圆与方程基础练习题
高二上学期数学练习题(5)(圆与方程综合)有详细答案

高二上学期数学练习题(5)(圆与方程)班级 姓名 学号一.选择填空1. 已知实数x ,y 满足x 2+y 2-2x +4y -20=0,则x 2+y 2的最小值是( )A .30-10 5B .5-5C .5D .252.函数 y =|x | 的图象和圆x 2+y 2=4所围成的较小的面积是( )A .π4B .3π4C .3π2D .π3. 点P 是直线2x +y +10=0上的动点,直线P A 、PB 分别与圆x 2+y 2=4相切于A 、B 两点, 则四边形P AOB (O 为坐标原点)的面积的最小值等于( ) A .24 B .16 C .8 D .44. 方程1-x 2=x +k 有唯一解,则实数k 的范围是( )A .k =-2B .k ∈(-2,2)C .k ∈[-1,1)D .k =2或-1≤k <1 5.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0 相切,则圆C 面积的最小值为( )A .45πB .34πC .(6-25)πD .54π6. 圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .4个B .3个C .2个D .1个7. 已知点A (x,1,2)和点B (2,3,4),且|AB |=26,则实数x 的值是( )A .-3或4B .6或2C .3或-4D .6或-28. 当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( ) A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =09. 直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=( ) A . 2 B .2 C .1D .310. 直线y =kx +1与圆x 2+y 2=1相交于P ,Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为( )A .-3或 3B .3C .-2或 2D . 211. 已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A .53B .213C .253D .4312. 过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0二.填空题13.已知实数x ,y 满足x 2+y 2=1,则y +2x +1的取值范围为__________14.已知M ={(x ,y )|y =9-x 2,y ≠0},N ={(x ,y )|y =x +b },若M ∩N ≠∅,则实数b 的取值范围是________. 15.设集合A ={(x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},若存在实数t ,使得A∩B≠∅,则实数a的取值范围是________ .16.过点A(1,2)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=17.平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为__________18.已知点A(1,2,3),B(2,-1,4),点P在y轴上,且|P A|=|PB|,则点P的坐标是______三.解答题19.已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ的中点,l与直线m:x+3y+6=0相交于N.(1)求证:当l与m垂直时,l必过圆心C;(2)当|PQ|=23时,求直线l的方程.20.已知点(0,1),(3+22,0),(3-22,0)在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.21.如下图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.22.已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.(1)求证:曲线C表示圆,并且这些圆心都在同一条直线上;(2)证明曲线C过定点;(3)若曲线C与x轴相切,求k的值.高二上学期数学练习题(5)(圆与方程)参考答案班级 姓名 学号 (第5—11页,共7页) 一.选择填空1. 已知实数x ,y 满足x 2+y 2-2x +4y -20=0,则x 2+y 2的最小值是( )A .30-10 5B .5-5C .5D .25[答案] A[解析]x 2+y 2为圆上一点到原点的距离.圆心(1,-2)到原点的距离d =5,已知园的半径为5,所以最小值为(5-5)2=30-10 5.2. y =|x |的图象和圆x 2+y 2=4所围成的较小的面积是( )A .π4B .3π4C .3π2 D .π[答案] D[解析] 数形结合,所求面积是圆x 2+y 2=4面积的14.3. 点P 是直线2x +y +10=0上的动点,直线P A 、PB 分别与圆x 2+y 2=4相切于A 、B 两点, 则四边形P AOB (O 为坐标原点)的面积的最小值等于( )A .24B .16C .8D .4[答案] C [解析] ∵四边形PAOB 的面积S =2×12|PA |×|OA |=2PA =2OP 2-OA 2=2OP 2-4,∴当直线OP 垂直直线2x +y +10=0时,其面积S 最小 4. 方程1-x 2=x +k 有唯一解,则实数k 的范围是( )A .k =-2B .k ∈(-2,2)C .k ∈[-1,1)D .k =2或-1≤k <1 [答案] D [解析] 由题意知,直线y =x +k 与半圆x 2+y 2=1(y ≥0只有一个交点. 结合图形易得-1≤k <1或k = 2.5.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0 相切,则圆C 面积的最小值为( )A .45πB .34πC .(6-25)πD .54π[答案] A [解析] 原点O 到直线240x y +-=的距离为d ,则d =45,园C 圆心C 到直线2x +y -4=0的距离是圆的半径r ,由题知圆心C 是线段AB 的中点,又以斜边AB 为直径的圆过直角顶点,则在直角△AOB 中,圆C 过原点O ,即|OC |=r ,所以2r ≥d ,∴2d r ≥,所以r 最小为2d ==25,面积最小为4π5,故选A6. 圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .4个B .3个C .2个D .1个[答案] B[解析] 将圆的方程化为标准方程为(x +1)2+(y +2)2=(22)2,圆心(-1,-2)到直线x +y +1=0 的距离d =|-1-2+1|2=2,则到直线x +y +1=0的距离为2的两条平行线与圆的公共点的个数即为所求.由于圆的半径为22,所以到直线x +y +1=0的距离为2的平行线一条过圆心,另一条与圆相切,故这两条直线与圆有3个交点.7. 已知点A (x,1,2)和点B (2,3,4),且|AB |=26,则实数x 的值是( )A .-3或4B .6或2C .3或-4D .6或-2[答案] D[解析] 由空间两点间的距离公式得(x -2)2+(1-3)2+(2-4)2=26,解得x =6或x =-2. 8. 当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( ) A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0[答案] C[解析] 由(a -1)x -y +a +1=0得a (x +1)-(x +y -1)=0,所以直线恒过定点(-1,2), 所以圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.9. 直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=( ) A . 2 B .2 C .1D .3[答案] B[解析] 依题意,圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的14,即|a |2=|b |2,|a |2=1×cos45°=22,所以a 2=b 2=1,故a 2+b 2=2.10. 直线y =kx +1与圆x 2+y 2=1相交于P ,Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为( )A .-3或 3B .3C .-2或 2D . 2[答案] A[解析] 方法1:∵|PQ |=2×1×sin60°=3(需作出弦心距), 圆心到直线的距离d =1-(32)2=12, ∴1k 2+1=12(注:用点到直线的距离公式表示弦心距),解得k =±3. 方法2:利用数形结合.如图所示,∵直线y =kx +1过定点(0,1),而点(0,1)在圆x 2+y 2=1上,故不妨设P (0,1),在等腰三角形POQ 中,∠POQ =120°,∴∠QPO =30°,故∠P AO =60°,∴k =3,即直线P A 的斜率为 3.同理可求得直线PB 的斜率为- 3.11. 已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A .53B .213C .253D .43[答案] B[解析] △ABC 外接圆圆心在直线BC 垂直平分线上即在直线x =1上,设圆心D (1,b ),由DA =DB 得|b |=1+(b -3)2,解之得b =223,所以圆心到原点的距离d =12+(223)2=213.故选B .12. 过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0[答案] A[解析] 根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为12,故直线AB 的斜率一定是-2,只有选项A 中直线的斜率为-2.二.填空题13.已知实数x ,y 满足x 2+y 2=1,则y +2x +1的取值范围为__________[答案] [34,+∞)[解析] 设P (x ,y )是圆x 2+y 2=1上的点,则y +2x +1表示过P (x ,y )和Q (-1,-2)两点的直线PQ 的斜率,过点Q 作圆的两条切线QA ,QB ,由图可知QB ⊥x 轴,k QB 不存在,且k QP ≥k QA .。
圆的一般方程练习

• [解析] 化圆的标准方程为(x-1)2+(y- 2)2=5,则由圆心(1,2)到直线x-y+a=0距 离为,得=,∴a=2或0.
4.若点(2a,a-1)在圆x2+y2-2y -5a2=0的内部,则a的取值范围是
()
• A.(-∞,] B.(-,) • C.(-,+∞) D.(,+∞)
时有如下两种方法:①由圆的一般方程的定义判断D2+E2-4F是否为正.若 D2+E2-4F>0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准” 形式后,根据圆的标准方程的特征,观察是否可以表示圆.
• (2)在书写本题结果时,易出现r=(m-2)的错误结果,导致这种错误的原因 是没有理解对一个数开偶次方根的结果为非负数.
2.两圆x2+y2-4x+6y=0和x2+y2 -6x=0的圆心连线方程为( )
• A.x+y+3=0 B.2x-y-5=0 • C.3x-y-9=0 D.4x-3y+7=0
[答案] C [解析] 两圆的圆心分别为(2,-3)、(3,0),直线方程为y=(x-3)即 3x-y-9=0,故选C.
3.若圆x2+y2-2x-4y=0的圆心到 直线x-y+a=0的距离为,则a的值
10.已知圆经过点(4,2)和(-2,-
6),该圆与两坐标轴的四个截距之
和为-2,求圆的方程.
• [解析] 设圆的一般方程为x2+y2+Dx+Ey+F=0.
• ∵圆经过点(4,2)和(-2,-6), • 代入圆的一般方程,得
• 设根程(-圆,yE2+)在得=Exx-y轴1++2上x,F2=的=即0截-D的距+D两.为E个-设x1根2、圆=,x在02得,.y轴y它1③+上们y的是2=截方-距程E为x.由2y+1已、D知xy+2,,F得它=-们0的D是+两方个 • 由①②③联立解得D=-2,E=4,F=-20. • ∴所求圆的方程为x2+y2-2x+4y-20=0.
圆的标准方程 练习题

(一) 第四章 4.1 4.1.1A 级 基础巩固一、选择题1.圆心是(4,-1),且过点(5,2)的圆的方程是 ( )A .(x -4)2+(y +1)2=10B .(x +4)2+(y -1)2=10C .(x -4)2+(y +1)2=100D .(x -4)2+(y +1)2=102.已知圆的方程是(x -2)2+(y -3)2=4,则点P(3,2)满足 ( )A .是圆心B .在圆上C .在圆内D .在圆外3.圆(x +1)2+(y -2)2=4的圆心坐标和半径分别为 ( )A .(-1,2),2B .(1,-2),2C .(-1,2),4D .(1,-2),44.(2016·锦州高一检测)若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是 ( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y -1)2=1C .(x -1)2+(y +2)2=1D .(x +1)2+(y +2)2=15.(2016·全国卷Ⅱ)圆x2+y2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a = () A .-43B .-34C .3D .26.若P(2,-1)为圆(x -1)2+y2=25的弦AB 的中点,则直线AB 的方程是 ( A )A .x -y -3=0B .2x +y -3=0C .x +y -1=0D .2x -y -5=0二、填空题7.以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是.8.圆心既在直线x -y =0上,又在直线x +y -4=0上,且经过原点的圆的方程是三、解答题9.圆过点A(1,-2)、B(-1,4),求(1)周长最小的圆的方程;(2)圆心在直线2x -y -4=0上的圆的方程.10.已知圆N 的方程为(x -5)2+(y -6)2=a2(a>0).(1)若点M(6,9)在圆上,求a 的值;(2)已知点P(3,3)和点Q(5,3),线段PQ(不含端点)与圆N 有且只有一个公共点,求a 的取值范围.B 级 素养提升一、选择题1.(2016~2017·宁波高一检测)点⎝ ⎛⎭⎪⎫12,32与圆x2+y2=12的位置关系是 ( )A .在圆上B .在圆内C .在圆外D .不能确定2.若点(2a ,a -1)在圆x2+(y +1)2=5的内部,则a 的取值范围是 ( )A .(-∞,1]B .(-1,1)C .(2,5)D .(1,+∞)3.若点P(1,1)为圆(x -3)2+y2=9的弦MN 的中点,则弦MN 所在直线方程为 ( )A .2x +y -3=0B .x -2y +1=0C .x +2y -3=0D .2x -y -1=04.点M 在圆(x -5)2+(y -3)2=9上,则点M 到直线3x +4y -2=0的最短距离为 ( )A .9B .8C .5D .2二、填空题5.已知圆C 经过A(5,1)、B(1,3)两点,圆心在x 轴上,则C 的方程为____.6.以直线2x +y -4=0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为____.C 级 能力拔高1.如图,矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为x -3y -6=0,点T(-1,1)在AD 边所在的直线上.求AD 边所在直线的方程.2.求圆心在直线4x +y =0上,且与直线l :x +y -1=0切于点P(3,-2)的圆的方程,并找出圆的圆心及半径.第四章 4.1 4.1.2A 级 基础巩固一、选择题1.圆x2+y2-4x +6y =0的圆心坐标是 ( )A .(2,3)B .(-2,3)C .(-2,-3)D .(2,-3)2.(2016~2017·曲靖高一检测)方程x2+y2+2ax -by +c =0表示圆心为C(2,2),半径为2的圆,则a ,b ,c 的值依次为 ( )A .-2,4,4B .-2,-4,4C .2,-4,4D .2,-4,-43.(2016~2017·长沙高一检测)已知圆C 过点M(1,1),N(5,1),且圆心在直线y =x -2上,则圆C 的方程为 ( )A .x2+y2-6x -2y +6=0B .x2+y2+6x -2y +6=0C .x2+y2+6x +2y +6=0D .x2+y2-2x -6y +6=04.设圆的方程是x2+y2+2ax +2y +(a -1)2=0,若0<a<1,则原点与圆的位置关系是 ( )A .在圆上B .在圆外C .在圆内D .不确定5.若圆x2+y2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为 ( ) A .-2或2 B .12或32C .2或0D .-2或0 6.圆x2+y2-2y -1=0关于直线y =x 对称的圆的方程是 ( )A .(x -1)2+y2=2B .(x +1)2+y2=2C .(x -1)2+y2=4D .(x +1)2+y2=4二、填空题7.圆心是(-3,4),经过点M(5,1)的圆的一般方程为____.8.设圆x2+y2-4x +2y -11=0的圆心为A ,点P 在圆上,则PA 的中点M 的轨迹方程是_三、解答题9.判断方程x2+y2-4mx +2my +20m -20=0能否表示圆,若能表示圆,求出圆心和半径.10.求过点A(-1,0)、B(3,0)和C(0,1)的圆的方程.B 级 素养提升一、选择题1.若圆x2+y2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.在圆x2+y2-2x -6y =0内,过点E(0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面只为 ( )A .52B .102C .152D .2023.若点(2a ,a -1)在圆x2+y2-2y -5a2=0的内部,则a 的取值范围是 ( )A .(-∞,45]B .(-43,43)C .(-34,+∞)D .(34,+∞) 4.若直线l :ax +by +1=0始终平分圆M :x2+y2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为( )二、填空题5.已知圆C :x2+y2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a6.若实数x 、y 满足x2+y2+4x -2y -4=0,则x2+y2的最大值是___.C 级 能力拔高1.设圆的方程为x2+y2=4,过点M(0,1)的直线l 交圆于点A 、B ,O 是坐标原点,点P 为AB 的中点,当l 绕点M 旋转时,求动点P 的轨迹方程.2.已知方程x2+y2-2(m +3)x +2(1-4m2)y +16m4+9=0表示一个圆.(1)求实数m 的取值范围;(2)求该圆的半径r 的取值范围;(3)求圆心C 的轨迹方程.第四章 4.2 4.2.1A 级 基础巩固一、选择题1.若直线3x +y +a =0平分圆x2+y2+2x -4y =0,则a 的值为 ( )A .-1B .1C .3D .-32.(2016·高台高一检测)已知直线ax +by +c =0(a 、b 、c 都是正数)与圆x2+y2=1相切,则以a 、b 、c 为三边长的三角形是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .不存在3.(2016·北京文)圆(x +1)2+y2=2的圆心到直线y =x +3的距离为 ( )A .1B .2C .2D .22[4.(2016·铜仁高一检测)直线x +y =m 与圆x2+y2=m(m>0)相切,则m = ( )A .12B .22C .2D .25.圆心坐标为(2,-1)的圆在直线x -y -1=0上截得的弦长为22,那么这个圆的方程为 ( )A .(x -2)2+(y +1)2=4B .(x -2)2+(y +1)2=2C .(x -2)2+(y +1)2=8D .(x -2)2+(y +1)2=166.圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于1的点有 ( )A .1个B .2个C .3个D .4个二、填空题7.(2016·天津文)已知圆C 的圆心在x 轴的正半轴上,点M(0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为____. 8.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为____.三、解答题9.当m 为何值时,直线x -y -m =0与圆x2+y2-4x -2y +1=0有两个公共点?有一个公共点?无公共点10.(2016·潍坊高一检测)已知圆C :x2+(y -1)2=5,直线l :mx -y +1-m =0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同的交点;(2)若直线l 与圆C 交于A 、B 两点,当|AB|=17时,求m 的值.B 级 素养提升一、选择题1.过点(2,1)的直线中,被圆x2+y2-2x +4y =0截得的弦最长的直线的方程是 ( )A .3x -y -5=0B .3x +y -7=0C .3x -y -1=0D .3x +y -5=02.(2016·泰安二中高一检测)已知2a2+2b2=c2,则直线ax +by +c =0与圆x2+y2=4的位置关系是 ( )A .相交但不过圆心B .相交且过圆心C .相切D .相离3.若过点A(4,0)的直线l 与曲线(x -2)2+y2=1有公共点,则直线l 的斜率的取值范围为 ( )A .(-3,3)B .[-3,3]C .(-33,33)D .[-33,33] 4.设圆(x -3)2+(y +5)2=r2(r>0)上有且仅有两个点到直线4x -3y -2=0的距离等于1,则圆半径r 的取值范围是 ( )A .3<r<5B .4<r<6C .r>4D .r>5二、填空题5.(2016~2017·宜昌高一检测)过点P(12,1)的直线l 与圆C :(x -1)2+y2=4交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为____.6.(2016~2017·福州高一检测)过点(-1,-2)的直线l 被圆x2+y2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为____.C 级 能力拔高1.求满足下列条件的圆x2+y2=4的切线方程:(1)经过点P(3,1);(2)斜率为-1;(3)过点Q(3,0).2.设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为22,求圆的方程.第四章 4.2 4.2.2A级基础巩固一、选择题1.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是 ( )A.(x-3)2+(y-5)2=25B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25D.(x-3)2+(y+2)2=252.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB的垂直平分线方程为 ( ) A.x+y-1=0 B.2x-y+1=0C.x-2y+1=0 D.x-y+1=03.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a、b应满足的关系式是 ( ) A.a2-2a-2b-3=0B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0D.3a2+2b2+2a+2b+1=04.(2016~2017·太原高一检测)已知半径为1的动圆与圆(x-5)2+(y+7)2=16相外切,则动圆圆心的轨迹方程是 ( )A.(x-5)2+(y+7)2=25B.(x-5)2+(y+7)2=9C.(x-5)2+(y+7)2=15D.(x+5)2+(y-7)2=255.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r=A.5 B.4 C.3 D.226.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为 ( )A.(x-6)2+(y-4)2=6B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36D.(x-6)2+(y±4)2=36二、填空题7.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是____.8.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=____.三、解答题9.求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆C的方程.10.判断下列两圆的位置关系.(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0.B 级 素养提升一、选择题1.已知M 是圆C :(x -1)2+y2=1上的点,N 是圆C ′:(x -4)2+(y -4)2=82上的点,则|MN|的最小值为 ( )A .4B .42-1C .22-2D .22.过圆x2+y2=4外一点M(4,-1)引圆的两条切线,则经过两切点的直线方程为 ( )A .4x -y -4=0B .4x +y -4=0C .4x +y +4=0D .4x -y +4=03.已知两圆相交于两点A(1,3),B(m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值是 ( )A .-1B .2C .3D .04.(2016·山东文)已知圆M :x2+y2-2ay =0(a>0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y-1)2=1的位置关系是 ( )A .内切B .相交C .外切D .相离[二、填空题5.若点A(a ,b)在圆x2+y2=4上,则圆(x -a)2+y2=1与圆x2+(y -b)2=1的位置关系是____.6.与直线x +y -2=0和圆x2+y2-12x -12y +54=0都相切的半径最小的圆的方程是____.C 级 能力拔高1.已知圆M :x2+y2-2mx -2ny +m2-1=0与圆N :x2+y2+2x +2y -2=0交于A 、B 两点,且这两点平分圆N 的圆周,求圆心M 的轨迹方程.2.(2016~2017·金华高一检测)已知圆O :x2+y2=1和定点A(2,1),由圆O 外一点P(a ,b)向圆O 引切线PQ ,切点为Q ,|PQ|=|PA|成立,如图.(1)求a ,b 间的关系;(2)求|PQ|的最小值.第四章 4.2 4.2.3A 级 基础巩固一、选择题1.一辆卡车宽1.6 m ,要经过一个半圆形隧道(半径为3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过 ( )A .1.4 mB .3.5 mC .3.6 mD .2.0 m2.已知实数x 、y 满足x2+y2-2x +4y -20=0,则x2+y2的最小值是 ( )A .30-105B .5-5C .5D .253.方程y =-4-x2对应的曲线是 ( )4.y =|x|的图象和圆x2+y2=4所围成的较小的面积是 ( )A .π4B .3π4C .3π2D .π 5.方程1-x2=x +k 有惟一解,则实数k 的范围是 ( )A .k =- 2B .k ∈(-2,2)C .k ∈[-1,1)D .k =2或-1≤k<16.点P 是直线2x +y +10=0上的动点,直线PA 、PB 分别与圆x2+y2=4相切于A 、B 两点,则四边形PAOB(O 为坐标原点)的面积的最小值等于 ( )A .24B .16C .8D .4二、填空题7.已知实数x 、y 满足x2+y2=1,则y +2x +1的取值范围为____ 8.已知M ={(x ,y)|y =9-x2,y ≠0},N ={(x ,y)|y =x +b},若M ∩N ≠∅,则实数b 的取值范围是__]__.三、解答题9.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C.现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离10.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,求支柱A2P2的长.(精确到0.01 m)1.(2016·葫芦岛高一检测)已知圆C 的方程是x2+y2+4x -2y -4=0,则x2+y2的最大值为 ( )A .9B .14C .14-65D .14+652.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l1:ax +3y +6=0,l2:2x +(a +1)y +6=0与圆C :x2+y2+2x =b2-1(b>0)的位置关系是“平行相交”,则实数b 的取值范围为 ( )A .(2,322)B .(0,322) C .(0,2)D .(2,322)∪(322,+∞) 3.已知圆的方程为x2+y2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 ( )A .106B .206C .306D .4064.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为 ( )A .4π5B .3π4C .(6-25)πD .5π4二、填空题5.某公司有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于 ____.6.设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},若存在实数t,使得A∩B≠∅,则实数a的取值范围是___.C级能力拔高1.如图,已知一艘海监船O上配有雷达,其监测范围是半径为25 km的圆形区域,一艘外籍轮船从位于海监船正东40 km的A处出发,径直驶向位于海监船正北30 km的B处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)。
直线与圆的方程练习题

直线与圆的方程练习题直线与圆是解析几何中的基本概念,掌握它们的方程及其应用是解题的关键。
下面将以几道习题为例,来进行练习。
1. 已知直线L过点A(3,4),斜率为2,求直线L的方程。
解析:由题目可知,直线L经过点A(3,4),斜率为2。
我们可以运用直线的点斜式来求解。
直线的点斜式方程为:y - y₁ = m(x - x₁)其中m为直线的斜率,(x₁, y₁)为直线上的已知点。
代入已知条件,得到直线L的方程为:y - 4 = 2(x - 3)化简得:y - 4 = 2x - 6最终方程为:y = 2x - 22. 已知圆O的圆心为(2,3),半径为5,求圆O的方程。
解析:圆的方程可以通过圆心和半径来确定。
我们可以利用圆的标准方程来求解。
圆的标准方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r为圆的半径。
代入已知条件,得到圆O的方程为:(x - 2)² + (y - 3)² = 5²化简得:(x - 2)² + (y - 3)² = 25最终方程为:x² - 4x + y² - 6y + 5 = 03. 已知直线L的方程为2x - 3y + 7 = 0,圆O的方程为x² + y² - 6x + 4y + 3 = 0,求直线L与圆O的交点坐标。
解析:直线与圆的交点坐标可以通过联立直线与圆的方程求解。
我们可以通过消元法来求解。
将直线L的方程转化为一般形式:2x - 3y = -7代入圆O的方程,得到联立方程组:x² + y² - 6x + 4y + 3 = 02x - 3y = -7通过联立方程组,我们可以求得直线L与圆O的交点坐标。
首先,将直线L的方程中的x表示为y的函数:x = (3y - 7) / 2将x代入圆O的方程中,得到二次方程:(3y - 7)² / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0化简得:(9y² - 42y + 49 + 4y² - 12y - 42 + 16y + 12) / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0整理得:13y² - 36y + 30 = 0通过求解二次方程,我们可以得到y的值,再带入x = (3y - 7) / 2,即可求得直线L与圆O的交点坐标。
高二数学圆的一般方程练习题

高二数学圆的一般方程练习题一、填空题1. 圆C的半径为5,圆心坐标为(2, -3),求圆C的一般方程。
2. 已知圆的一般方程为x^2 + y^2 + 6x - 8y + 9 = 0,求圆的圆心坐标和半径。
3. 圆心在原点O,通过点A(3,4),则圆的一般方程为________。
4. 圆C的圆心为(-2, 3),与直线y = 2x + 1相切,求圆C的一般方程。
5. 给定两个圆的一般方程为x^2 + y^2 - 4x + 6y - 3 = 0和x^2 + y^2 + 4x + 2y + 5 = 0,求这两个圆的位置关系。
二、解答题1. 已知圆C的一般方程为x^2 + y^2 + 8x - 4y + 16 = 0,求圆C的圆心坐标和半径。
解答:将方程转化为标准方程:(x + 4)^2 - 16 + (y - 2)^2 - 4 = 0(x + 4)^2 + (y - 2)^2 = 20圆的圆心坐标为(-4, 2),半径为√20。
2. 设点A(1, 2),点B(4, 5)为直径所在直线上的两个点,求过点A且与直线Bx + 4y - 17 = 0相切的圆的一般方程。
解答:由于圆与直线相切,所以圆心到直线距离等于半径。
圆心到直线的距离公式为d = |Ax + By + C|/√(A^2 + B^2),其中A、B、C为直线的系数。
将直线的方程Bx + 4y - 17 = 0转化为一般方程:4y = -Bx + 174y + Bx - 17 = 0因此,直线的A、B、C分别为0、4、-17。
点A(1, 2)到直线的距离为d1 = |0*1 + 4*2 - 17|/√(0^2 + 4^2) = 13/2过点A的圆的一般方程为(x - 1)^2 + (y - 2)^2 = (13/2)^2。
3. 已知两个圆的方程分别为x^2 + y^2 + 6x - 2y + 10 = 0和x^2 + y^2 + 4x + 8y + 5 = 0,求这两个圆的位置关系。
圆的标准方程练习

D.(1,-2),4
2.已知一圆的圆心为点 A(2,-3),一条直径的端点分别在 x 轴和 y 轴上,则圆的标准方程为( )
A.(x+2)2+(y-3)2=13
B.(x-2)2+(y+3)2=13
C.(x-2)2+(y+3)2=52
D.(x+2)2+(y-3)2=52
3.若点(5a+1,12a)在圆(x-1)2+y2=1 的内部,则实数 a 的取值范围是( )
A.|a\<1
B.a<1
3
C.|a\<1
5
D.|a\< 1
13
4.已知直线 l 过圆 x2+(y-3)2=4 的圆心,且与直线 x+y+1=0 垂直,则 l 的方程为( )
A.x+y-2=0
B.x-y+2=0
C.x+y-3=0
D.x-y+3=0
5.已知 A(3,-2),B(-5,4),则以 AB 为直径的圆的方程是( )
A.(-1,1)
B.(0,1)
C.(-∞,-1)∪(1,+∞)
D.a=±1
二、填空题
9.已知圆 C:x2+y2=1,则圆上的点到点(3,4)距离的最大值为
.
10.圆(x+2)2+y2=5 关于原点(0,0)对称的圆的方程为________.
11. 点 P(8,m)与圆 x2+y2=24 的位置关系是
A.(x-1)2+(y+1)2=25
B.(x+1)2+(y-1)2=25
C.(x-1)2+(y+1)2=100
2014圆与方程专题练习题

1.圆221:20O x y x +-=和圆222:40O x y y +-=的位置关系是(.A 相离 .B 相交.C 外切 .D 内切2.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( )A .4B .5C .1D .3.若直线220(,0)ax by a b +-=>始终平分圆224280x y x y +---=的周长,则12a b+ 的最小值为A .1B .5C .D .3+4.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,则圆C 的方程为( )A .22(1)(1)2x y ++-=B . 22(1)(1)2x y -++=C . 22(1)(1)2x y -+-=D . 22(1)(1)2x y +++= 5.设圆222(3)(5)(0)x y r r -++=>上有且仅有两个点到直线4320x y --=的距离等于1,则圆半径r 的取值范围是( ) A .35r << B .46r << C .4r > D .5r >6.已知圆O 的半径为1,PA.PB 为该圆的两条切线,A.B 为两切点,那么⋅的最小值为( )A . 4-+B .3-+C . 4-+D .3-+ 9.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=17.若直线2x -y +a =0与圆(x -1)2+y 2=1有公共点,则实数a 的取值范围为( )A .(-2-5,-2+5)B .[-2-5,-2+5]C .[-5,5]D .(-5,5)8.实数x 、y 满足x 2+(y +4)2=4,则(x -1)2+(y -1)2的最大值为( )A .30+226B .30+426C .30+213D .30+4139.已知两点A (-1,0),B (0,2),点P 是圆(x -1)2+y 2=1上任意一点,则△PAB 面积的最大值与最小值分别是( )A .2,12(4-5)B.12(4+5),12(4-5)C.5,4-5D.12(5+2),12(5-2) 10.一条线段AB 长为2,两端点A 和B 分别在x 轴和y 轴上滑动,则线段AB 的中点的轨迹是( )A .双曲线B .双曲线的一支C .圆D .半圆11.若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,则a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞) 12.圆心在曲线y =3x (x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为A .(x -1)2+(y -3)2=(185)2B .(x -3)2+(y -1)2=(165)2C .(x -2)2+(y -32)2=9D .(x -3)2+(y -3)2=9 13.若原点在圆(x -m )2+(y +m )2=8的内部,则实数m 的取值范围是A .-22<m <2 2B .0<m <22C .-2<m <2D .0<m <2 14.曲线x 2+y 2+22x -22=0关于( ) A .直线x =2轴对称B .直线y =-x 轴对称C .点(-2,2)中心对称D .点(-2,0)中心对称15.一动点在圆x 2+y 2=1上移动时,它与定点B (3,0)连线的中点轨迹是A .(x +3)2+y 2=4B .(x -3)2+y 2=1C.⎝ ⎛⎭⎪⎫x +322+y 2=1 D .(2x -3)2+4y 2=116.已知实数x ,y 满足x 2+y 2=4(y ≥0),则m =3x +y 的取值范围是( )A .(-23,4)B .[-23,4]C .[-4,4]D .[-4,23]17.圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b∈R)对称,则ab 的取值范围是( )A .(-∞,14]B .(0,14]C .(-14,0) D .(-∞,14) 18.已知圆的方程为x 2+y 2-6x -8y =0,设该圆中过点M(3,5)的最长弦、最短弦分别为AC 、BD ,则以点A 、B 、C 、D 为顶点的四边形ABCD 的面积为( )A .10 6 B .206C .30 6 D .40 61.点(a ,b)为第一象限内的点,且在圆(x +1)2+(y +1)2=8上,ab 的最大值为________.2.已知圆x 2+y 2=r 2在曲线|x|+|y|=4的内部(含边界),则半径r 的范围是________.3.已知圆C :(x -3)2+(y -4)2=1,点A (0,-1),B (0,1).P 是圆C 上的动点,当|PA |2+|PB |2取最大值时,点P 的坐标是________.4.已知对于圆x 2+(y -1)2=1上任意一点P (x ,y ),不等式x +y +m ≥0恒成立,则实数m 的取值范围是________.5.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为________. 6.设圆C 位于抛物线y 2=2x 与直线x =3所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为________.若圆224x y +=与圆22260x y ay ++-=(a>0)的公共弦的长为=a ___________ 。
圆练习题及答案

圆练习题及答案圆是平面上所有与给定点(圆心)距离相等的点的集合。
这个给定点称为圆心,这个距离称为半径。
圆的方程通常表示为 (x - h)² + (y - k)² = r²,其中 (h, k) 是圆心的坐标,r 是半径。
以下是一些关于圆的练习题及答案:1. 练习题:已知圆的半径为5,圆心坐标为(3, 4),求圆的方程。
答案:根据圆的标准方程,我们可以得到圆的方程为 (x - 3)² + (y - 4)² = 5²,即 (x - 3)² + (y - 4)² = 25。
2. 练习题:如果一个圆的圆心在点(-2, -3),且与x轴相切,求这个圆的半径。
答案:由于圆与x轴相切,圆心到x轴的距离就是圆的半径。
圆心的y坐标为-3,因此半径为3。
3. 练习题:圆x² + y² = 16与直线y = 4x的交点坐标是什么?答案:将直线方程y = 4x代入圆的方程,得到x² + (4x)² = 16,即x² + 16x² = 16,解得x² = 1,所以x = ±1。
将x值代入直线方程,得到y = ±4。
因此,交点坐标为(1, 4)和(-1, -4)。
4. 练习题:求圆心在原点,半径为7的圆与圆心在(1, 2),半径为3的圆的公共点。
答案:设两圆的公共点为(x, y)。
根据圆的方程,我们有以下两个方程:- x² + y² = 49(半径为7的圆)- (x - 1)² + (y - 2)² = 9(半径为3的圆)解这两个方程组,我们可以得到公共点的坐标。
5. 练习题:一个圆的半径为8,圆心在(1, 1),求这个圆上任意一点P(x, y)到圆心的距离。
答案:根据两点间的距离公式,点P(x, y)到圆心(1, 1)的距离为√[(x - 1)² + (y - 1)²]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直 线 与 圆 的 方 程 练 习 题 1 . 圆的方程是 (x — 1)(x+2)+(y —2)(y+4)=0, 则圆心的坐标是(
)
A (1, — 1) 1 B 、(丄,—1) 2 C 、(-
1,2) D
、(—1, - 1)
2
2 . 过点A(1,- -1)与B( — 1,1)且圆心在直线 x+y — 2=0上的圆的方程为( ) A . (x — 3)2+(y+1)2=4 B .(x — 1)2+(y —1)2=4 C (x+3)2+(y - -1)2=4
D. (x+1)2+(y+1)2=4
2 2 3. 方程x a (y b) 0表示的图形是( )
A、以(a,b)为圆心的圆 B、点(a,b) C 、( — a, — b)为圆心的圆 D、点(一a,—
b) 4. 两圆x2+y2 — 4x+6y=0和x2+y2 — 6x=0的连心线方程为( )
A. x+y+3=0 B . 2x— y— 5=0 C. 3x — y — 9=0 D. 4x— 3y+7=0 2 2 5. 方程x y 4mx 2y 5m 0表示圆的充要条
件是( )
111 A. — m 1 B. m -或 m 1 C . m — D. m 1
4 4 4 6. 圆 x2 + y2 + x — y—1 = 0 的
半径是( )A . 1 B . 2 C . 2 D . 2 2 7. 圆O: x2+ y2— 2x = 0与圆Q: x2 + y2— 4y= 0的位置关系是( )A .外离B .相 交C.外
切D.内切 8 圆x2 + 2x + y2+ 4y — 3 = 0上到直线x + y + 1 = 0的距离为.2的点共有( )A . 4
B. 3 C . 2 D . 1
9.设直线过点(a,0),其斜率为—1,且与圆x2 + y2= 2相切,则a的值为( )A . ± 2
B. ± 2C. ±2 2 D. ±4
10 .当a为任意实数时,直线(a — 1)x — y + a+ 1= 0恒过定点C,则以C为圆心, 5 为半径的圆的方程为( ) A. x2 + y2— 2x+ 4y = 0 B . x2 + y2 + 2x+ 4y = 0 C . x2 + y2+ 2x — 4y = 0 D . x2 2 + y — 2x — 4y = 0
11. 设P是圆(x — 3)2+ (y + 1)2 = 4上的动点,Q是直线x=— 3上的动点,贝U |PQ|的 最小值为( )
A. 6 B . 4 C . 3 D . 2 12 .已知三点A(1,0) , B(0, .3), C(2 , 3),则△ ABC外接圆的圆心到原点的距离
13. 过点(3,1)作圆(x — 1)2+ y2 = 1的两条切线,切点分别为 A, B,则直线AB的方程 为() A. 2x + y — 3= 0 B . 2x — y — 3= 0 C . 4x — y — 3 = 0 D . 4x + y — 3= 0 2 2 __________________________________________________________________ ____________________________ 14 .圆 x y 2x 2y 0 的周长是( )A. 2 2 B. 2 C. 2 D. 4
15 .若直线ax+by+c=0在第一、二、四象限,则有( )
A、ac>0,bc>0 B、ac>0,bc<0 C ac<0,bc>0 D、ac<0,bc<0 16. 点(2a,a
1)在圆x2+y2 — 2y — 4=0的内部,贝U a的取值范围是( )
1 1 A. — 15 5
17. 点P (5a+1,12a)在圆(x — 1) 2+y2=1的内部,贝U a的取值范围是( )
1 1 1 A. | a |v 1 B.a v — C. | a |v — D. | a |v —
13 5 13
18. 求经过点 A (— 1,4)、B (3, 2)且圆心在y轴上的圆的方程
19. 已知一圆经过点 A (2,— 3)和B (— 2,— 5),且圆心C在直线I : x 2y 3 0 上,
求此圆的标准方程. 2 2 20. 已知圆 C: x 1 y 2 25及直线丨:2m 1x m 1 y 7m 4. m R (1)证明:
不论m取什么实数,直线I与圆C恒相交;(2)求直线I与圆C所截得的弦长的最短长 度 及此时直线I的方程. 21. 如果实数x、y满足x2+y2-4x+1=0,求x的最大值与最小值。 22. ABC的三个顶点分别为 A( — 1,5),( — 2, — 2),(5,5), 求其外接圆方程 试题分析:两圆 2 2 x+y - 4x+6y=0 和 x2+y2 - 6x=0的圆心分别为 2,-
参考答案 【解析】方程(x 1)(x 2) (y 2)( y 4) 0 化为 x2 x y2
2y 10 0
;则
圆的标准方程是(x丄)2 (y 1)2兰所以圆心坐标为(丄,1)•故选D 2 4 2
2. B
【解析】 试题分析:设圆的标准方程为(x-a ) 2+ (y-b ) 2=r2,根据已知条件可得 (1-a ) 2+ (- 1 -b) 2=r2,① 2 2 2 (-1 — a) + (1 -b) =r,②
a+b-2=0 ,③ 联立①,②,③,解得 a=1, b=1, r=2 . 所以所求圆的标准方程为(x - 1) 2+ (y -1) 2=4.故选
Bo
另外,数形结合,圆心在线段AB的中垂线上,且圆心在直线x+y-2=0 上, 所以圆心是两线的交点,在第一象限,故选 Bo
考点:本题主要考查圆的标准方程. 点评:待定系数法求圆的标准方程是常用方法。 事实上,利用数形结合法, 结合选项解答更简洁。
4. C 【解析】
3) ,(3,0),所以连心线方程为3x— y— 9=0,选C. 考点:本题主要考查圆与圆的位置关系、圆的性质。 点评:数形结合,由圆心坐标确定连心线方程。
2 【解析】由x a (y b)2
0
知x a
0且 y b 0, x aK y
b.故选D 5. B 【解析】 试题分析:圆的一般方程要求 x2 y2 Dx Ey F 0中D2 E2
4F 0
。
1 即(4m)2 ( 2)2
4 5m 0 ,解得 m -或m 1
,故选 B。
4
考点:本题主要考查圆的一般方程。
点评:圆的一般方程要求 x2 y2 Dx Ey F 0中D2 E2
4F 0
。
6. A 【解析】考查直线斜率和倾斜角的关系。 7. A 【解析】 试题分析:x2 y2
2x 2y 0
半径为2,所以周长为2.2,故选A。
考点:本题主要考查圆的一般方程与标准方程的转化。 点评:简单题,明确半径,计算周长。 8. D 【解析】直线斜率为负数,纵截距为正数,选 D 9. D 【解析】 试题分析:因为点(2a,a 1)在圆x2+y2 — 2y — 4=0的内部,所以将点 (2a,a 1)的坐标代入圆的方程左边应小于 0,即(2a)2 (a 1)2 2 (a 1) 0, 解得—15
考点:本题主要考查点与圆的位置关系 点评:点在圆的内部、外部,最终转化成解不等式问题。
10. D 【解析】点P在圆(x— 1) 2+/=1内部
(5a+1 — 1) 2+ (12a) 2< 1 I a |< -.
13
11 . 4
【解析】方程x2+y2+Dx+Ey+F=(配方得(x D)2 (y E)2 -―E 红.根 2 2 4
据条件得: D 2, E 4,才一E 兰 42
;
解得F 4.
2 2 4
12. x 3y 14 0 , x 2y 10 0 , y 4
【解析】•••线段AB的中点为(1,5),线段BC的中点为(3,4),线段AC的中 点为(4,3), 二三角形各边上中线所在的直线方程分别是 y 4, 即 x 3y 14 0 , x 2y 10 0 , y 4 . 13 •见解析 【解析】 试题分析:证明一:由 A, B两点确定的直线方程为: 即: x y 2 0① 把C (5, 7)代入方程①的左边:左边 5 7 2 0右边
y 5 x 1 y 3 x 4 2 5 8 6 3 2 4