章节的最后也给出了一些只有在有限域中成立,在普通数域中不成立的结论。 关键词:有限域;多项式;带余除法;纠错码

Abstract With the concept of the field being raised, it has provided the conditions for the convenience of the discussion in Algebra. Meanwhile, the finite field also plays an important role in combination of design, coding theory, cryptography, commuter and communications systems. Polynomial theory is the basis of Algebra. The main idea is to put the polynomial theory to the finite field and check the related properties and theorems. Nowadays, the communicational technology has developed rapidly. Keeping accuracy is an important prerequisite for communication security. In the third chapter, this paper introduces the primitive polynomial’s applications: Error-correcting code. The text contains: The basis knowledge of finite field, polynomial, divisibility of polynomials, greatest common factor, factorization theorem, repeated divisors, multivariate polynomial and the primitive polynomial’s applications: Error-correcting code. In this paper, a number of properties and theorems are checked by theoretical proof. We will establish the polynomial theory of finite field. According to it, we can see that the most parts of the polynomial theory of number field are established in finite field except in some special situations. At the same time, some conclusions which only established in finite field are given in some chapters. Keywords: finite fields; polynomial; divisibility of polynomials; Error-correcting code

有理数的认识

有理数的认识 Modified by JEEP on December 26th, 2020.

有理数的认识 教学目标: 1、整理之前学过的整数、分数(包括小数)的知识,掌握正数和负数的概念; 2、能区分两种不同意义的量,会用符号表示正数和负数; 3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。 引入负数: 例1、2-1=1 那么1-2= 例2、在日常生活中经常会遇到这样一些量: 汽车向东行驶3千米和向西行驶2千米 温度是零上10℃和零下5℃。 收入500元和支出237元。 水位升高1.2米和下降0.7米。 买进100辆自行车和卖出20辆自行车。 分析:这些例子中出现的量具有共同特点向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义,那么怎么用数来准确的表示这些相反的量呢 小结:上面的例子中,加号可以省略不写,为了表示具有相反意义的量,上面我们引进了―5,―2,―237,―等数。像这样的一些新数叫做负数。过去学过的那些数(零除外),如10,3,500,等叫做正数。正数前面有时也可放一个“+”读作“正”如5可以写成+5,一般情况下是省略不写的,但是负数前面的“-”不能省略。注意零既不是正数,也不是负数。 例3:请将下列数值填入相应的圈内:

2 1 2,―97,5,0,32,,,+2,―3, 正数集合 负数集合 【有理数】:数1,2,3,4…做正整数,―1,―2,―3,―4…做负 整数,正整数、负整数和零统称为整数。数32,41,854 ,+,…叫做正分数;―97,―7 6,―,…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数。 注: 1. 整数和分数统称为有理数,任何一个有理数都可以写成分数m/n (m ,n 都是整数,且n ≠0)的形式。 2. 无限不循环小数和开根开不尽的数叫无理数 ,比如π 3. 而有理数恰恰与无理数相反,整数和分数统称为有理数,包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。 例4:―18,7 22,,0,2001,53 ,―,95℅. 负数集 ①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表: ②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表: 注:①“0”也是自然数。②“0”的特殊性。③分数和小数可以互化,在此统称为分数 例5:把下列各数填入相应集合的括号内:

数域的判定

题目:数域的判定 研究问题:数域 方法:定义法 例题: 例1.证明两个数域之交是一个数域 设A和B是两个数域,若存在两个数x,y∈A∩B,且y≠0, 则由于x,y∈A,x/y∈A;x,y∈B,x/y∈B,所以x/y∈A∩B.即A∩B是一个数域. 例2.证明两个数域“之并”未必是数域. 如: A={x|x=a+b√2,a,b∈Q} B={x|x=a+b√3,a,b∈Q} 看它们的并集中分别取A、B中一个元素相加,看还在并集里吗?事实证明是不一定的,所以两个数域“之并”未必是数域 例3.判断下列说法是否正确。 (1)自然数集N及整数集Z都不是数域。 解:对的,自然数集和整数集不是数域,有理数集是数域,因为自然数和整数不一定存在逆元a*a(-1)=1 不满足这一条。 (2)奇数集不是数域。 解:对的 例4.证明多项式f(x)=1-(x-1)(x-2)(x-3)……(x-n)在有理数域上不可约。 方便起见,不妨改为证明f(x) = (x-1)(x-2)(x-3)...(x-n)-1不可约. 用反证法,假设f(x) = g(x)h(x),其中g(x),h(x)都是次数不小于1的有理系数多项式. 由Gauss引理,不妨设g(x)与h(x)都是首1的整系数多项式. 依次带入x = 1,2,...,n,可知g(k)h(k) = f(k) = -1,对k = 1,2,...,n. 而g(k)与h(k)都是整数,可知g(k)和h(k)只能是±1. 且g(k) = 1时h(k) = -1,而g(k) = -1时h(k) = 1. 因此总有g(k)+h(k) = 0,对k = 1,2,...,n. 多项式g(x)+h(x)有n个不同的根,但其次数 < n (g(x)与h(x)的次数都小于n), 于是g(x)+h(x)恒等于0,但这与g(x),h(x)的最高次项系数为1矛盾. 所以f(x)不可约. 例5.设A为数域P上的n阶矩阵,数a为A的n重特征值,证明A=aE为数量矩阵 由已知,存在可逆矩阵Q满足 Q^-1AQ = diag(a,a,...,a) = aE 所以 A = Q(aE)Q^-1 = aQQ^-1 = aE

认识有理数

认识有理数素材 低温的世界在小学,我们学的都是正有理数和零,也就是说,数的系统限制在非负有理数的范围里.到了初一,我们学习了负有理数.这样,数的范围就扩大到了有理数.非负有理数在同学们生活中用的很多,大家熟悉.而接触到负数则比较少,大家对它比较生疏.现在,我们把大家带到“低温的世界”,看一看负数在那里的广泛应用.人们在地球南极点附近,曾测得世界最低的气温是-94.5℃.据前苏联科学家称,他们曾在南极东方站测得-105℃的气温,不过这个数据未被国际上承认.近年,科技界用人工方法创造出接近绝对零度(-273.15℃)的低温.人的骨髓在-50℃的条件下,可保存 6 到12 个月.现今的低温技术已能使人类的血液、精子、眼角膜、皮肤、神经、骨骼、心脏等器1/3 官得以无限期地储藏.前两年,日本一家公司就开发了一种制冷达世界最低温度-152℃的冷藏柜.这种冷藏柜可以应用于保存人体细胞和血液,还可以应用于超导领域.后来这种冷藏柜已成批生产.1969 年6 月4 日,有个名叫索卡拉斯·拉米尔兹的人,从古巴叛逃至西班牙.他藏身于客机未加压的轮室内,飞机在9142 米的高空飞行,他在-22℃的严寒下,忍受了8 个小时.人类早已踏上月球.在月球表面上,“白天”的温度可达127℃,太阳落下后,“月夜”的气温竟下降到-183℃.低温能使正常温度下的物质发生离奇古怪的变化.例如,-38℃低温的金属锭,能“粉身碎骨”成为一堆粉末;-190℃低温下,空气即变成蓝色的液体,在液态空气环境中,石蜡

能放出浅绿色的荧光,猪肉闪着黄色的光芒,橡胶将变得坚硬无比;-269℃低温下,水银能变为被称作“超导” 现象的无电阻固体.人们利用“超导”线圈2/3 发电机发电和用“超导”电缆输电,其功率消耗能降低数倍乃至数十倍.人工降雨、人工降雪,就是把气态的二氧化碳置于-78℃以下低温环境中,在天空施布云层,而后逐渐解冻,使水从天降.推动火箭升空的巨大动力,是-138℃的液态氧和-252℃的液态氮合成的混合燃料.1967 年1 月,美国著名的心理学家詹姆斯·贝德福特患病住进了洛杉矶市郊疗养院.当他知道自己患了肺癌这个不治之症时,便下了决心,把自己所有的存款投入医院,请求将他冷冻处理.科学家们把他的体温降至-75℃,用铅箔将身子包起来,装进低温密封储藏仓,最后用-196℃液体氮急剧降温,几秒钟以后,贝德福特的身体变得象玻璃一样脆.贝德福特曾留下遗言:希望人类有一天能征服癌症,并能找到将冷冻的生命复活的方法,使他能从密仓里活着走出来,据说,现在美国已有300 多个期待复活的冰尸.

相关文档
最新文档