[工学]第四章微分运动和雅可比矩阵

合集下载

4机械臂的雅可比-机器人技术基础(熊有伦)

4机械臂的雅可比-机器人技术基础(熊有伦)

(4.4)
y T x
T
x
0
0 0
dx T dy T dz 0
T
4.1.1微分运动
刚体或坐标系的微分运动矢量由微分移动矢量和微分转动矢 量组成 T d
D
dx , d y , dz , x , y , z δ
d id x jd y kd z , δ i x j y k z
0
f z f x vers f y s f z f y vers f x s f z f z vers c 0
0 0 0 1
对于微分变化, limsin ,limcos 1,lim vers 0, 代入上式
1 f d Rot ( f , d ) z f y d 0 f z d 1 f x d 0 f y d f x d 1 0 0 0 0 1
4.1.1微分运动
Trans (d x , d y , d z ) Rot ( f , d ) I 0 0 dx 1 f z d f y d 0 1 0 f d 0 1 1 0 dy 1 f d 0 x z 0 1 d z f y d f x d 1 0 0 0 0 0 1 0 0 0 1 0 0 f z d f y d d x 0 0 z y f d 0 f x d d y 0 x z z f y d f x d 0 dz y x 0 0 0 0 0 1 0 = 0 0 0 0 0 0 1 0 0 1
f x f x vers c f f vers f s z Rot ( f , ) x y f x f z vers f y s 0

机器人运动学雅可比矩阵

机器人运动学雅可比矩阵
通过雅可比矩阵,可以计算出使机器人末端执行器按照特定轨迹运动的关节变量变化,从而实现机器人的轨迹规划。
05 雅可比矩阵的优化与改进
雅可比矩阵的稳定性分析
稳定性分析的重要性
在机器人运动控制中,雅可比矩阵的稳定性对机器人的运动性能 和动态响应具有重要影响。
稳定性判据
通过分析雅可比矩阵的特征值和特征向量,可以确定机器人的运动 稳定性,并为其运动控制提供依据。
通常使用齐次变换矩阵来表示机器人的位姿,该矩阵包含 了平移和旋转信息,能够完整地描述机器人在空间中的位 置和方向。
坐标系与变换
01
坐标系是用来描述物体在空间中位置和姿态的参照框架。
02
在机器人学中,通常使用固连于机器人基座的坐标系作为全局 参考坐标系,以及固连于机器人末端执行器的坐标系作为局部
参考坐标系。
THANKS FOR WATCHING
感谢您的观看
雅可比矩阵的物理意义
雅可比矩阵描述了机械臂末端执行器 的位置和姿态随关节变量变化的规律, 是机械臂运动学分析中的重要概念。
通过雅可比矩阵,可以分析机械臂的 可达工作空间、奇异性、运动速度和 加速度等运动学性能。
雅可比矩阵的计算方法
雅可比矩阵可以通过正向运动学和逆 向运动学两种方法计算得到。
在计算雅可比矩阵时,需要使用到线 性代数、微分方程等数学工具。
正向运动学是根据关节变量求解末端 执行器在参考坐标系中的位置和姿态; 逆向运动学是根据末端执行器的位置 和姿态求解关节变量。
04 雅可比矩阵在机器人运动 学中的应用
机器人的关节与连杆
关节
机器人的每个关节都有一个自由 度,决定了机器人的运动方式。 常见的关节类型包括旋转关节和 移动关节。
连杆

雅克比矩阵(Jacobi).

雅克比矩阵(Jacobi).

雅可比矩阵(Jacobi方法)Jacobi 方法Jacobi方法是求对称矩阵的全部特征值以及相应的特征向量的一种方法,它是基于以下两个结论1) 任何实对称矩阵A可以通过正交相似变换成对角型,即存在正交矩阵Q,使得Q T AQ = diag(λ1 ,λ2,…,λn) (3.1)其中λi(i=1,2,…,n)是A的特征值,Q中各列为相应的特征向量。

2) 在正交相似变换下,矩阵元素的平方和不变。

即设A=(aij )n×n,Q交矩阵,记B=Q T AQ=(bij )n×n, 则Jacobi方法的基本思想是通过一次正交变换,将A中的一对非零的非对角化成零并且使得非对角元素的平方和减小。

反复进行上述过程,使变换后的矩阵的非对角元素的平方和趋于零,从而使该矩阵近似为对角矩阵,得到全部特征值和特征向量。

1 矩阵的旋转变换设A为n阶实对称矩阵,考虑矩阵易见 Vij(φ)是正交矩阵, 记注意到B=VijA的第i,j行元素以及的第i,j列元素为可得≠0,取φ使得则有如果aij对A(1)重复上述的过程,可得A(2) ,这样继续下去, 得到一个矩阵序列{A(k) }。

可以证明,虽然这种变换不一定能使矩阵中非对角元素零元素的个数单调增加,但可以保证非对角元素的平方和递减,我们以A与A(1)为例进行讨论。

设由式(3.4)可得这表明,在上述旋转变换下,非对角元素的平方和严格单调递减,因而由(3.2)可知,对角元素的平方和单调增加。

2. Jacobi方法通过一系列旋转变换将A变成A(k+1) ,求得A的全部特征值与特征向量的方法称为Jacobi方法。

计算过程如下1)令k=0, A(k) =A2) 求整数i,j, 使得3) 计算旋转矩阵4) 计算A(k+1)5) 计算6) 若E(A(k+1))<ε, 则为特征值,Q T = (V(0) V(1)…V(k+1))T的各列为相应的特征向量;否则,k+1=>k返回2,重复上述过程。

雅可比矩阵_灵敏度矩阵_解释说明以及概述

雅可比矩阵_灵敏度矩阵_解释说明以及概述

雅可比矩阵灵敏度矩阵解释说明以及概述1. 引言1.1 概述雅可比矩阵是数学中一种重要的矩阵形式,用于描述多元函数的局部性质和关系。

灵敏度矩阵则是一种衡量系统响应对输入参数变化的敏感程度的工具。

本文将深入探讨雅可比矩阵和灵敏度矩阵的定义、计算方法、性质以及它们在实际问题求解中的潜在应用。

1.2 文章结构本文分为五个主要部分来展开对雅可比矩阵和灵敏度矩阵的介绍和解释。

首先,我们将给出本文的概述,明确文章主题和目标;其次,我们将详细介绍雅可比矩阵包括其定义、基本概念、计算方法以及应用领域;随后,我们将深入探讨灵敏度矩阵,包括其意义定义、计算方法和性质,并通过实际案例来展示其运用;接着,我们将进一步解释说明雅可比矩阵在问题求解中的作用与意义以及灵敏度矩阵在问题求解中的应用举例;最后,我们将总结全文内容,并对雅可比矩阵及其应用进行展望。

1.3 目的本文旨在系统介绍雅可比矩阵和灵敏度矩阵的相关概念、计算方法以及实际应用,帮助读者全面了解它们在数学和工程领域的重要性和作用。

同时,通过详细解释说明它们在问题求解中的具体应用案例,期望读者能够理解如何应用雅可比矩阵和灵敏度矩阵来分析和优化复杂系统中的相互关系。

最后,我们希望通过本文对雅可比矩阵与灵敏度矩阵的深入探讨,为进一步研究提供启示和方向。

2. 雅可比矩阵:2.1 定义和基本概念:雅可比矩阵是数学中的一种线性变换矩阵,用于描述多元函数的导数。

对于一个具有n个自变量和m个因变量的向量值函数,其雅可比矩阵是一个m×n的矩阵,其中每个元素表示因变量关于自变量之间的偏导数。

设函数f(x1, x2, ..., xn) = (y1, y2, ..., ym),则该函数的雅可比矩阵J就是一个m ×n矩阵,其中每个元素Jij表示yj关于xi的偏导数。

2.2 计算方法和性质:计算雅可比矩阵的方法通常即是求各偏导数。

对于一个标量场(只有一个因变量)来说,其雅可比行列式称为该函数的梯度,也就是常说的向量场。

机器人雅可比矩阵

机器人雅可比矩阵
动态调整
根据机器人运动状态和任务需求,动态调整雅可比矩阵的维度, 以适应不同情况下的计算需求。
雅可比矩阵的奇异性问题
1 2
奇异值分解
利用奇异值分解(SVD)等技术处理雅可比矩阵 的奇异性问题,提高矩阵的稳定性和可靠性。
冗余自由度
合理配置机器人的冗余自由度,避免产生奇异位 姿,提高机器人的运动能力和灵活性。

逆向运动学
03
已知机器人在笛卡尔空间中的位姿,求解关节空间的运动变量
,进而得到雅可比矩阵。
03
雅可比矩阵的应用
机器人的运动学正解与逆解
01
02
03
运动学正解
通过给定的关节角度,计 算机器人末端执行器的位 置和姿态。
运动学逆解
已知末端执行器的位置和 姿态,反推出各关节角度 。
求解方法
通过几何学和线性代数的 方法,建立机器人运动学 模型,并使用数值计算方 法求解正解和逆解。
3
动态调整
根据机器人运动状态和任务需求,动态调整雅可 比矩阵的结构,以避免奇异性问题。
雅可比矩阵的实时计算优化
并行计算
采用并行计算技术,将雅可比矩阵的计算任务分解为多个子任务, 提高计算效率。
预计算和缓存
对雅可比矩阵进行预计算和缓存,减少实时计算量,提高计算速度 。
自适应算法
采用自适应算法优化雅可比矩阵的计算过程,根据机器人运动状态和 任务需求动态调整计算参数,提高计算精度和响应速度。
力矩控制
通过调节施加在机器人关节上的力矩,实现对机器人运动的精确控 制。
控制方法
基于反馈的力/力矩控制方法,如PID控制器、模糊控制器等。
04
雅可比矩阵的优化与改进
雅可比矩阵的降维处理

5速度分析和雅克比矩阵

5速度分析和雅克比矩阵
以机械臂的基准坐标系(基座坐标系)为参考坐标系,描述线速度和角速度
线速度 角速度
例:图示4自由度机械臂为例分别求 线速度Jv和角速度Jw部分
求线速度Jv
将红色3*1部分对关节空间向量 [θ1 d2 θ3 θ4]求导可得
求角速度Jw 以2R为例说明
为θ1和θ2单独旋转后的合成,单独旋转角 度与a相同
列:关节

X qn Y qn Z qn X qn Y qn Z qn

线位移

J(q)


角位移

5、机器人速度分析和雅可比矩阵
5.4. 机器人的速度雅可比
由运动学方程可得:
X X (1 , 2 ) Y Y (1 , 2 )
求微分,得:
X X d X d d 2 1 1 2 dY Y d Y d 1 2 1 2
X 1 dX dY Y 1 X 2 d1 Y d 2 2
关节角度微小变化Δθ
雅可比矩阵J
手部位姿微小变化ΔX
如果已知两者之间的微分关系,就可以解决机器人微分运动的两类基本问题: 1)是在已知机器人各个关节变量的微小变化时求机器人手部位姿的微小变化;
2)是在已知机器人手部位姿的微小变化时求机器人各个关节变量相应的微小变化。
类似与运动学方程M=f(θ)建立映射关系
dX=J(q)dq
J(q)是6×n维偏导数矩阵,称为n自由度机器人雅可比
4、机器人运动学
5.3. 雅可比矩阵
X q J为机器人的雅可比矩阵,它 1 反映了机器人手部在空间的速 Y 度与各个关节速度之间的线性 q1 变换关系,也可认为是机器人 关节速度与手部速度之间的传 Z 动比 q1 X T q X 速度分析和静力分析 q 1 Y 行列关系:如第5行第3列表示当第3关 q1 节移动或转动微小量时在第5自由度上 相应的平移或转动量。 Z 行:自由度 那个是第5自由度?? q1 X q2 Y q 2 Z q2 X q2 Y q2 Z q2

4-2雅可比矩阵构建(矢量积法)

雅可比矩阵用来描述机器人末端速度(在基坐标系或末端坐标系下)与关节速度之间的关系。

雅可比矩阵构建e J q q x ()∙∙=当选择好末端位姿的描述方式后,雅可比矩阵的行数和列数就确定了。

求取计算雅可比矩阵的方法有多种,如:1对位姿方程求导;2通过连杆速度递推计算得到;3通过连杆速度分析构造得出;4通过微分变换关系构造得出。

微分变换法矢量积法通过速度传递关系计算雅可比矩阵(例1/9)Rot X 10000cos sin 0(,)0sin cos 00001⎡⎤⎢⎥θ-θ⎢⎥θ=⎢⎥θθ⎢⎥⎣⎦Rot Y cos 0sin 00100(,)sin 0cos 00001θθ⎡⎤⎢⎥⎢⎥θ=⎢⎥-θθ⎢⎥⎣⎦Rot Z cos sin 00sin cos 00(,)00100001θ-θ⎡⎤⎢⎥θθ⎢⎥θ=⎢⎥⎢⎥⎣⎦c s s c T 111101000000100001-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦c s l s c T 221122200000100001⎡⎤-⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦l T 223100010000100001⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦通过速度传递关系计算雅可比矩阵(例2/9)c s R s c 121203121200001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Rot X 10000cos sin 0(,)0sin cos 00001⎡⎤⎢⎥θ-θ⎢⎥θ=⎢⎥θθ⎢⎥⎣⎦Rot Y cos 0sin 00100(,)sin 0cos 00001θθ⎡⎤⎢⎥⎢⎥θ=⎢⎥-θθ⎢⎥⎣⎦Rot Z cos sin 00sin cos 00(,)00100001θ-θ⎡⎤⎢⎥θθ⎢⎥θ=⎢⎥⎢⎥⎣⎦通过速度传递关系计算雅可比矩阵(续3/9)111111ωR ωθZ i i i i i i i i i ++++++=+ ()1111v R v ωP i i i i i i i i i i ++++=+⨯11001∙⎡⎤⎢⎥⎢⎥ω=⎢⎥⎢⎥⎢⎥⎣⎦θv 11000⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦通过速度传递关系计算雅可比矩阵(续4/9)1221211221122122222112122122212222222210000100000000001112T R Z R Z c s R Z s c Z c s s c ∙∙-∙∙∙∙⎡⎤ω=ω+=ω+⎣⎦⎡⎤⎢⎥⎡⎤=ω+=-ω+⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦∙∙⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦θθθθθθ+θθ通过速度传递关系计算雅可比矩阵(续5/9)()()()12211111111111211122112211212212222221000000000010010000101T v R v P R v P R v P l s c s l c s s c s c l -∙∙⎡⎤⎡⎤=+ω⨯=+ω⨯=+ω⨯⎣⎦⎣⎦⎛⎫⎡⎤⎡⎤ ⎪⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-+⨯=-= ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭θθ212110l c ∙∙⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦θθ通过速度传递关系计算雅可比矩阵(续6/9)111111ωR ωθZ i i i i i i i i i ++++++=+ ()1111v R v ωP i i i i i i i i i i ++++=+⨯通过速度传递关系计算雅可比矩阵(续7/9)()()()T v R v P R v P R v P l s c s l c s s c l c s c 13322222222222322233223322312332333312331000000010010001012-∙∙∙∙⎡⎤⎡⎤=+ω⨯=+ω⨯=+ω⨯=⎣⎦⎣⎦⎛⎫⎡⎤ ⎪⎡⎤⎢⎥ ⎪⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-+⨯=- ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ⎪⎢⎥⎢⎥+⎣⎦ ⎪⎢⎥⎣⎦⎝⎭θθθθl s l s l c l l c l 121212212211100()010()11211200100∙∙∙∙∙∙∙∙⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦θθθθθθθθT R Z R Z R Z c s c s s c Z s c 133232232233223323323333333323332333331200000000000010011123∙∙∙-∙∙∙∙⎡⎤⎡⎤ω=ω+=ω+=ω+=⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-ω+=-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∙∙∙+⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦θθθθθθθ++θθθ通过速度传递关系计算雅可比矩阵(续8/9)3300123⎡⎤⎢⎥⎢⎥⎢⎥ω=⎢⎥⎢⎥∙∙∙⎢⎥⎢⎥⎣⎦++θθθl s v l c l 12331221()1120∙∙∙∙⎡⎤⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦θθθθl s l c l l v 121222300010020011∙∙⎡⎤⎢⎥+⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦θθl s v l c l l 1231222012∙∙⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥+⎣⎦⎢⎥⎢⎥⎣⎦θθc s R s c 121203121200001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦l s J l c l l 12312220⎡⎤=⎢⎥+⎣⎦通过速度传递关系计算雅可比矩阵(续9/9)c s l s l s c l s c l s l s J s c l c l l l s s l c c l c l c l s l s l s l c l c l c 121212121211222122120121212221122121221221211212212112122120----⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦⎣⎦---⎡⎤=⎢⎥+⎣⎦l s l s l s J l c l c l c 11212212011212212---⎡⎤=⎢⎥+⎣⎦矢量积法对于移动关节,雅克比矩阵的第 i 列计算如下:雅可比矩阵的第i 列对应第i 关节引起的末端速度和角速度。

雅克比矩阵(Jacobi).

雅可比矩阵(Jacobi方法)Jacobi 方法Jacobi方法是求对称矩阵的全部特征值以及相应的特征向量的一种方法,它是基于以下两个结论1) 任何实对称矩阵A可以通过正交相似变换成对角型,即存在正交矩阵Q,使得Q T AQ = diag(λ1 ,λ2,…,λn) (3.1)其中λi(i=1,2,…,n)是A的特征值,Q中各列为相应的特征向量。

2) 在正交相似变换下,矩阵元素的平方和不变。

即设A=(aij )n×n,Q交矩阵,记B=Q T AQ=(bij )n×n, 则Jacobi方法的基本思想是通过一次正交变换,将A中的一对非零的非对角化成零并且使得非对角元素的平方和减小。

反复进行上述过程,使变换后的矩阵的非对角元素的平方和趋于零,从而使该矩阵近似为对角矩阵,得到全部特征值和特征向量。

1 矩阵的旋转变换设A为n阶实对称矩阵,考虑矩阵易见 Vij(φ)是正交矩阵, 记注意到B=VijA的第i,j行元素以及的第i,j列元素为可得≠0,取φ使得则有如果aij对A(1)重复上述的过程,可得A(2) ,这样继续下去, 得到一个矩阵序列{A(k) }。

可以证明,虽然这种变换不一定能使矩阵中非对角元素零元素的个数单调增加,但可以保证非对角元素的平方和递减,我们以A与A(1)为例进行讨论。

设由式(3.4)可得这表明,在上述旋转变换下,非对角元素的平方和严格单调递减,因而由(3.2)可知,对角元素的平方和单调增加。

2. Jacobi方法通过一系列旋转变换将A变成A(k+1) ,求得A的全部特征值与特征向量的方法称为Jacobi方法。

计算过程如下1)令k=0, A(k) =A2) 求整数i,j, 使得3) 计算旋转矩阵4) 计算A(k+1)5) 计算6) 若E(A(k+1))<ε, 则为特征值,Q T = (V(0) V(1)…V(k+1))T的各列为相应的特征向量;否则,k+1=>k返回2,重复上述过程。

雅可比矩阵

v d 1 d x lim D lim xDt w Dt 0 Dt Dt 0 D lim J (q)qDt J (q)dq
Dt 0
J11 J 21 v J 31 w J 41 J 51 J 61
教材例题2.1:逆雅可比矩阵的示例: 例2.1 如图2.2所示的二自由度机械手,手部沿固定坐标系X0轴正 向以1.0 m/s的速度移动,杆长l1=l2=0.5 m。设在某瞬时θ1=30°, θ2=60°,求相应瞬时的关节速度。
解 由式(2.6)知,二自由度机械手速度雅可比为
因此,逆雅可比为
2.1.3 机器人雅可比讨论 机器人的奇异形位分为两类: (1) 边界奇异形位:当机器人臂全部伸展开或全部折 回时,使手部处于机器人工作空间的边界上或边界附 近,出现逆雅可比奇异,机器人运动受到物理结构的 约束。这时相应的机器人形位叫做边界奇异形位。 (2) 内部奇异形位:两个或两个以上关节轴线重合时, 机器人各关节运动相互抵消,不产生操作运动。这时 相应的机器人形位叫做内部奇异形位。
对力雅可比矩阵的补充说明:
虚功方程力雅可比分析:
2.2.3 机器人静力计算
机器人操作臂静力计算可分为两类问题: (1) 已知外界环境对机器人手部的作用力F,(即手部端点力 F-F′),利用式(2.20)求相应的满足静力平衡条件的关节驱动力 矩τ。 (2) 已知关节驱动力矩τ,确定机器人手部对外界环境的作用 力或负载的 质量。 第二类问题是第一类问题的逆解。逆解的关系式为
或写成
根据虚位移原理,机器人处于平衡状态的充分必要条件是对任意 符合几何约束的虚位移有δW=0,并注意到虚位移δq和δX之间符合 杆件的几何约束条件。利用式δX=Jδq,将式(2.18)写成

雅可比矩阵积分

雅可比矩阵积分
雅可比矩阵是由一阶偏导数组成的矩阵,它描述了一个向量-值函数的偏导数。

雅可比矩阵在微积分中有广泛的应用,如求解偏微分方程、最优化问题以及机器学习中的梯度下降等。

雅可比矩阵积分指的是根据雅可比矩阵计算向量函数的积分。

假设有一个向量函数f(t),其中t是一个独立变量,f(t)的每个分量都是关于t的函数。

若要计算f(t)的积分,可以通过计算雅可比矩阵来实现。

具体方法是将向量函数f(t)的每个分量视为一个单独的函数,然后计算每个分量函数的积分。

雅可比矩阵的每个元素都是相应分量函数的偏导数,因此可以用这些偏导数替代每个分量函数。

例如,对于一个二维向量函数f(t)=[f1(t), f2(t)],可以计算它的雅可比矩阵J(t)=[df1/dt, df2/dt]。

然后,可以将J(t)的每个元素替代f(t)的相应分量函数,得到一个新的向量函数J(t)=[df1/dt, df2/dt]。

接下来,可以对J(t)进行积分,得到f(t)的积分。

需要注意的是,雅可比矩阵积分的结果通常是一个向量函数的不定积分,即函数中包含积分常数。

为了得到确定的结果,需要提供适当的初始条件或边界条件。

总之,雅可比矩阵积分是根据雅可比矩阵来计算向量函数的积分,可以利用雅可比矩阵的偏导数计算每个分量函数的积分,并在需要时添加适当的初始条件或边界条件来确定结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刚体或坐标系的微分运动包括微分移动矢量d 和微分转动矢量 δ 。前者由沿三个坐标轴的微分 移动组成,后者由绕三个坐标轴的微分转动组成, 即
d d i dj d k 或 x y z
T d [ d d d ] x y z
i k 或 x yj z
T [ ] x y z
相应的,广义速度V的坐标变换为:
T T T R RS (P ) T T R 0
任意两坐标系A和B之间广义速度的坐标变换为:
R RS ( P) B A R 0
1
▲雅可比矩阵的定义
▲微分运动与广义速度
▲雅可比矩阵的构造法
▲PUMA560机器人的雅可比矩阵
▲逆雅可比矩阵
▲力雅可比矩阵
上一章我们讨论了刚体的位姿描述、齐 次变换,机器人各连杆间的位移关系,建立 了机器人的运动学方程,研究了运动学逆解, 建立了操作空间与关节空间的映射关系。 本章将在位移分析的基础上,进行速度分 析,研究操作空间速度与关节空间速度之间 的线性映射关系——雅可比矩阵(简称雅可比)。 雅可比矩阵不仅用来表示操作空间与关节空 间之间的速度线性映射关系,同时也用来表 示两空间之间力的传递关系。
(位姿)矢量P可写成:
x(q1, ,q n ) y (q , ,q ) 1 n z(q1, ,q n ) P x (q1, , q n ) (q , , q ) n y 1 z ( q 1 , , q n )
上式对时间求导,有:
B B A B T A A B O B A A
q2 z q2
y qn x qn y qn z q n x qn
为手爪相对基坐标的广义速度向量的变换矩阵。在 三维空间运行的机器人,其J阵的行数恒为6(沿/绕
在机器人学中,J是一个把关节速度向量 q 变换 i
刚体或坐标系的微分运动矢量
d D
刚体或坐标系的广义速度
1 d V lim t 0 t
T dx n T x dy ox T dz ax T 0 x T y 0 T 0 z
d P V P T q 4-5 dt q
对照式4-3和式4-5,可知:
P J t q x q1 y q1 x q1
y
x q2 y q2 x q2
y
q1 z q1
以直接微分求得,但不可能找到方位向量 T (x ,y , ) 的一般表达式。找不出互相独立的、无顺序 z 的三个转角来描述方位.绕直角坐标轴的连续角运
动变换是不可交换的,而对角位移的微分与对角位
移的形成顺序无关,故一般不能运用直接微分法来
获得J的后三行。因此,常用构造性方法求雅可比J。
4.2 微分运动与广义速度
式中, v为线速度,ω 为角速度分量。
从关节空间速度向操作空间速度映射的
线性关系称为雅可比矩阵,记为J,即:
x y z
x y z
q 1 q 2 J q n
4-3
在数学上,机器人终端手抓的广义位置
S(P)矩阵具有以下性质:
S ( P ) P ,
T
p py 0 px . px 0
S ( PP ) . S ( P ) ( P ) , S ( P ) ( P )
T T
T
( P n ) P n )y ( P n ) x ( z T RSP ( ) ( P o ) ( P o ) ( P o ) x y z ( P a ) P a )y ( P a ) x ( z
d d R RS (P ) T T 0 R
T T T
其中,R是旋转矩阵
nx R ny nz
0 S (P) pz py
ox oy oz
ax ay . az
S(P)为矢量P的反对称矩阵
4.1 雅可比矩阵的定义
把机器人关节速度向量
q i 定义为:
q [ qq 1 2
速度或线速度。
q ]
T n
i = 1 ,2 , . . . ,n )为连杆i相对i-1的角 式中, q i(
手抓在基坐标系中的广义速度向量为:
T V [ xyz ] x y z
简写为:
ny oy ay 0 0 0
nz oz az 0 0 0
(Pn)x (Pn)y (Po)x (Po)y (Pa)x (Pa)y nx ny ox ax oy ay
(Pn)z dx d (Po)z y (Pa)z dz nz x oz y az z
基坐标系的变量共6个);列数则为机械手含有的关 节数目。
对于平面运动的机器人来说,手的广义位置向量
T 均容易确定,可采用直接微分法求 J,比完全适用。从
三维空间运行的机器人运动学方程,可以获得直角
T 坐标位置向量 ( x , y ,的显式方程,因此, J的前三行可 z)
相关文档
最新文档