九年级数学全一册检测卷新版新人教版附答案
最新人教版九年级数学单元测试题全册含答案

最新人教版九年级数学单元测试题全册含
答案
本文档包含了最新人教版九年级数学单元测试题全册以及相关的答案。
这些测试题可以帮助学生复和巩固数学知识,并检验他们在各个单元中的研究情况。
本文档的目的是为教师和学生提供一个方便的资源,以便他们能够更好地准备和应对数学单元测试。
通过解答这些测试题,学生可以了解自己对各个知识点的掌握程度,并及时进行补充研究。
测试题的答案部分会帮助学生核对自己的答案,并了解正确的解题方法。
这有助于他们纠正错误、提高解题能力,并在考试中取得更好的成绩。
本文档中的测试题均按照最新的人教版九年级数学教材编写,并尽量简洁明了。
题目类型多样,涵盖了各个数学知识点,包括代数、几何、概率等。
每个单元的测试题都相对独立,可根据需要选择和使用。
请注意,本文档中的内容均经过审核,并按照最新的教学要求编写。
然而,由于教材更新和不同教育机构之间的差异,建议在使用前先与教师核对,以确保测试题的适用性。
希望这份文档能对教师和学生在九年级数学研究中有所帮助。
祝大家学业进步,取得优异成绩!
*注意:本文档中的测试题和答案仅供参考,请勿用于非法用途。
作者和提供者不承担任何因使用本文档而产生的法律责任。
*。
人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。
2024年人教版九年级全一册数学第二十四章综合训练试卷及答案

第二十四章综合训练一、选择题1.在矩形ABCD中,AB=8,BC=3√5,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A.点B,C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B,C均在圆P内2.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A.22.5°B.30°C.45°D.60°3.如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的☉O交AB于点D,E是☉O上一点,且CE⏜=CD⏜,连接OE,过点E作EF⊥OE,交AC的延长线于点F,则∠F等于()A.92°B.108°C.112°D.124°4.如图,CD为圆O的直径,弦AB⊥CD,垂足为M,若AB=12,OM∶MD=5∶8,则圆O的周长为()A.26πB.13πC.96π5D.39√10π55.如图,从一块直径为2 m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.π2 m2 B.√32π m2 C.π m2 D.2π m26.如图,在平面直角坐标系中,点P在第一象限,☉P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若☉P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)7.如图,点P是等边三角形ABC外接圆☉O上的点,在下列判断中,不正确的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形8.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB,AC于点E,D,DF是圆O的切线,过点F 作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4B.3√3C.6D.2√3二、填空题⏜的长为2π,则∠ACB的大小是.9.如图,点A,B,C在半径为9的☉O上,AB10.如图,点A,B,C在☉O上,CD⊥OA,CE⊥OB,垂足分别为D,E,若∠DCE=40°,则∠ACB的度数为.11.如图,在☉O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=°.12.如图,AB为☉O的直径,C为☉O外一点,过点C作☉O的切线,切点为B,连接AC交☉O于点D,∠C=38°.点E在AB右侧的半圆周上运动(不与A,B重合),则∠AED的度数为.13.如图,AB,AC分别是☉O的直径和弦,OD⊥AC,垂足为D,连接BD,BC,AB=5,AC=4,则BD=.三、解答题14.在同一平面直角坐标系中有5个点:A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(0,-3).(1)画出△ABC的外接圆☉P,并指出点D与☉P的位置关系;(2)若直线l经过点D(-2,-2),E(0,-3),判断直线l与☉P的位置关系.15.已知BC是☉O的直径,点D是BC延长线上一点,AB=AD,AE是☉O的弦,∠AEC=30°.(1)求证:直线AD是☉O的切线;(2)若AE⊥BC,垂足为点M,☉O的半径为4,求AE的长.16.如图,已知在☉O中,AB=4√3,AC是☉O的直径,AC⊥BD,垂足为F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.17.如图,已知△ABC内接于☉O,AB是☉O的直径,☉O的切线PC交BA的延长线于点P,OF∥BC,OF 交AC于点E,交PC于点F,连接AF.(1)判断AF与☉O的位置关系并说明理由;(2)若☉O的半径为4,AF=3,求AC的长.第二十四章综合训练一、选择题1.C2.C3.C∵∠ACB=90°,∠A=56°,∴∠B=34°.在☉O中,∵CE⏜=CD⏜,∴∠COE=2∠B=68°,∴∠F=112°,故选C.4.B连接OA,设OM=5x,MD=8x,则OA=OD=13x.又AB=12,由垂径定理可得AM=6,∴在Rt△AOM中,(5x)2+62=(13x)2,解得x=12,∴半径r=OA=132.根据圆周长公式C=2πr,得圆O的周长为13π.5.A如图,连接AC,∵从一块直径为2 m的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°, ∴AC为直径,即AC=2 m,AB=BC.∵AB2+BC2=22,∴AB=BC=√2(m).∴阴影部分的面积是90π×(√2)2360=π2(m2).故选A.6.A7.C 对于选项A,当弦PB 最长时,PB 是☉O 的直径,O 既是等边三角形ABC 的内心,也是外心,所以∠ABP=∠CBP ,根据圆周角性质,PA⏜=PC ⏜,所以PA=PC ;对于选项B,当△APC 是等腰三角形时,点P 是AC⏜的中点或与点B 重合,由垂径定理,都可以得到PO ⊥AC ;对于选项C,当PO ⊥AC 时,由点P 是AC⏜的中点或与点B 重合,易得∠ACP=30°或∠ACP=60°;对于选项D,当∠ACP=30°时,分两种情况,点P 是AC⏜或AB ⏜的中点,都可以得到△BPC 是直角三角形. 8.B 连接OD ,因为DF 为圆O 的切线,所以OD ⊥DF.因为△ABC 为等边三角形,所以AB=BC=AC ,∠A=∠B=∠C=60°. 因为OD=OC ,所以△OCD 为等边三角形. 所以OD ∥AB.所以DF ⊥AB. 又O 为BC 的中点, 所以D 为AC 的中点.在Rt △AFD 中,∠ADF=30°,AF=2,所以AD=4,即AC=8. 所以FB=AB-AF=8-2=6. 在Rt △BFG 中,∠BFG=30°,所以BG=3,则根据勾股定理得FG=3√3,故选B .二、填空题9.20° 连接OA ,OB.设∠AOB=n °.∵AB ⏜的长为2π,∴nπ×9180=2π.∴n=40,∴∠AOB=40°. ∴∠ACB=12∠AOB=20°.10.110°11.215 在圆内接四边形ABCD 中,∠B+∠ADC=180°,∠B=180°-∠ADC.在圆内接四边形ACDE 中,∠E+∠ACD=180°,∠E=180°-∠ACD ,故∠B+∠E=180°-∠ADC+180°-∠ACD=180°+(180°-∠ADC-∠ACD )=180°+∠CAD=180°+35°=215°.12.38°如图,连接BE,则直径AB所对的圆周角∠AEB=90°.由BC是☉O的切线得∠ABC=90°,∠BAC=90°-∠C=90°-38°=52°.因为∠BAC=∠BED=52°,所以∠AED=∠AEB-∠BED=90°-52°=38°.13.√13由垂径定理,得CD=2,由AB是☉O的直径,得∠C=90°.由勾股定理,得BC=3,在Rt△BCD中,由勾股定理得BD=√13.三、解答题14.解(1)所画☉P如图所示.由图可知,☉P的半径为√5.连接PD,∵PD=√12+22=√5,∴点D在☉P上.(2)直线l与☉P相切.理由如下:连接PE.因为直线l过点D(-2,-2),E(0,-3),所以PE2=12+32=10,PD2=5,DE2=5,所以PE2=PD2+DE2.所以△PDE是直角三角形,且∠PDE=90°.所以PD⊥l.故直线l与☉P相切.15.(1)证明连接OA,∵∠AEC=30°,∴∠ABC=30°.∵AB=AD,∴∠D=∠ABC=30°.∴∠BAD=120°.∴OA=OB,∴∠OAB=∠ABC=30°.∴∠OAD=∠BAD-∠OAB=90°.∴OA⊥AD.∵点A在☉O上,∴直线AD是☉O的切线.(2)解 ∵∠AEC=30°,∴∠AOC=60°. ∵BC ⊥AE 于点M , ∴AE=2AM ,∠OMA=90°.在Rt △AOM 中,OM=2,AM=2√3,∴AE=2AM=4√3.16.解 (1)在Rt △ABF 中,∠A=30°,则BF=12AB=2√3,于是AF=√(4√3)2-(2√3)2=6.在Rt △BOF 中,OB 2=OF 2+BF 2=(AF-OA )2+BF 2, 又OB=OA ,∴OA 2=(6-OA )2+(2√3)2.∴OA=4.∵∠BAO=30°, ∴∠BOF=2∠BAO=60°.又OB=OD ,OC ⊥BD ,∴∠BOD=2∠BOF=120°.∴S 阴影=120π×42360=16π3. (2)设圆锥的底面圆的半径为r ,则2πr=120×4π180,解得r=43.17.解 (1)AF 是☉O 的切线.理由如下:连接OC ,∵AB 是☉O 的直径,∴∠BCA=90°.∵OF ∥BC ,∴∠AEO=90°,即OF ⊥AC.∵OC=OA ,∴∠COF=∠AOF , ∴△OCF ≌△OAF. ∴∠OAF=∠OCF=90°, ∴FA ⊥OA ,即AF 是☉O 的切线.(2)∵☉O 的半径为4,AF=3,FA ⊥OA ,∴OF=√AF 2+OA 2=√32+42=5.∵FA ⊥OA ,OF ⊥AC ,∴AF ·OA=OF ·EA , ∴3×4=5EA ,解得AE=125,AC=2AE=245.。
人教版数学九年级上、下册综合达标测试卷(含答案)

人教版数学九年级上、下册综合达标测试卷(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt△ABC中,∠C=90°,AC=3,BC=4,则tan A的值为()A.34B.43C.35D.452.(2021·泰州)如图所示几何体的左视图是()A B C D 第2题图3.一个不透明的袋子里装有黄、红两种颜色的小球,摇匀后每次随机从袋中摸出1个小球,记录下颜色后放回袋中.通过多次试验后,发现摸到红球的频率稳定在0.4,则摸到黄球的概率约为()A.0.2 B.0.4 C.0.6 D.0.84.如图,将△OAB绕点O顺时针旋转40°得到△OCD,则∠BOD的度数是()A.33°B.35°C.40°D.45°第4题图第5题图第6题图5.如图,四边形ABCD为⊙O的内接四边形.若四边形OBCD是菱形,则∠BAD的度数为()A.45°B.60°C.72°D.36°6. (2021·朝阳)如图,O是坐标原点,点B在x轴上,在△OAB中,AO=AB=5,OB=6,点A在反比例函数y=kx(k≠0)图象上,则k的值()A.﹣12B.﹣15C.﹣20D.﹣307.若关于x的方程kx2+2x+1=0有实数根,则实数k的取值范围是()A.k≠0B.k≤1C.k≥1D.k≤1且k≠08.(2021·深圳)二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A B C D9.《几何原本》里有一个图形:在△ABC 中,D ,E 是边AB 上的两点(AD <AE ),且满足AD =BE .过点D ,E 分别作BC 的平行线,过点D 作AC 的平行线,将△ABC 分成如图的5个部分,其面积依次记为S 1,S 2,S 3,S 4,S 5.若S 2=18,S 3=6,则S 4的值为( ) A .9B .18C .27D .54第9题图 第10题图10.如图,已知抛物线y =-x 2+px+q 的对称轴为直线x =-3,过其顶点M 的一条直线y =kx+b 与该抛物线的另一个交点为N (-1,1).若要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( ) A .(0,2) B .4,03⎛⎫- ⎪⎝⎭ C .(0,2)或4,03⎛⎫- ⎪⎝⎭D .以上都不正确 二、填空题(本大题共6小题,每小题3分,共18分)11.已知∠A 是锐角,且1-2sin A=0,则∠A 的度数为 . 12.若m 是方程x 2-3x+1=0的一个根,则3m 2-9m-2021的值为 .13.(2021·阜新)如图,在6×8的正方形网格中,每个小正方形的边长均为1,点A ,B ,D ,E 均在网格的交点上,则△ABC 与△CDE 的周长比为 .第13题图 第14题图 第16题图14.如图,AB 是⊙O 的直径,半径OA 的垂直平分线交⊙O 于C ,D 两点.若∠C=30°,CD=23,则图中阴影部分的面积是 .15.已知抛物线y =ax 2+2ax+c 经过点A (3,m ),B (-2,n ),且函数y 有最大值,则m ,n 的大小关系为 . 16.(2021·抚顺)如图,在△ABC 和△DEC 中,∠ACB =∠DCE =90°,∠BAC =∠EDC =60°,AC =2 cm ,DC =1 cm .下列结论:①△ACD ∽△BCE ;②AD ⊥BE ;③∠CBE+∠DAE =45°;④在△CDE 绕点C 旋转的过程中,△ABD 面积的最大值为(23+2)cm 2.其中正确的是 .(填序号)三、解答题(本大题共8小题,共72分) 17.(每小题4分,共8分)(1)计算:4sin 45°-2tan 30°cos 30°+cos 45cos 60︒︒; (2)解方程:x 2-4x-5=0.18.(8分) (2021·黑龙江)在正方形网格中,每个小正方形的边长均为1,建立平面直角坐标系xOy ,△ABC 的位置如图所示.(1)在图中以点C 为位似中心,将△ABC 放大至原来的2倍,得到位似图形△A 1B 1C ,作出△A 1B 1C 并写出点A 1的坐标;(2)作出△ABC 绕点C 逆时针旋转90°后的图形△A 2B 2C ; (3)在(2)的条件下,求点B 所经过的路径长.第18题图 第19题图19.(8分)(2021·重庆)在如图所示的电路图中,有四个断开的开关A ,B ,C ,D 和一个灯泡L . (1)若任意闭合其中一个开关,则灯泡L 发亮的概率为 ; (2)若任意闭合其中两个开关,请用列表法求灯泡L 发亮的概率.20.(8分)(2021·枣庄)2020年7月23日,我国首次火星探测“天问一号”探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面O 处发射,当火箭到达A 处时,地面D 处的雷达站测得AD =4000米,仰角为30°,经过3秒后,火箭直线上升到达B 处,此时地面C 处的雷达站测得B 处的仰角为45°.已知点O ,C ,D 在同一条直线上,C ,D 两处相距460米,求火箭从A处到B 处的平均速度.(结果精确到1米/ 1.732 1.414)第20题图 第22题图 第23题图21.(2021·辽阳)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个. (1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?22.(10分)(2021·湘潭)如图,点A(a,2)在反比例函数y=4x的图象上,AB∥x轴,且交y轴于点C,交反比例函数y=kx于点B,已知AC=2BC.(1)求直线OA的解析式;(2)求反比例函数y=kx的解析式;(3)D为反比例函数y=kx上一动点,连接AD交y轴于点E,当E为AD的中点时,求△OAD的面积.23.(10分)(2021·柳州)如图,在四边形ABCD中,AD∥BC,AD⊥AB,AD=AB=1,,以点A 为圆心,AD长为半径作圆,延长CD交⊙A于点F,延长DA交⊙A于点E,连接BF,交DE于点G.(1)求证:BC为⊙A的切线;(2)求cos ∠EDF的值;(3)求线段BG的长.24.(12分)(2021·黔东南州)如图,抛物线y=ax2-2x+c(a≠0)与x轴交于点A,B(3,0),与y轴交于点C(0,-3),抛物线的顶点为D.(1)求抛物线的解析式;(2)已知点P在抛物线的对称轴上,点Q在x轴上,若以P,Q,B,C为顶点,BC为边的四边形是平行四边形,求点P,Q的坐标;(3)已知M是x轴上的动点,过点M作x轴的垂线交抛物线于点G,是否存在这样的点M,使得以点A,M,G为顶点的三角形与△BCD相似?若存在,求点M的坐标;若不存在,请说明理由.第24题图人教版数学九年级上、下册综合达标测试卷参考答案一、1.B 2.C 3.C 4.C 5.B 6.A 7.D 8.A 9.C 10.A二、11.30°12.-2024 13.2∶1 14.2π315.m<n 16.①②④三、17.(1)1.(2)x1=5,x2=-1.18. 解:(1)如图,△A1B1C即为所求作,点A1的坐标为(3,-3).(2)如图,△A2B2C即为所求作.第18题图(3)因为CB B .19.解:(1)14(2)列表如下:由表格知,任意闭合两个开关,所有机会均等的结果共有12种,其中能使灯泡L 发亮的结果有6种,所以P (灯泡L 发亮)=612=12. 20.解:由题意,知AD =4000,CD =460,∠ADO =30°,∠BCO =45°.在Rt △AOD 中,OA =12AD =2000,OD =AD·cos 30°=在Rt △BOC 中,OB =OC =OD-CD =.所以AB =OB-OA =2000≈1004. 所以1004÷3≈335(米/秒).答:火箭从A 处到B 处的平均速度约为335米/秒. 21. 解:(1)根据题意,得y=100-2(x-60)=-2x+220.(2)根据题意,得(-2x+220)(x-40)=2400,解得x1=70,x2=80. 答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元. (3)设该网店每星期的销售利润为w 元.根据题意,得w=(-2x+220)(x-40)=-2x2+300x-8800=-2(x-75)2+2450. 当x=75时,w 有最大值,最大值为2450.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元. 22.解:(1)将A (a ,2)代入y =4x,解得a =2.所以A (2,2). 设直线OA 的解析式为y =mx ,将A (2,2)代入,解得m =1.所以直线OA 的解析式为y =x. (2)由(1)可得AC =2.因为AC =2BC ,AB ∥x 轴,所以B (﹣1,2). 将B (﹣1,2)代入y =k x ,解得k =﹣2.所以反比例函数y =k x 的解析式为y =﹣2x. (3)因为A (2,2),E 为AD 的中点,点E 在y 轴上,所以x D =-2. 将x D =-2代入y =﹣2x ,解得y D =1.所以D (﹣2,1).所以E 302⎛⎫ ⎪⎝⎭,. 所以S △OAD =S △AOE +S △DOE =12×32×2+12×32×2=3. 23.(1)证明:因为AD ⊥AB ,所以∠BAD =90°.因为AD ∥BC ,所以∠ABC =180°﹣∠BAD =90°,即AB ⊥BC . 因为AB =AD ,即AB 为⊙A 的半径,所以BC 为⊙A 的切线.(2)解:过点D 作DH ⊥BC 于点H ,则∠DHB =∠ABH =∠BAD =90°.所以四边形ABHD 是矩形. 又因为AB =AD =1,所以矩形ABHD 是正方形.所以BH =DH =AB =1.在Rt △DHC 中,,由勾股定理,得,所以cos C=CH CD ==因为AD ∥BC ,所以∠EDF =∠C .所以cos ∠EDF =. (3)解:连接EF .因为DE 是⊙A 的直径,所以∠EFD =90°.在Rt △EFD 中,DE =2AD =2,所以DF =DE·cos ∠EDF .所以CF ==因为AD ∥BC ,所以△DFG ∽△CFB .所以DF DGCF CB =,12DG =+.所以DG=43.所以AG =DG ﹣AD=13.在Rt △BAG 中,. 24.解:(1)将点B (3,0),C (0,-3)分别代入y =ax 2-2x+c ,得92303a c c -⨯+=⎧⎨=-⎩,,解得13.a c =⎧⎨=-⎩,所以抛物线的解析式为y =x 2-2x-3.(2)由抛物线的解析式,知其对称轴为直线x =1. 设P (1,b ),Q (x ,0).当以点P ,Q ,B ,C 为顶点,BC 为边的四边形是平行四边形时,点C 向右平移3个单位,向上平移3个单位得到点B ,同样P (Q )向右平移3个单位,向上平移3个单位可得到点Q (P ). 所以1+3,30x b =⎧⎨+=⎩或+31,03.x b =⎧⎨+=⎩解得34b x =-⎧⎨=⎩,或32.b x =⎧⎨=-⎩,所以点P ,Q 的坐标分别为(1,-3),(4,0)或(1,3),(-2,0). (3)在y =x 2-2x-3中,令y =0,解得x 1=-1,x 2=3.所以A (-1,0). 因为y =x 2-2x-3=(x-1)2-4,所以顶点D (1,-4).因为B (3,0),C (0,-3),所以BD 2=20,CD 2=2,BC 2=18.所以BD 2=CD 2+BC 2.所以△BCD 是直角三角形,且∠BCD =90°.由题意,知∠AMG =∠BCD =90°,所以要使以点A ,M ,G 为顶点的三角形与△BCD 相似,需满足的条件为AM MG BC CD =或AM MGCD BC=. 设M (m ,0),则G (m ,m 2-2m-3). ①当m <-12=,解得83m =或m =-1;2=,解得m =0或m =-1.均不符合m <-1,所以舍去;②当-1<m≤3223m m ---=,解得83m =或m =-1(舍去);223m m ---=m =0或m =-1(舍去).所以M 8,03⎛⎫⎪⎝⎭或M (0,0);③当m >32103m =或m =-1(舍去); 2m =6,m =-1(舍去).所以M 10,03⎛⎫ ⎪⎝⎭或M (6,0). 综上,存在点M 使得以点A ,M ,G 为顶点的三角形与△BCD 相似,点M 的坐标为(0,0),8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫ ⎪⎝⎭或(6,0).。
人教版九年级下册数学全册测试卷含答案完整版

人教版九年级下册数学全册测试卷含答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】二次函数测试题一、填空题(每空2分,共32分)1.二次函数y=2x 2的顶点坐标是 ,对称轴是 .2.函数y=(x -2)2+1开口 ,顶点坐标为 ,当 时,y 随x 的增大而减小.3.若点(1,0),(3,0)是抛物线y=ax 2+bx+c 上的两点,则这条抛物线的对称轴是 .4.一个关于x 的二次函数,当x=-2时,有最小值-5,则这个二次函数图象开口一定 .5.二次函数y=3x 2-4x+1与x 轴交点坐标 ,当 时,y>0.6.已知二次函数y=x 2-mx+m -1,当m= 时,图象经过原点;当m= 时,图象顶点在y 轴上.7.正方形边长是2cm ,如果边长增加xcm ,面积就增大ycm 2,那么y 与x 的函数关系式是________________.8.函数y=2(x -3)2的图象,可以由抛物线y=2x 2向 平移 个单位得到.9.当m= 时,二次函数y=x 2-2x -m 有最小值5.10.若抛物线y=x 2-mx+m -2与x 轴的两个交点在原点两侧,则m 的取值范围是 .二、选择题(每小题3分,共30分)11.二次函数y=(x -3)(x+2)的图象的对称轴是( )=3 =-3 C. 12x =-D. 12x = 12.二次函数y=ax 2+bx+c 中,若a>0,b<0,c<0,则这个二次函数的顶点必在( )A.第一象限B.第二象限C.第三象限D.第四象限13.若抛物线y=+3x+m 与x 轴没有交点,则m 的取值范围是( )≤ ≥4.5 C.m> D.以上都不对14.二次函数y=ax 2+bx+c 的图如图所示,则下列结论不正确的是( )<0,b>0 -4ac<0 C.a -b+c<0 -b+c>015.函数是二次函数m x m y m +-=-22)2(,则它的图象( )A.开口向上,对称轴为y 轴B.开口向下,顶点在x 轴上方C.开口向上,与x 轴无交点D.开口向下,与x 轴无交点16.一学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是35321212++-=x x y ,则铅球落地水平距离为( ) 53B.3mC.10mD.12m (第14题)17.抛物线y=ax 2+bx+c 与y 轴交于A 点,与x 轴的正半轴交于B 、C 两点,且BC=2,S ΔABC =4,则c 的值( )A.-5 或-4 C.4 D.-418.二次函数y=ax 2+bx+c 的图象如图所示,则此函数解析式为( )=-x 2+2x+3 =x 2-2x -3 C.y=-x 2-2x+3 = -x 2-2x -319.函数y=ax 2+bx+c 和y=ax+b 在同一坐标系中大致图象是( )20.若把抛物线y=x 2+bx+c 向左平移2个单位,再向上平移3个单位,得到抛物线y=x 2,则( )=-2,c=3 =2,c=-3 C.b=-4,c=1 =4,c=7三、计算题(共38分)21.已知抛物线y=ax 2+bx+c 与x 轴交点的横坐标分别为-1,2,且抛物线经过点(3,8),求这条抛物线的解析式。
2024年人教版九年级全一册数学第二十一章综合训练试卷及答案

第二十一章综合训练一、选择题1.如果x=4是关于x 的一元二次方程x 2-3x=a 2的一个根,那么常数a 的值是( )A.2B.-2C.±2D.±42.一元二次方程(x-1)2=2的解是( )A.x 1=-1-√2,x 2=-1+√2B.x 1=1-√2,x 2=1+√2C.x 1=3,x 2=-1D.x 1=1,x 2=-33.用配方法解方程x 2+2x-1=0时,配方结果正确的是( )A.(x+2)2=2B.(x+1)2=2C.(x+2)2=3D.(x+1)2=34.一种药品原价25元每盒,经过两次降价后16元每盒.设两次降价的百分率都为x ,则x 满足( )A.16(1+2x )=25B.25(1-2x )=16C.16(1+x )2=25D.25(1-x )2=165.下列选项中,能使关于x 的一元二次方程ax 2-4x+c=0一定有实数根的是( )A.a>0B.a=0C.c>0D.c=06.关于x 的一元二次方程x 2-mx+2m-1=0的两个实数根分别是x 1,x 2,且x 12+x 22=7,则(x 1-x 2)2的值是( )A.1B.12C.13D.257.在正数范围内定义一种新运算“*”,其运算规则是a*b=2(a+b )-3ab ,根据这个规则,方程x*(x+1)=0的解是( )A.x=23B.x=1C.x=-23或x=1D.x=23或x=-1 8.定义:如果关于x 的一元二次方程ax 2+bx+c=0(a ≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx+c=0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A.a=cB.a=bC.b=cD.a=b=c二、填空题9.若关于x 的一元二次方程x 2+2x+c=0有两个相等的实数根,则实数c 的值为 .10.若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一个符合题意的一元二次方程 .11.如图,一农户要建一个矩形鸡舍,鸡舍的一边利用长为12 m 的住房墙,另外三边用25 m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门.当所围矩形鸡舍的长为 m 、宽为 m 时,鸡舍面积为80 m 2.12.已知关于x 的一元二次方程x 2-4mx+3m 2=0(m>0)的一个根比另一个根大2,则m 的值为 .13.对于实数a ,b ,定义运算“*”:a*b={a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是关于x 的一元二次方程x 2-5x+6=0的两个根,则x 1*x 2= .三、解答题14.请选择适当的方法解方程.(1)(x-1)2=3;(2)x 2-3x+1=0.15.已知关于x 的一元二次方程x 2-3x-k=0有两个不相等的实数根.(1)求k 的取值范围;(2)请选择一个k 的负整数值,并求出方程的根.16.某菜农种植的某蔬菜计划以5元/千克的价格对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.该菜农为了加快销售,减少损失,对价格经过两次下调后,以3.2元/千克的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到该菜农处购买5吨该蔬菜,因数量多,该菜农决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.17.已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.第二十一章综合训练一、选择题1.C 将x=4代入方程,得16-3×4=a 2,解得a=±2.2.B x-1=±√2,x=1±√2,即x 1=1-√2,x 2=1+√2.3.B4.D5.D 由题意,得Δ=(-4)2-4ac=16-4ac ≥0,且a ≠0,故ac ≤4,且a ≠0.显然,四个选项中只有c=0时,一定满足ac=0≤4.6.C7.C 根据题意,得x*(x+1)=2(x+x+1)-3x (x+1)=0,即3x 2-x-2=0,解得x 1=-23,x 2=1.8.A 因为方程有两个相等的实数根,所以b 2-4ac=0.又因为a+b+c=0,所以[-(a+c )]2-4ac=0,化简,得(a-c )2=0.所以a=c.二、填空题9.1 10.答案不唯一,如x 2-5x+6=0,x 2-7x+6=0等11.10 8 设矩形鸡舍垂直于住房墙的一边长为x m,则矩形鸡舍的另一边长为(26-2x )m,依题意,得x (26-2x )=80,解得x 1=5,x 2=8.当x=5时,26-2x=16>12(舍去);当x=8时,26-2x=10<12.故矩形鸡舍的长为10 m,宽为8 m .12.1 设方程的两根分别为t ,t+2,根据题意得t+t+2=4m ,t (t+2)=3m 2,把t=2m-1代入t (t+2)=3m 2,得(2m-1)(2m+1)=3m 2,整理得m 2-1=0,解得m=1或m=-1(舍去),所以m 的值为1.13.-3或3 x 2-5x+6=0的两个根为x 1=2,x 2=3或x 1=3,x 2=2.当x 1=2,x 2=3时,x 1*x 2=2×3-32=-3;当x 1=3,x 2=2时,x 1*x 2=32-2×3=3.三、解答题14.解 (1)∵(x-1)2=3,∴x-1=±√3,即x=1±√3. ∴x 1=1+√3,x 2=1-√3.(2)∵a=1,b=-3,c=1,∴Δ=b 2-4ac=(-3)2-4×1×1=5>0.∴x=3±√52.∴x 1=3+√52,x 2=3-√52. 15.解 (1)因为方程有两个不相等的实数根,所以(-3)2-4(-k )>0,即4k>-9,解得k>-94.(2)若k 是负整数,则k 只能为-1或-2.如果k=-1,那么原方程为x 2-3x+1=0,解得x 1=3+√52,x 2=3-√52.(如果k=-2,那么原方程为x2-3x+2=0,解得x1=1,x2=2.)16.解(1)设平均每次下调的百分率为x.由题意,得5(1-x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为3.2×0.9×5 000=14 400(元),方案二所需费用为3.2×5 000-200×5=15 000(元).因为14 400<15 000,所以小华选择方案一购买更优惠.17.(1)证明因为一元二次方程为x2-(2k+1)x+k2+k=0,Δ=[-(2k+1)]2-4(k2+k)=1>0,所以此方程有两个不相等的实数根.(2)解因为△ABC的两边AB,AC的长是这个方程的两个实数根,由(1)知,AB≠AC,△ABC第三边BC 的长为5,且△ABC是等腰三角形,所以必然有AB=5或AC=5,即x=5是原方程的一个解.将x=5代入方程x2-(2k+1)x+k2+k=0,25-5(2k+1)+k2+k=0,解得k=4或k=5.当k=4时,原方程为x2-9x+20=0,x1=5,x2=4,以5,5,4为边长能构成等腰三角形;当k=5时,原方程为x2-11x+30=0,x1=5,x2=6,以5,5,6为边长能构成等腰三角形.(必须检验方程的另一个解大于0且小于10)故k的值为4或5.。
2024年人教新课标九年级数学上册阶段测试试卷含答案
2024年人教新课标九年级数学上册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、甲、乙两人以相同的路线前往距离单位10千米的培训中心参加学习,图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(千米)随时间t(分钟)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了6千米后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A. 4个B. 3个C. 2个D. 1个2、下列结论正确的是()A. 当x≠时,分式有意义B. 当x≠y时,分式有意义C. 当x=0时,分式的值为0D. 当x=-1时,分式没有意义3、在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A. sinA=B. cosA=C. tanA=D. cotA=4、下列不等式中,属于一元一次不等式的是()A. 2(1﹣y)+y<2y+3B. x2﹣2x+1=0C. a+b>cD. x+2y<y+45、【题文】右图是一个由4个相同的正方体组成的立体图形;它的三视图是()评卷人得分二、填空题(共8题,共16分)6、(2014秋•福清市校级月考)如图,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠BOC的度数为____.7、若5x=2,5y=4,则5x+y=____.8、有一个分数,将它的分母加上2,得到;如果将它的分母加上3,则得到.那么这个分数是____.9、一次函数y=2x+4与x轴的交点坐标是____.10、56°24′=____°.11、在▱ABCD中,AB+BC=10则▱ABCD的周长是______.12、如果直角三角形的斜边长为12,那么它的重心与外心之间的距离为.13、已知直线y=2x+1经过适当平移后的图象与原来的图象重合,试写出能满足要求的一种平移方案____.评卷人得分三、判断题(共6题,共12分)14、扇形的周长等于它的弧长.(____)15、点A(0,8)和B(1,4)都是第一象限内的点.____.(判断对错)16、=-a-b;____.17、没有最小的负数,但有最小的正数____.18、判断对错:关于中心对称的两个图形全等。
最新人教版初中九年级上册数学《旋转》单元检测试卷含答案
第二十三章旋转单元检测试卷2024--2025学年人教版九年级数学上册一、单选题1.下列图形中,既是中心对称图形又是轴对称图形的是()A .直角三角形B .圆C .等边三角形D .四边形2.下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .3.如图所示,将一个含30︒角的直角三角板ABC 绕点A 旋转,使得点B ,A ,'C 在同一直线上,则三角板ABC 旋转的度数是().A .60°B .90°C .120°D .150°4.如图,在ABC 中,20CAB ∠=︒,30ABC ∠=︒,将ABC 绕点A 逆时针旋转60°得到AB C '' ,点B ,C 的对应点分别为B ',C ',连接CC '交AB '于点E ,下列结论一定正确的是()A .70CCB ∠=''︒B .C A AB '⊥C .B C B E''='D .C B AC'' 5.如图,在Rt △ABC 中,∠BAC =90°.将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A′B′C ,点A在边B′C 上,则∠B′的大小为()A .42°B .48°C .52°D .58°6.若点o1+s 1−p 与点()3,2B -关于原点对称,则m n +的值为()A .-1B .2C .3D .57.如图,正方形ABCD 中,4AB =,O 是BC 边的中点,点E 是正方形内一动点,2OE =,连接DE ,将线段DE 绕点D 逆时针旋转90︒得DF ,连接AE 、CF .则线段OF 长的最小值为()A .2+B .92C .2-D .2-8.如图1,在边长为2的正方形ABCD 中,O 为对角线的交点,E 为CD 的中点,以DE 为边在CD 右侧作正方形DEFG .如图2,将正方形DEFG 绕点D 逆时针旋转(0120)a α︒<<︒,连接AE ,AG ,CE ,CG ,过点D 作DM AG ⊥于点M ,延长MD 交CE 于点N ,连接ON .在旋转过程中,给出下面四个结论:①AE AG =;②AE CG ⊥;③ADG CDE S S = ;④ON .上述结论中,所有正确结论的序号是()A .①②B .②③C .①④D .②③④9.在平面直角坐标系中,点A (-3,3),B (-4,1),C (-2,1),点M (2,m )绕坐标原点O 逆时针旋转90°后,恰好落在△ABC 内部(不包括边界),则m 的取值范围为()A .52<m<72B .83<m<113C .213<m<D .2113<m<15410.已知,矩形ABCD 中,8AB =,6BC =,点E 是线段AB 上的一个动点,将线段DE 绕点D 逆时针旋转90︒得到DF ,过F 作FG CD ⊥于点G ,连接EF ,取EF 的中点H ,连接DH ,AH .点E 在运动过程中,下列结论:①ADE GDF ≌;②当点H 和点G 互相重合时,6AE =;③GFH ADE ∠=∠;④AH ≤≤.正确的有()个.A .1B .2C .3D .4二、填空题11.已知1,−2和23,关于原点对称,则+2021的值为.12.如图,一个小孩坐在秋千上,秋千绕点O 旋转了86°,小孩的位置也从A 点运动到了A '点,则OAA ∠'=度.13.如图,将ABC 绕点A 逆时针旋转角()α0α180︒<<︒得到ADE ,点B 的对应点D 恰好落在BC 边上,若25DE AC CAD ⊥∠=︒,,则旋转角α的度数是.14.如图,ABC 为等腰直角三角形,90ACB ∠=︒,将ABC 绕点A 逆时针旋转75︒,得到AB C '' ,过点B 作B D AC '⊥,垂足为点D ,若6AC =,则AD 的长为.15.某正六边形的雪花图案如图所示.这个图案绕着它的中心旋转一定角度后能与自身重合,则这个旋转角的大小至少为度.16.一副三角板按如图所示叠放在一起,若固定△AOB ,将△ACD 绕着公共顶点A ,按顺时针方向旋转α度(0°<α<180°),当△ACD 的一边与△AOB 的某一边平行时,相应的旋转角α的值是.17.在△ABC 中,∠ACB =90°,∠B =60°,AB =8,点D 是直线BC 上动点,连接AD ,在直线AD 的右侧作等边△ADE ,连接CE ,当线段CE 的长度最小时,线段CD 的长度为.三、解答题18.如图,点E 是正方形ABCD 的边DC 上一点,把ADE 顺时针旋转至ABF 的位置.(1)旋转中心是________点,旋转角度是_______度,则AEF 是_______三角形;(2)若四边形AECF 的面积为362DE =,,求EF 的长.19.如图,四边形AOBC 是正方形,点C 的坐标是42,0.(1)正方形AOBC 的边长为______,点A 的坐标是______.(2)将正方形AOBC 绕点O 顺时针旋转45︒,点A ,B ,C 旋转后的对应点为A ',B ',C ',求点A '的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3)动点P 从点O 出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q 从点O 出发,沿折线OBCA 方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当OPQ 为等腰三角形时,求出t 的值(直接写出结果即可).20.【图形定义】连接三角形两边中点的线段叫做三角形的中位线.类似的,我们把连接四边形对边中点的线段叫做四边形的中位线.例如:如图1,在四边形ABCD 中,点M 是AB 的中点,点N 是CD 的中点,MN 是四边形ABCD 的中位线.【方法探究】如图2,已知MN 是ABC 的中位线,以点N 为中心将ABC 旋转180︒得到CB A ' ,可证12MN BC =.【方法应用】(1)如图3,MN 是梯形ABCD 的中位线.若35AD BC ==,,则MN =;若AD a =,BC b =,且b a >,则MN =.(2)如图4,MN 是四边形ABCD 的中位线.若35AD BC ==,,AD 与BC 不平行,则MN 的取值范围是;若AD a BC b ==,,且b a >,AD 与BC 不平行,则MN 的取值范围是.(3)如图5,在五边形ABCDE 中,AE CD ,6120AB AE A ==∠=︒,,4CD =,若点F G ,分别是边BC DE ,的中点,则线段FG 的长是.21.如图,D 是ABC ∆的边BC 延长线上一点,连接AD ,把ACD ∆绕点A 顺时针旋转60︒恰好得到ABE ∆,其中D ,E 是对应点,若18CAD ∠=︒,求EAC ∠的度数.22.如图1,在ABO 中,90OAB ∠=︒,30AOB ∠=︒,2OB =,点A 在x 轴上,以OB 为一边,在OAB外作等边三角形OBC ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)①求点B 的坐标;(2)如图2.将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长;(3)如图1,连接BE ,在线段BE 上有一动点M ,连接CM ,OM ,直接写出CM OM BM ++的最小值为______;(4)若去掉题干中2OB =这个条件,点F 为OBC 外一点,连接OF ,BF ,CF ,若6OF =,2BF =,则当线段CF 的长度最小时,OFB ∠=______,CF 的最小值是______.23.将一副直角三角板按图1方式叠放在一起,并且直角顶点C 重合,其中30B ∠=︒,45D ∠=︒.保持三角尺ABC 固定不动,将三角尺CDE 绕着点C 顺时针旋转α度.探究以下问题:(1)如图2,当α=210︒时,求证:AB EC ;(2)当0α180︒<<︒时,若这两个三角尺的一组边互相平行,请画出相应的图形,并求出此时α的度数.24.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE=90°,∠EOD=60°,先将△ODE 一边OE与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转.(1)当OD 在OA 与OC 之间,且∠COD=20°时,则∠AOE=______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE=7∠COD ,试求∠AOE 的大小.答案解析部分1.【答案】B 2.【答案】C 3.【答案】D 4.【答案】A 5.【答案】A 6.【答案】D 7.【答案】C 8.【答案】B 9.【答案】A 10.【答案】C 11.【答案】1-12.【答案】4713.【答案】50°14.【答案】15.【答案】6016.【答案】15°,30°,45°,75°,105°,135°,150°,165°17.【答案】618.【答案】(1)A ,90,等腰直角(2)19.【答案】(1)4,22,22(2)16(3)4或8320.【答案】(1)4,2a b+(2)14MN <<,22b a a bMN -+<<(3)721.【答案】解:∵把△ACD 绕点A 顺时针旋转60°恰好得到△ABE ,∴∠DAE =60°,∴∠EAC =∠EAD−∠CAD =42°.22.【答案】(1)点B 的坐标为);(2)OG 的长为14;(3)(4)60︒,423.【答案】(1)证明:∵α210∠=︒,∴3609021060ACE ∠=︒-︒-︒=︒,∵60A ∠=︒,∴A ACE ∠=∠,∴AB EC ;(2)解:①旋转过程中,当CE AB 时,如图1所示:则30BCE B ∠=∠=︒,由旋转性质可得:α30ACD BCE ∠==∠=︒;②当DE//AB 时,如图2所示,延长AC 交DE 于点F :∵点D 在直线AC 的上方,∠A=60°,∴180120DFC A ∠=︒-∠=︒,∵45D E ∠=∠=︒,∴()18015DCF DFC D ∠=︒-∠+∠=︒,∴α180165ACD DCF ∠==︒-∠=︒;③当CD AB 时,如图3所示:则30BCD B ∠=∠=︒,∴α120ACD ACB BCD ∠==∠+∠=︒;④当AC DE 时,如图4所示:则α45ACD D ∠=∠==︒;⑤当DE BC 时,如图5所示:则45BCD D ∠=∠=︒,∴α135ACD ACB BCD ∠==∠+∠=︒;综上所述:α的度数为30︒或45︒或120︒或135︒或165︒.24.【答案】(1)130°;(2)∠AOD 与∠COE 的差不发生变化,为30°;(3)∠AOE=131.25°或175°.。
2024年最新人教版九年级数学(上册)模拟考卷及答案(各版本)
2024年最新人教版九年级数学(上册)模拟考卷一、选择题(每题5分,共20分)1. 下列哪个数是正数?A. 2B. 0C. 3D. 52. 下列哪个数是负数?A. 4B. 0C. 1D. 23. 下列哪个数是整数?A. 3.5B. 2C. 1.2D. 0.54. 下列哪个数是有理数?A. πB. √2C. 3/4D. √35. 下列哪个数是无理数?A. 4B. 0C. √5D. 3/2二、填空题(每题5分,共20分)1. 2的绝对值是______。
2. 3/4和1/2的最简分数比是______。
3. √9的值是______。
4. 下列哪个数是π的近似值?A. 3.14B. 3.1416C. 3.14159D. 3.1415926三、解答题(每题10分,共40分)1. 解方程:2x 3 = 5。
2. 解不等式:3x + 2 > 7。
3. 解方程组:{2x + y = 5, x y = 1}。
4. 求函数y = 2x + 3在x = 2时的函数值。
四、证明题(10分)证明:对于任意实数a和b,如果a < b,则 a > b。
五、应用题(10分)某商店出售一种商品,原价为100元,打八折后的售价为80元。
如果商店希望将这种商品的售价提高20%,那么新的售价是多少元?六、综合题(10分)已知一个等差数列的前三项分别为2,5,8,求这个数列的第10项。
七、计算题(10分)计算:3√2 2√3 + √5。
八、几何题(10分)已知一个直角三角形的两个直角边长分别为3和4,求这个三角形的斜边长。
九、概率题(10分)一个袋子里有5个红球和3个蓝球,随机从袋子里取出一个球,求取出的球是红球的概率。
十、解析几何题(10分)已知一个抛物线的方程为y = x^2 4x + 3,求这个抛物线的顶点坐标。
一、选择题答案:1. C2. C3. B4. C5. C二、填空题答案:1. 22. 3:23. 34. A三、解答题答案:1. x = 42. x > 13. x = 2, y = 14. y = 7四、证明题答案:证明:由于a < b,所以a b < 0。
(精)新人教版九年级数学上册全单元测试卷(含答案)
新人教版九年级数学上个单元测试卷(含答案)第二十一章过关自测卷 (100分,45分钟)一、选择题(每题3分,共21分)1.下列方程是关于x 的一元二次方程的是( ) A.ax 2+bx +c =0 B.211x x=2 C.x 2+2x =y 2-1 D.3(x +1)2=2(x +1)2.若一元二次方程ax 2+bx +c =0有一根为0,则下列结论正确的是( ) A.a =0 B.b =0 C.c =0 D.c ≠03.一元二次方程x 2-2x -1=0的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根4.方程x 2+6x =5的左边配成完全平方式后所得方程为( ) A.(x +3)2=14 B.(x -3)2=14C.(x +6)2=12D.以上答案都不对 5.已知x =2是关于x 的方程32x 2-2a =0的一个根,则2a -1的值是( ) A.3 B.4 C.5 D.66.某县为发展教育事业,加强了对教育经费的投入,2012年投入3亿元,预计2014年投入5亿元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .3(1+x )2=5 B .3x 2=5C. 3(1+x %)2=5D. 3(1+x ) +3(1+x )2=57.使代数式x 2-6x -3的值最小的x 的取值是( ) A.0 B.-3 C.3 D.-9 二、填空题(每题3分,共18分)8.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为________. 9.如果方程ax 2+2x +1=0有两个不等实数根,则实数a 的取值范围是____________.10.已知α、β是一元二次方程x 2-4x -3=0的两实数根,则代数式(α-3)(β-3)=________.11.在一幅长50 cm ,宽30 cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图1所示,如果要使整个挂图的面积是1 800 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为________________.112.已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为________.13.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是_______________.三、解答题(14、19题每题12分,15题8分,16题9分,其余每题10分,共61分)14.我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①x 2-3x +1=0;②(x -1)2=3;③x 2-3x =0;④x 2-2x =4.15.已知关于x 的方程x 2+kx -2=0的一个解与方程11x x +-=3的解相同. (1)求k 的值;(2)求方程x 2+kx -2=0的另一个解.16.关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.17.〈绍兴〉某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?18.中秋节前夕,旺客隆超市采购了一批土特产,根据以往销售经验,每天的售价与销售量之间有如下表的关系:(2)如果这种土特产的成本价是20元/千克,为使某一天的利润为780元,那么这一天的销售价应为多少元/千克?(利润=销售总金额-成本)19.如图2,A、B、C、D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向点D移动.(1)P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?图2 (2)P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?第二十二章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.抛物线y=ax2+bx-3过点(2,4),则代数式8a+4b+1的值为()A.-2B.2C.15D.-152.图1是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图2建立平面直角坐标系,则抛物线的关系式是()图1 图2A.y=-2x2B.y=2x2C.y=-12x2 D.y=12x23.〈恩施州〉把抛物线y=12x2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.y=12(x+1)2-3B.y=12(x-1)2-3C.y=12(x+1)2+1D.y=12(x-1)2+12a≠0)中的x与y的部分对应值如下表:给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为-3;(2)当-12<x<2时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3 B.2C.1D.05.〈舟山〉若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1B.直线x=-2C.直线x=-1D.直线x=-46.设一元二次方程(x-1)(x-2)=m(m>0)的两实根分别为α,β,且α<β,则α,β满足()C.α<1<β<2D.α<1且β>27.〈内江〉若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是直线x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)8.〈南宁〉已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是-4C.-1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大图3二、填空题(每题4分,共32分)9.已知抛物线y=-13x2+2,当1≤x≤5时,y的最大值是______.10.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是__________.11.已知函数y=(k-3)x2+2x+1的图象与x轴有公共点,则k的取值范围是________.12.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是________.13.二次函数y=ax2+bx的图象如图4,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为__________.图4 图514.如图5,已知函数y=-3x与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程ax2+bx+3x=0的解为_______.15.将一条长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是__________ cm2.16.如图6,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为__________.图6三、解答题(每题12分,共36分)17.〈牡丹江〉如图7,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3). (1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标.图718.在平面直角坐标系xOy中,O为坐标原点,已知抛物线y=x2-(k+2)x+14k2+1.(1)k取什么值时,此抛物线与x轴有两个交点?(2)若此抛物线与x轴交于A(x1,0)、B(x2,0)两点(点A在点B左侧),且x1+x2=3,求k的值.19.〈广州〉已知抛物线y 1=ax 2+bx +c 过点A (1,0),顶点为B ,且抛物线不经过第三象限. (1)使用a 、c 表示b ;(2)判断点B 所在象限,并说明理由;(3)若直线y 2=2x +m 经过点B ,且与该抛物线交于另一点C ,8c b a ⎛⎫+ ⎪⎝⎭,求当x ≥1时y 1的取值范围.第二十三章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.已知下列命题:①关于一点对称的两个图形一定不全等;②关于一点对称的两个图形一定是全等图形;③两个全等的图形一定关于一点对称.其中真命题的个数是()A.0 B.1 C.2 D.32.〈江苏泰州〉下列标志图(图1)中,既是轴对称图形,又是中心对称图形的是()图13.如图2,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()图2A.10°B.15°C.20°D.25°4.如图3①,将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是图3②中的()图35.如图4所示的图案中,绕自身的某一点旋转180°后还能与自身重合的图形的个数是()图4A.1B.2C.3D.4C.第三象限D.第四象限7.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图5①.在图5②中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图5①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()图5A.6 B.5 C.3 D.28.如图6,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A. 30,2B.60,2C.60D.60图6二、填空题(每题4分,共24分)9.如图7,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则α=_______.图710.如图8,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C,那么点A的对应点A′的坐标是_______.图8A′、C′仍落在格点上,则线段AB扫过的图形的面积是_______平方单位(结果保留π).图9 图1012.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为_______.13.如图10,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,若AP=3,则PP′的长是_______.14.如图11①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图11②、图11③、…,则旋转得到的图11⑩的直角顶点的坐标为_______.图11三、解答题(17题10分,18题12分,19题14分,其余每题8分,共52分)15.如图12,在平面直角坐标系中,三角形②③是由三角形①依次旋转后所得的图形.图12(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图中画出再次旋转后的三角形④.16.如图13所示,(1)观察图①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征:图13(2)借助图⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所给出的两个共同特征.(注意:①新图案与图①~④的图案不能重合;②只答第(2)问而没有答第(1)问的解答不得分)17.如图14,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由;图14(2)若矩形ABCD面积为2,求四边形BDEG的面积.18.如图15,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD顶点都在格点上,其中,点A的坐标为(1,1).(1)若将正方形ABCD绕点A顺时针方向旋转90°,点B到达点B1,点C到达点C1,点D到达点D1,求点B1、C1、D1的坐标;图15(2)若线段AC1的长度与点D1的横坐标的差恰好是一元二次方程x2+ax+1=0的一个根,求a的值.19.〈潍坊〉如图16①所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至长方形CE′F′D′,旋转角为α.图16(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图16②,G为BC中点,且0°<α<90°,求证:GD′= E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.第二十四章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.〈重庆〉如图1,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°图1 图22.〈甘肃兰州〉如图2是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8 cm,水面最深地方的高度为2 cm,则该输水管的半径为()A.3 cm B.4 cm C.5 cm D.6 cm3.〈甘肃兰州〉圆锥底面圆的半径为3 cm,其侧面展开图是半圆,则圆锥母线长为()A.3 cm B.6 cm C.9 cm D.12 cm图3 图44.如图3,边长为a的六角螺帽在桌面上滚动(没有滑动)一周,则它的中心O点所经过的路径长为()A.6a B.5a C.2aπD aπEB的中点,则下列结论不成立的是()5.〈山东泰安〉如图4,已知AB是⊙O的直径,AD切⊙O于点A,点C是⌒A.OC//AE B.EC=BCC.∠DAE=∠ABE D.AC⊥OE6.〈2013,晋江市质检〉如图5,动点M,N分别在直线AB与CD上,且AB//CD,∠BMN与∠MND的平分线相交于点P,若以MN为直径作⊙O,则点P与⊙O的位置关系是()图5A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.以上都有可能7.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A.120°B.125°C.135°D.150°8.〈贵州遵义〉如图6,将边长为1 cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()图6A.32πcm B.322⎛⎫+⎪⎝⎭πcm C.43πcm D.3 cm二、填空题(每题4分,共24分)9.〈四川巴中〉如图7,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD 等于________.图7 图810.〈重庆〉如图8,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为________(结果保留π).11.〈贵州遵义〉如图9,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为________(结果保留根号).图9 图1012.如图10,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为每秒1个单位长度,以O ABC的边第二次相切时是出发后第________秒.13.如图11,正六边形ABCDEF中,AB=2,P是ED的中点,连接AP,则AP的长为________.图11 图1214.如图12,AB为半圆O的直径,C为半圆的三等分点,过B,C两点的半圆O的切线交于点P,若AB的长是2a,则P A的长是________.三、解答题(15题9分,16题10分,17题11分,18题14分,共44分)15. 如图13所示,△ABC中,∠ACB=90°,AC=2 cm,BC=4 cm,CM是AB边上的中线,以C长为半径画圆,则点A,B,M与⊙C的位置关系如何?图1316. 如图14,已知CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°.(1)求证:AB是⊙O的切线;图14(2)若⊙O的半径为2,求⌒BD的长.17.如图15,从一个直径为4的圆形铁片中剪下一个圆心角为90°的扇形ABC.(1)求这个扇形的面积;图15(2)在剩下的材料中,能否从③中剪出一个圆作为底面,与扇形ABC围成一个圆锥?若不能,请说明理由;若能,请求出剪的圆的半径是多少.18. 如图16,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;图16(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.第二十五章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.〈大连〉一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.13B.25C.12D.352.〈牡丹江〉小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是()A.110B.25C.15D.3103.〈贵阳〉一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A.6 B.10 C.18 D.204.一纸箱内有红、黄、蓝、绿四种颜色的纸牌,且图1所示为各颜色纸牌数量的统计图.若小华自箱内抽出一张牌,且每张牌被抽出的机会相等,则他抽出红色牌或黄色牌的机(概)率为()A.15B.25C.13D.12图15.小江玩投掷飞镖的游戏,他设计了一个如图2所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A. 13B.23C.12D.34图26.〈临沂〉如图3,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()A. 34B.13C.23D.12图3 图47.在学习概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟试验来验证.①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值;②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值;③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如图4),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值.上面的试验中,不科学的有()A.0个B.1个C.2个D.3个8.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上一个反面向上,则小亮赢;若出现一个正面向上两个反面向上,则小文赢.下面说法正确的是()A.小强赢的概率最小B.小文赢的概率最小C.小亮赢的概率最小D.三人赢的概率相等二、填空题(每题3分,共18分)9.〈长沙〉在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是_______.10.一只昆虫在如图5所示的树枝上爬行,假定昆虫在每个岔路口都会随机地选择一条路径,则它停留在A 叶面的概率是_______.图5 图611.如图6,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②③或同时闭合开关④⑤⑥都可使这个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为_______.12.王红和刘芳两人在玩转盘游戏,如图7,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是_______.图713.〈重庆〉在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为_______.14.〈济宁〉甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是_______.三、解答题(18题10分,19,20题每题12分,其余每题8分,共58分)15.已知口袋内装有黑球和白球共120 个,请你设计一个方案估计一下口袋内有多少个黑球,多少个白球?16.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次摸出的小球的标号相同;(2)两次摸出的小球标号的和等于4.17.〈扬州〉端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图8).规定:同一日内,顾客在本商场每消费满100元就可以转转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得_______元购物券,最多可得______元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.图818.〈包头〉甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图9所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲胜;若指针所指两个区域的数字之和为4的倍数,则乙胜.如果指针落在分割线上,则需要重新转动转盘.(1)试用列表或画树状图的方法,求甲获胜的概率;图9(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.19.有三张正面分别写有数-2 ,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数作为y的值,两次结果记为(x,y).(1)用画树状图法或列表法表示(x,y)所有可能出现的结果;(2)求使代数式2223x xy yx y x y-+--有意义的(x ,y )出现的概率;(3)化简代数式2223x xy yx y x y-+--,并求使代数式的值为整数的(x ,y )出现的概率.20.〈潍坊〉 随着我国汽车产业的发展,城市道路拥堵问题日益严峻,某部门对15个城市的交通状况进行了调查,得到的数据如下表所示.(1)根据上班花费时间,将下面的频数分布直方图(如图10)补充完整;图10(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);(3)规定:城市的堵车率=-上班堵车时间上班花费时间上班堵车时间×100%,比如,北京的堵车率=145214-×100%≈36.8%;沈阳的堵车率=123412-×100%≈54.5%,某人欲从北京,沈阳,上海,温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.期末选优拔尖测试(120分,90分钟)一、选择题(每题3分,共24分)1.如图1所示的图形中,既是轴对称图形又是中心对称图形的是( )图12.下列成语所描述的事件是必然事件的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖3.如图2,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.75°B.72°D.65°图2 图34.有一块长为30 m,宽为20 m的矩形菜地,准备修筑同样宽的三条直路(如图3),把菜地分成六块作为试验田,种植不同品种的蔬菜,并且种植蔬菜面积为矩形菜地面积的34,设道路的宽度为x m,下列方程:①30x+20x×2=30×20×14;②30x+20x×2-2x2=30×20×14;③(30-2x)(20-x)=30×20×34,其中正确的是()A.①②B.①③C.②③D.①②③5.已知关于x的一元二次方程x2-2x=m有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<-2C.m=0 D.m>-16.半径相等的圆内接正三角形、正方形、正六边形的边长之比为()A.1B∶1C.3∶2∶1 D.1∶2∶3图47.如图4,点A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿O-C-D-O的路线作匀速运动.设运动时间为t秒,∠APB的度数为y度,则如图5所示图象中表示y与t之间函数关系最恰当的是()图5 图68.二次函数y=ax2+bx+c(a≠0)的图象如图6所示,则下列5个代数式:ab,ac,a-b+c,b2-4ac,2a+b中,值大于0的个数为()A.5 B.4 C.3 D.2二、填空题(每题3分,共21分)9.(陕西)在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则m的最小值为_______.10.已知点P(a,-3)关于原点的对称点为P1(-2,b),则a+b的值是_______.11.已知2x2-4x+c=0的一个根,则方程的另一个根是_______.12.如图7所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8 m,两侧距地面3 m高处各有一壁灯,两壁灯间的水平距离为6 m,则厂门的高度约为_______.(精确到0.1 m)图713.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6 cm,则此圆锥的表面积为_______cm2.14.已知⊙O1和⊙O2的半径分别是一元二次方程x2-5x+6=0的两根,且O1O2=1,则⊙O1和⊙O2的位置关系是_______.15.如图8,Rt△ABC的边BC位于直线l上,AC∠ACB=90°,∠A= 30°;若Rt△ABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为_______ (结果用含π的式子表示).图8三、解答题(16~18题每题6分,19~22题每题8分,23题11分,24题14分,共75分)16.已知抛物线经过两点A(1,0),B(0,-3),且对称轴是直线x=2,求此抛物线的解析式.17.解方程x2-4x+2=0.(用配方法)18.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+1)x+k(k+1)=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.19.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”“2”“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机抽取一张并记下数字.请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.20.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图9(1),连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;图9(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图9(2)为例说明理由.21.如图10,AC是⊙O的直径,P A切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;图10(2)若⊙O的半径为2,求弦AB及P A,PB的长.22.“五一”期间,小明和同学一起到游乐场游玩.如图11为某游乐场大型摩天轮的示意图,其半径是20m,它匀速旋转一周需要24分钟,最底部点B离地面1m.小明乘坐的车厢经过点B时开始计时.(1)计时4分钟后小明离地面的高度是多少?图11 (2)在旋转一周的过程中,小明将有多长时间连续保持在离地面31m以上的空中?23.为了实现“畅通市区”的目标,市地铁一号线准备动工,市政府现对地铁一号线第15标段工程进行招标,施工距离全长为300米.经招标协定,该工程由甲、乙两公司承建,甲、乙两公司施工方案及报价分别为:(1)甲公司施工单价y1(万元/米)与施工长度x(米)之间的函数关系为y1=27.8-0.09x,(2)乙公司施工单价y2(万元/米)与施工长度x(米)之间的函数关系为y2=15.8-0.05x.(注:工程款=施工单价×施工长度)(1)如果不考虑其他因素,单独由甲公司施工,那么完成此项工程需工程款多少万元?(2)考虑到设备和技术等因素,甲公司必须邀请乙公司联合施工,共同完成该工程.因设备共享,两公司联合施工时市政府可节省工程款140万元(从工程款中扣除).①如果设甲公司施工a米(0<a<300),那么乙公司施工______米,其施工单价y2=_______万元/米,试求市政府共支付工程款P(万元)与a(米)之间的函数关系式;②如果市政府支付的工程款为2 900万元,那么应将多长的施工距离安排给乙公司施工?24.如图12,y关于x的二次函数y=-3m (x+m)(x-3m)图象的顶点为M,图象交x轴于A、B两点,交y轴正半轴于点D.以AB为直径作圆,圆心为点C,定点E的坐标为(-3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学全一册检测卷新人教版附答案(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.一元二次方程x2-x-2=0的解是( C )A.x1=2,x2=1B.x1=-2,x2=1C.x1=2,x2=-1D.x1=-2,x2=-12.观察下列图形,其中既是轴对称又是中心对称图形的是( D )3.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( B )A.4,30°B. 2,60°C.1,30°D.3,60°4.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于( C )A.316 B.38 C.58 D.13165.若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-m的图象上的三点,则y1,y2,y3的大小关系是( B )A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y36.如图,函数y1=k1x与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x的取值范围是( C )A.x>1B.-1<x<0C.-1<x<0或x>1D.x<-1或0<x<17.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B,C之间的距离为( C )A.20海里B.103海里C.202海里D.30海里8.如图,在Rt△ABC中,∠C=90°,AC=6 cm,BC=2 cm,点P在边AC 上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是( C )A.20 cmB.18 cmC.2 5 cmD.3 2 cm9.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是( B )A.51213 B.125 C.3513 D.231310.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是( C )A.①④B.②④C.①②③D.①②③④二、填空题(每小题4分,共24分)11.若正数a是一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m=0的一个根,则a的值是5.12.如图,在△ABC中,M,N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM=3.13.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cos A=255.14.如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为 (225+252)π .15.从-1,2,3,-6这四个数中任选两数,分别记作m ,n ,那么点(m ,n )在函数y =6x 图象上的概率是 13 .16.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P为直线y =-34x +3上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是 22 .三、解答题(共66分)17.(6分) 先化简,再求值:(x 2-2x +4x -1+2-x )÷x 2+4x +41-x,其中x 满足x 2-4x +3=0.解:原式=x 2-2x +4+(2-x )(x -1)x -1÷(x +2)21-x =x +2x -1·1-x (x +2)2=-1x +2, 解方程x 2-4x +3=0得,(x -1)(x -3)=0,x 1=1,x 2=3.当x=1时,原式无意义;当x=3时,原式=-12+3=-15.18.(6分)如图,矩形ABCD为台球桌面,AD=260 cm,AB=130 cm,球目前在E点位置,AE=60 cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.解:(1)证明:如图,在矩形ABCD中,由对称性可得出:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;(2)解:∵由(1)知,△BEF∽△CDF.∴BECD=BFCF,即70130=260-CFCF,解得:CF=169.即:CF的长度是169 cm.19.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=1 12.20.(8分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?解:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x-11)元/盒,根据题意得:3500x =2400x -11,解得:x =35,经检验,x =35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为a,2014年的销售数量为3500÷35=100(盒).根据题意得:(60-35)×100(1+a )2=(60-35+11)×100,解得:a =0.2=20 %或a =-2.2(不合题意,舍去).答:年增长率为20 %.21.(8分)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB 的高,他们在旗杆正前方台阶上的点C 处,测得旗杆顶端A 的仰角为45°,朝着旗杆的方向走到台阶下的点F 处,测得旗杆顶端A 的仰角为60°,已知升旗台的高度BE 为1米,点C 距地面的高度CD 为3米,台阶CF 的坡角为30°,且点E ,F ,D 在同一条直线上,求旗杆AB 的高度.(计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73)解:过点C 作CM ⊥AB 于M .则四边形MEDC 是矩形,∴ME =DC =3.CM =ED ,在Rt △AEF 中,∠AFE =60°,设EF =x ,则AF =2x ,AE =3x ,在Rt △FCD 中,CD =3,∠CFD =30°,∴DF =33,在Rt △AMC 中,∠ACM =45°,∴∠MAC =∠ACM =45°,∴MA =MC ,∵ED =CM ,∴AM =ED ,∵AM =AE -ME ,ED =EF +DF ,∴3x -3=3x +3,∴x =6+33,∴AE =3(6+33)=63+9,∴AB =AE -BE =9+63-1≈18.4米.答:旗杆AB 的高度约为18.4米.22.(10分)“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数关系:y =-4x +220(10≤x ≤50,且x 是整数),设影城每天的利润为w (元)(利润=票房收入-运营成本).(1)试求w 与x 之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元? 解:(1)根据题意,得:w =(-4x +220)x -1000=-4x 2+220x -1000;(2)∵w =-4x 2+220x -1000=-4(x -27.5)2+2025,∴当x =27或28时,w 取得最大值,最大值为2024,答:影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元.23.(10分),如图,AB 是⊙O 的直径,点C 在AB 的延长线上,AD 平分∠CAE 交⊙O 于点D ,且AE ⊥CD ,垂足为点E .(1)求证:直线CE 是⊙O 的切线.(2)若BC =3,CD =32,求弦AD 的长.(1)证明:连接OD ,如图,∵AD 平分∠EAC ,∴∠1=∠3,∵OA =OD ,∴∠1=∠2,∴∠3=∠2,∴OD ∥AE ,∵AE ⊥DC ,∴OD ⊥CE ,∴CE 是⊙O 的切线;(2)连接BD .∵∠CDO =∠ADB =90°,∴∠2=∠CDB =∠1,∵∠C =∠C ,∴△CDB ∽△CAD ,∴CD CA =CB CD =BD AD ,∴CD 2=CB ·CA ,∴(32)2=3CA ,∴CA =6,∴AB =CA -BC =3,BD AD =326 =22 ,设BD =k ,AD =2k ,在Rt △ADB中,2k 2+4k 2=9,∴k =62 ,∴AD = 6.24.(12分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与y 轴交与点C (0,3),与x 轴交于A ,B 两点,点B 坐标为(4,0),抛物线的对称轴方程为x =1.(1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN 的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使△MBN 为直角三角形?若存在,求出t 值;若不存在,请说明理由.解:(1)∵点B 坐标为(4,0),抛物线的对称轴方程为x =1.∴A (-2,0),把点A (-2,0)、B (4,0)、点C (0,3),分别代入y =ax 2+bx +c (a ≠0),得⎩⎨⎧4a -2b +3=0,16a +4b +3=0,解得 ⎩⎪⎨⎪⎧ a =-38,b =34,c =3,所以该抛物线的解析式为:y =-38x 2+34x +3;(2)设运动时间为t 秒,则AM =3t ,BN =t .∴MB =6-3t .由题意得,点C 的坐标为(0,3).在Rt △BOC 中,BC =32+42=5.如图1,过点N 作NH ⊥AB 于点H .∴NH ∥CO ,∴△BHN ∽△BOC ,∴HN OC =BN BC ,即HN 3=t 5,∴HN =35t .∴S △MBN =12MB ·HN =12(6-3t )·35t =-910t 2+95t =-910(t -1)2+910,当△MBN 存在时,0<t <2,∴当t =1时,S △MBN 最大=910.答:运动1秒使△MBN 的面积最大,最大面积是910;(3)如图2,在Rt △OBC 中,cos ∠B =OB BC =45.设运动时间为t 秒,则AM =3t ,BN =t .∴MB =6-3t .当∠MNB =90°时,cos ∠B =BN MB =45,即t 6-3t=45,化简,得17t =24,解得t =2417,当∠BMN =90°时,cos ∠B =BM BN =6-3t t =45;当∠BM ′N ′=90°时,cos ∠B =BM ′BN ′ =6-3t t =45,化简,得19t =30,解得t =3019,综上所述:t=2417或t =3019时,△MBN 为直角三角形.。